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ABSTRACT

In this paper, we propose a supervised graph representation learning
method to model the relationship between brain functional connec-
tivity (FC) and structural connectivity (SC) through a graph encoder-
decoder system. The graph convolutional network (GCN) model is
leveraged in the encoder to learn lower-dimensional node represen-
tations (i.e. node embeddings) integrating information from both
node attributes and network topology. In doing so, the encoder man-
ages to capture both direct and indirect interactions between brain
regions in the node embeddings which later help reconstruct empiri-
cal FC networks. From node embeddings, graph representations are
learnt to embed the entire graphs into a vector space. Our end-to-
end model utilizes a multi-objective loss function to simultaneously
learn node representations for FC network reconstruction and graph
representations for subject classification. The experiment on a large
population of non-drinkers and heavy drinkers shows that our model
can provide a characterization of the population pattern in the SC-
FC relationship, while also learning features that capture individual
uniqueness for subject classification. The identified key brain sub-
networks show significant between-group difference and support the
promising prospect of GCN-based graph representation learning on
brain networks to model human brain activity and function.

Index Terms— Brain networks, graph representation learning,
graph convolutional network, supervised encoder-decoder system,
graph embedding, SC-FC relationship.

1. INTRODUCTION

Our brain is an efficient network with various regions conducting
individual tasks while sharing information with each other [1]. Ac-
cordingly, graph-centric tools and methods of network science be-
come indispensable for studying brain structure (of neural connec-
tions often referred to as the connectome) [2], as well as function [3].

Human brain can be characterized by networks of brain regions
connected by functional connectivity (FC) or anatomical tracts
(structural connectivity, or SC) [4]. Previous studies have shown
that FC correlates with SC at an aggregate level [5], while strong
functional connections do not typically imply strong direct SC be-
tween the same regions [6]. These findings revealed that functional
interactions between brain regions are shaped by higher-level indi-
rect anatomical connections [7] and motivated relative research into
predicting FC from SC [5, 6] and inspecting generation process of
FC from underlying SC [8, 9]. In this context, we model the SC-FC
relationship by pursuing SC-to-FC mapping represented by lower-
dimensional representations which can be tackled by the state-of-art
machine learning frameworks for network data.
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Recent deep learning developments [10] have significantly im-
proved the performance of various machine learning tasks such as
computer vision and natural language processing, due to invariance
and stability properties of the well-defined convolution operator for
signals supported on regular domains [11]. Driven by the large
amount of non-Euclidean data residing on a graph, geometric deep
learning [12] was proposed to generalize (convolutional) neural
network models for network data [13]. Such generalization moti-
vated the definition of graph convolutional networks (GCNs) with
convolutional features computed in the graph spectral and/or spatial
domain; see [13, 14] for recent surveys and the references therein.

One important branch of geometric deep learning is graph rep-
resentation learning [15] which manages to learn lower-dimensional
representations of nodes [16–18] for node classification or link pre-
diction, or of graphs [19, 20] for graph classification or similarity
ranking. To date, most recent graph representation learning methods
are evaluated on social networks [21] and their potential for neu-
roimaging data analysis is yet to be explored and understood. In
particular, generalizing the inductive graph representation learning
models is not apparent for brain networks with learnable parameters
which are shared among large cohort of graphs.

In this paper, we propose a supervised graph representation
learning method to: (i) learn node embeddings generated from SC
networks to reconstruct empirical FC networks; and (ii) learn graph
embeddings to represent the whole graph for subject classification
by building a graph encoder-decoder system. For each node in the
graph, the encoder outputs a low-dimensional node embedding that
integrates both nodal attributes (when available) and the local graph
topology information. To aggregate information from multiple hops
within the graph, graph convolution operations are used to compute
nodal features in order to capture indirect interactions across the
network. This makes the GCN-based encoder a proper model for
connectome embeddings by considering indirect (functional) con-
nections within brain networks. The graph embeddings are obtained
by averaging all node embeddings [22], and a logistic regression
classifier is built for subject classification. We propose this multi-
task learning model in Section 2.2 with the the goal of reconstructing
brain FC using input SC data while achieving subject classification
with learnt graph embeddings. The first objective learns a universal
SC-FC relationship in the population, while the second objective
uses subject labels and takes individual uniqueness into considera-
tion. Consequently, the learnt representations capture the population
pattern in SC-FC relationship and also reflect individual properties
of each subject regarding the labels used for classification. We
train and test our model on a population of 466 subjects with 245
non-drinkers and 221 heavy drinkers from the Human Connectome
Project1, and obtain satisfactory FC reconstruction performance and
subject classification accuracy in Section 3. Additionally, via statis-
tical tests on the reconstructed FC networks, key brain sub-networks
are identified to show significant difference between groups. Con-

1https://www.humanconnectome.org/
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cluding remarks are given in Section 4, along with an outline of
future directions related to this promising, but preliminary, line of
research. The novelty of our work lies in the learning of lower-
dimensional representations that capture the intrinsic quality of the
relationship between brain SC and FC networks in a large population
for subject classification.

2. PRELIMINARIES AND PROPOSED MODEL

In this section, a brief introduction of graph convolutional models are
provided; see also [13,14] for further details. Then we formally state
the problem of supervised graph representation learning for model-
ing SC-FC relationship and introduce the proposed graph encoder-
decoder model.

2.1. Graph convolutional networks

Consider a weighted, undirected graph denoted by G := (V,A),
where V is a set ofN nodes corresponding to brain regions, and A ∈
RN×N is the symmetric adjacency matrix with Aij representing the
functional (or structural) connection strengths between brain region i
and j. The graph Laplacian matrix is defined as L := D−A, where
D is the diagonal degree matrix. The Laplacian L is a symmetric
matrix and can be further decomposed as L = UΛUT , where U ∈
RN×N denotes the set of orthonormal eigenvectors and Λ contains
all eigenvalues on its diagonal. As in classical signal processing,
the eigenvectors in U serve as the Fourier basis [23]. Consider a
vertex-valued process x ∈ RN where xi denotes the signal value
at node i, for example, the nodal attributes on the brain FC (or SC)
network. Then the graph Fourier transform (GFT) is defined as x̂ =
UTx [23, 24]. The graph convolution can be defined as

Hx = (

K∑
i=0

hiL
i)x = U(

K∑
i=0

hiΛ
i)UTx = UĤx̂ (1)

where H =
∑K

i=0 hiL
i is the graph filter with coefficients h :=

[h0, . . . , hK ]T and frequency response Ĥ =
∑K

i=0 hiΛ
i.

The first spectral convolutional neural network was proposed in
[25] to learn the filter response in the spectral domain. However,
this method needs to compute the eigenvectors of a (fixed) graph,
which may be computationally infeasible for very large networks.
Also, the filters depend on the eigenbasis of the Laplacian thus the
parameters cannot be shared across different graphs. To overcome
these limitations, the ChebNet was proposed in [18] by defining a
filter in terms of Chebyshev polynomials of the diagonal matrix of
eigenvalues thus the frequency response of the filter is approximated
as

Ĥ =

K∑
i=0

hiΛ
i ≈

K∑
i=0

θiTi(Λ̃), (2)

where θi are the Chebyshev coefficients to be learned, Λ̃ =
2Λ/λmax − IN , with λmax denoting the largest eigenvalue of the
Laplacian, and IN is theN×N identity matrix. The Chebyshev poly-
nomials are recursively given as Tk(Λ̃) = 2Λ̃Tk−1(Λ̃)− Tk−2(Λ̃)

with T0(Λ̃) = 1, T1(Λ̃) = Λ̃. In this case, the graph convolution
can be defined as

Hx = UĤx̂ = U(

K∑
i=0

θiTi(Λ̃))UTx =

K∑
i=0

θiTi(L̃)x (3)

with L̃ = 2L/λmax − IN . Note that (3) now is K-hop localized
with K being the order of the Chebyshev polynomial. This means
the convolution operation on a node depends only on other nodes
that are at most K hops away in G.

Fig. 1: The model scheme. Rows in Y are low-dimensional node embed-
dings learned by the encoder from input SC networks. Logistic regression
classifier outputs predicted label l̂ and compares with actual label l.

A first-order approximation of the ChebNet was introduced
in [17] with K = 1, λmax = 2, θ = θ0 = −θ1 to simplify (3) as

Hx = θ(IN + D−1/2AD−1/2)x. (4)

The compact version of (4) motivates the simple per-layer filtering
update implemented in [17] of the form

X̃← ÃXΘ, (5)

where Ã = IN + D−1/2AD−1/2, X is a set of multiple observa-
tions of the graph signal x, and Θ stores the learnable weight pa-
rameters. The output X̃ integrates both the nodal attributes in X and
the graph topology information in Ã. A neural network model based
on graph convolution can be built by stacking multiple convolutional
layers as in (5), each one followed by a point-wise non-linearity [17].
Next, for our proposed architecture, we build upon the graph convo-
lution in (5) due to its simplicity and remarkable performance [17].

2.2. Problem statement and model architecture

Given brain SC networks, the goal is to build and train a model to
reconstruct FC networks through node embeddings and also to learn
graph embeddings for subject classification. The learnt representa-
tions then contain information of both population patterns and in-
dividual uniqueness. To this end, we propose a supervised graph
encoder-decoder model as shown in Fig. 1.

Upon the input brain SC network with each node representing
one brain region, the encoder generates a lower-dimensional rep-
resentation for each node. Among various node embedding mod-
els, neighbor aggregation methods such as GCN are permutation-
invariant and inductive [20]. As a result, GCN is used in the encoder
to generate latent variables that consolidates both nodal attributes
such as the known intrinsic properties of each brain region, and the
network topology information like the connection strengths among
regions in SC networks. Here, we use a single-layer GCN for the
encoder which is modified from (5) and is given by

Y = Relu(ÂXΘ), (6)

where Relu(x) = max(0, x). In (6), X ∈ RN×T is the input signal
matrix where each row represents a nodal attribute of length T and
N is the number of graph nodes. The normalized adjacency matrix
is Â := D̃−1/2ÃD̃−1/2, where Ã = I + A and D̃ is the degree
matrix of Ã (4). Matrix A here stands for the SC brain network.
Identity matrix is added to the input graph A to introduce self loops
to assure that the attribute on the node itself also contributes to the
new node embedding during graph convolution. Weight matrix Θ ∈
RN×F contains learnable graph filter coefficients for the GCN-based
encoder. F represents the length of the node embeddings, which
is also the number of filters in the graph convolutional layer. Relu
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activation function is used to speed up training and avoid the problem
of vanishing gradients in the case of deeper architectures.

The learnt node embeddings Y ∈ RN×F then go through the
outer product decoder

Z = tanh(Relu(YYT )) (7)

to generate an estimate of the empirical FC networks via the adja-
cency matrix Z. In the current setup described in Section 3.1, FC
networks contain few negative edges with much smaller magnitude
compared with the vast amount of positive edges. To avoid such data
imbalance problem, we remove all negative FC connections and re-
strict FC weights to the range [0, 1] as in other works on FC [26,27].
To have the model output in the same range, we choose the combi-
nation of tanh and Relu over sigmoid function as the latter suffers
from slow training and large errors [9]. Mean squared error (MSE)
between the reconstructed graph Z and the empirical FC network,
denoted as LMSE(Z,FC), is used as reconstruction loss for training.

Given the node embeddings Y, we further obtain the graph em-
bedding by taking the row-wise average of all the node embeddings
which results in a vector summarizing SC-FC relationship. Node-
wise average pooling is a simple yet effective procedure which has
been used in many studies; see e.g. [22]. The graph embeddings are
then fed to the logistic regression classifier to predict subject labels.
The overall loss function is given as

L = LMSE(Z,FC) + λ× LCLA(l̂, l), (8)

where l̂ is the predicted label and l is the ground truth label of the
subject. Sigmoid cross-entropy loss denoted byLCLA is used to eval-
uate classification performance. Hyperparameter λ tunes the trade-
off between FC reconstruction and classification performance and
its value is determined via grid search in Section 3.2. By training
the model end-to-end with the loss function as (8), we aim to find
a balance between FC reconstruction and subject classification and
achieve acceptable performance on both objectives. As a result, the
learnt representations would summarize both the population patterns
and the subject uniqueness in the SC-FC relationship. These are fur-
ther elaborated upon in the next section.

3. NUMERICAL TEST CASES

In this section, the performance of the proposed architecture is eval-
uated on a real-world neuroimaging dataset.

3.1. Neuroimaging data

A dataset from the Human Connectome Project (HCP) with 466 sub-
jects (245 non-drinkers, 221 heavy-drinkers) is used. Based on the
the pipeline in [28], SC network of each subject is extracted from the
raw diffusion MRI (dMRI) and structural MRI (sMRI) data. Brain
functional activities are measured by the blood oxygen-level depen-
dent (BOLD) signals on each brain region collected by functional
MRI (fMRI). Brain FC networks are then constructed with edges
weighing the Pearson correlation between the BOLD signals2.

The Desikan-Killiany atlas [29] is used to define brain regions
thus both FC and SC networks contain N = 68 cortical surface
regions with 34 nodes in each hemisphere. In our work we use one-
hot encoding to define graph signals to avoid data redundancy and
accordingly, set X = I68 in (6). Future work will be devoted to
collect and investigate meaningful subject-related information which
could be used as additional node attributes on top of the network.

2For more information about the data and preprocessing steps, refer to
[28] and https://www.humanconnectome.org/

Fig. 2: Reconstruction (red)/ classification (blue) loss with different λ. Each
point on the curve is the average of 10 realizations with corresponding λ.

3.2. Implementation

The supervised graph encoder-decoder system is implemented in
TensorFlow. The number of filtersF in the graph convolutional layer
is set to 32 determined by grid search. Xavier initialization [30]
was used to initialize the weight coefficients Θ. To determine the
choice of λ in (8), an extensive grid search was carried out with
results shown in Fig. 2. As λ increases, the reconstruction perfor-
mance deteriorates as the training puts more weight on the individ-
ual uniqueness for subject classification. When λ = 0, the model
is merely learning population patterns by achieving very good re-
construction performance thus the classification loss is at the peak.
As λ increases, the classification loss first decreases, then fluctuates
and saturates at a certain level. This is intuitive as the graph em-
beddings for classification depend on the learnt node embeddings
through reconstruction. When the reconstruction is getting worse,
the classification performance is confined as expected. In the end, λ
was set to be 0.1 based on the grid search outcomes.

With the fixed λ, we use 10-fold cross validation where each
time the whole dataset is partitioned randomly into 80% training,
10% validation and 10% testing set. To avoid overfitting, early stop-
ping is applied to monitor the validation loss and stop the training
once the validation loss increases in 10 consecutive training epochs.
The Adam [31] optimizer is used with learning rate 0.001.

3.3. Results

Reconstruction performance. The model is trained for 10 folds
and the average reconstruction MSE is 0.034174 with a standard
deviation of 0.00208. The reconstruction performance is secondary
to the case with λ = 0 where the target is solely FC reconstruction.
We deem that the slightly higher reconstruction error reflects that the
reconstructed FC networks also preserve some key connections that
can be used for investigation of between-group difference. We show
such significant group-wise difference in the following discussion.
Classification performance. One of the objectives in our work is
to learn lower-dimensional graph embeddings, i.e. a single vector to
represent the whole graph. Averaging the learnt node embeddings
from FC reconstruction, we obtain the graph embeddings as the in-
put to the logistic regression classifier for categorizing subjects into
either non-drinker or drinker group. Training the model in Fig. 1 via
the 10-fold cross validation gives an average classification accuracy
of 67.4% on the test set with 2% standard deviation. After cross val-
idation, the model with the highest test accuracy among the 10 fold
is reused to implement on the whole dataset. All the SC networks
of the 466 subjects go through the encoder-decoder system and for
each subject, we obtain the reconstructed FC network and a 32-by-
1 vector modeling the SC-FC relationship. The graph embeddings
learnt are visualized in 2D space by t-SNE [32] shown in Fig. 3a.
We can distinguish a separation, although not perfectly, between the
two groups, indicating that the learnt graph representations contain
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(a) λ = 0.1 (b) λ = 0

Fig. 3: Visualization of graph representations via t-SNE for λ = 0 and
λ=0.1. Group-wise separation can be observed in (a) but not in (b).

essential information for subject classification. In Fig. 3b, we also
plot the learnt graph embeddings obtained when λ=0, i.e., optimiz-
ing only the FC reconstruction loss. In that case, all the subjects are
mixed together with no clear boundary to separate the two groups.

Using graph embeddings, the model predicts subject labels
through logistic regression. We compare the classification results
with two baseline methods. The first one is our model with λ = 0
which boils down to our previous work in [9] and solely captures the
population patterns. The second uses node2vec [16] to learn node
embeddings, and then takes their average as graph embeddings for
logistic regression classification. Table 1 presents statistical mea-
sures of binary classification performance of our proposed methods
and the compared baseline approaches. ACC represents the accuracy
as the proportion of correctly classified labels; TPR (TNR) reflects
the true positive (negative) rate describing the percentage of actual
positives (negatives) which are correctly identified.

ACC TPR TNR
Model with λ = 0.1 0.749 0.79 0.7
Model with λ = 0 0.575 0.6 0.55

Node2vec + logistic regression 0.489 0.55 0.42

Table 1: Subject classification performance. ACC: accuracy; TPR:
true positive rate; TNR: true negative rate.

Table 1 shows that our model outperforms the other two as it is
trained in a supervised manner using information from both SC and
FC networks. The model with λ = 0 only focuses on the reconstruc-
tion task thus the embeddings only consist of population patterns.
Node2vec methods, similar to other embedding techniques [15], can
only be applied to a single network thus cannot capture the rich in-
formation in the relationship between networks.
Analysis on reconstructed FC networks. Through subject classi-
fication, features which help distinguish subject labels are embed-
ded in the learnt representations, thus shall be reflected from the
output reconstructed FC networks. To investigate the significance
of the between-group difference in the output FC networks, sta-
tistical tests are carried out on each functional connection within
the FC networks. For each connection, i.e. each element in the
N × N adjacency matrix representing the FC networks, t-test with
FDR correction is implemented to check if it shows statistically sig-
nificant between-group difference (p < 0.05). One sub-network
with connections that are stronger in non-drinker group (i.e. weaker
in drinker group) is shown in Fig. 4a. Edge weights correspond to
the average functional connection strengths in the non-drinker group,
and regions with top-10 nodal degree are labeled on the axes. Con-
nections related with regions such as Entorhinal and Parahippocam-
pus show that the limbic system (Parahippocampal gyrus) are im-
paired in alcohol-dependent subjects [33], which may lead to prob-
lems in memory encoding and retrieval. Additionally, a universal
decrease in connection strengths regarding regions in frontal, cingu-
late, parietal, temporal and occipital cortex as visualized in Fig. 4c

(a) (b)

(c) (d)

Fig. 4: Sub-networks with connections that are significantly (a)(c) weaker,
and (b)(d) stronger in heavy drinkers. For visualization purpose, nodes are
assigned with different colors and edges use the color of the source nodes.

indicates that alcohol may cause not only changes in regional brain
activity but also the patterns of brain functional organization [34].

Another sub-network, shown in Fig. 4b and Fig. 4d, contains
connections that are statistically stronger in the drinker group. These
connections involve regions in various cortices and may lead to the
concept of neural compensation which has been widely studied in
cognitive analysis [35]. Neural compensation relates with both struc-
tural and functional networks thus is more likely to be revealed in
models that analyze both SC and FC networks at the same time. Such
a finding indicates that brain may recruit regions and raise additional
connections to compensate for damage caused by alcohol [36]. We
leave this as a future research direction as it may reveal more about
the robustness and resilience of human brain activity.

4. CONCLUSIONS AND FUTURE WORK

The relationship between brain functional and structural networks
has long been an intriguing research topic with the valuable po-
tential to reveal the intrinsic patterns of brain activity. In this pa-
per, a supervised graph representation learning procedure was devel-
oped by building a GCN-based encoder-decoder system to simulta-
neously reconstruct FC from SC networks and carry out subject clas-
sification. By tuning the balance between reconstruction and clas-
sification, the proposed model outperforms baseline methods with
higher subject classification accuracy, while also preserving individ-
ual uniqueness in the reconstructed FC networks showing between-
group difference that matches existing literatures. The learnt repre-
sentations show capability to model SC-FC relationship and capture
significant between-group difference. Instead of working on a sin-
gle type of networks, our model is able to extract hidden features in
the relationship between SC and FC networks and information from
both SC and FC contributes to the learning process. Future research
will be devoted to build advanced models to integrate more informa-
tion from the node attributes and consider information retrieval from
multi-hops within network topology.
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