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ABSTRACT

The COVID-19 pandemic severely changed the way of life in the
United States (US). From early scattered regional outbreaks to cur-
rent country-wide spread, and from rural areas to highly populated
cities, the contagion exhibits diverse patterns at various timescales
and locations. We thus conduct a graph frequency analysis to inves-
tigate the spread patterns of COVID-19 in different US counties. The
commute flows between all 3142 US counties were used to construct
a graph capturing the population mobility. The numbers of daily con-
firmed COVID-19 cases per county were collected and represented
as graph signals, which were then mapped into the frequency domain
via the graph Fourier transform. The concept of graph frequency in
Graph Signal Processing (GSP) enables the decomposition of graph
signals (i.e., daily confirmed cases) into modes with smooth or rapid
variations with respect to the underlying mobility graph. These dif-
ferent modes of variability are shown to relate to COVID-19 spread
patterns within and across counties. Changes in the nature of spread
within geographical regions are also revealed by graph frequency
analysis at finer temporal scales. Overall, our GSP-based approach
leverages case count and mobility data to unveil spatio-temporal con-
tagion patterns of COVID-19 incidence for each US county. Results
here support the promising prospect of using GSP tools for epidemi-
ology knowledge discovery on graphs.

Index Terms— Graph signal processing, graph frequency anal-
ysis, COVID-19 spread patterns, network data, flow graph.

1. INTRODUCTION

Networks are ubiquitous and their graph representations offer an
ideal tool to record and analyze massive amounts of data from al-
most every aspect of human life [1]: social networks [2, 3], traffic
networks [4, 5] and biological networks [6, 7], just to name a few.
Network data usually reside on irregular structures, requiring graph
algorithms for analysis of emergent complex behavior [8].

Graphs enable modeling complex interactions within data by
defining nodes as data entities and edges as relations between nodes.
It is often beneficial to also consider nodal attributes that represent
certain features of the elements of interest. Such attributes are often
conceptualized as signals defined on graphs [1]. Unlike in classi-
cal signal processing (SP), the underlying graph topology provides a
fair amount of prior information about the said graph signals, while
the graph signals themselves can also determine and update pairwise
node relationships embedded within graph edges [9, 10]. Accord-
ingly, the field of Graph Signal Processing (GSP) [11, 12] emerged
to fruitfully leverage the relational structure encoded in the graph
when carrying out information processing tasks. Fundamental con-
cepts in classical SP were generalized to accommodate graph data,
notably the graph Fourier transform (GFT) to enable characteris-
tic operations such as filtering and sampling. Noteworthy GSP ad-
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vances include inference and generation of graph signals from net-
work structures [13—15], network topology inference from graph sig-
nals [10, 16], and integration of both graph signals and topology for
knowledge discovery in various timely applications [17-19]. The
required GSP background is briefly introduced in Section 2.

As COVID-19 spreads on United States (US) soil and severely
impacts a multitude of counties at different scales, there has been
a great amount of interest in understanding the spread patterns of
the epidemic. Most current work has focused on pathology anal-
ysis from biological perspectives [20, 21], studies of contagion
within specific locations [22, 23], or case prediction through fore-
casting [24], just to cite a few noteworthy research directions. In
this work, we bring to bear recent GSP advances to investigate the
spread pattern of COVID-19 across all US counties, providing a
comprehensive spatio-temporal analysis of the contagion via:

e Spatio-temporal study. Case data from 3142 US counties was
collected, offering a macroscopic nationwide view of the conta-
gion. The number of daily confirmed cases studied ranges from
January 22, 2020 to August 31, 2020. Such extended period facil-
itates analysis of the evolution of contagion patterns across time
and offers flexibility for temporal analysis at different time scales.

e Graph frequency analysis. The commute flows between all US
counties were used to construct a graph capturing the population
mobility. A GFT-based analysis was conducted to extract infor-
mation from the graph spectral domain, leveraging the mobility
graph and going beyond traditional vertex or time-domain anal-
yses. Specifically, we established the correspondence between
graph frequency components (via low/high-pass graph filtering)
and spatial contagion patterns (within/across counties, respec-
tively) in the network. GFT coefficients reveal fundamentally
different contagion patterns across locations, and help identify
counties at risk of major outbreaks in a data-driven manner.

e Study of transformation between contagion patterns. Beyond
frequency component binning for each county, we also investi-
gated changes in the nature of contagion patterns within coun-
ties. We considered counties near New York city as prototypical
examples that morphed from localized outbreaks to cross-county
spread. Through the GFT lens, such transformations are revelead
in the form of (temporal) transitions between frequency band oc-
cupancies.

2. GRAPH-THEORETIC PRELIMINARIES

As the Data Science revolution keeps gaining momentum, it is only
natural that complex signals with irregular structure become increas-
ingly of interest. While there are many possible sources and models
of added complexity, a general proximity relationship between sig-
nal elements is not only a plausible but a ubiquitous model across
science and engineering. In this section, we briefly review needed
graph-theoretic fundamentals and introduce the concepts of GSP,
GFT and filtering operations in the graph frequency domain.
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2.1. Graph signal fundamentals

Consider signals whose values are associated with nodes of a
weighted, undirected, and connected grja\l}ph. Formally, we con-
sider the signal x = [z1,...,zx]|" € R and the weighted graph
GV,E, W), where V = {1,..., N} isasetof N vertices or nodes
and £ C V x V is the set of edges. Scalar z; denotes the signal
value atnode ¢ € V. The map W : V x V — R from the set of un-
ordered pairs of vertices to the nonnegative reals associates a weight
Wi; > 0 with the edge (¢,7) € &, while Wy; = 0 for (4,5) # £.
The symmetric coefficients W;; = Wj; represent the strength of
the connection (i.e., the similarity or influence) between nodes ¢
and j. Henceforth the graph nodes will be N = 3142 US counties
and edge weights correspond to the average amount of population
commuting between counties; see also Section 3.2 for details on the
graph construction process. In terms of the signal x defined by the
daily number of confirmed cases across all counties, this means that
when the weight W;; is large the signal values x; and z; tend to
be similar, based on the assumption that the spread of virus highly
depends on the population commuting flows. Conversely, when the
weight W;; is small, the signal values x; and z; are not directly
related except for what is implied by their weak connections to other
nodes. Such an interpretation of the edge weights establishes a link
between the signal values and the graph topology, motivating the
fresh GSP approach advocated in this paper.

2.2. Graph Fourier transform and signal smoothness

An instrumental GSP tool is the GFT, which decomposes a graph
signal into orthonormal components describing different modes of
variation with respect to the graph topology. The GFT allows to
equivalently represent a graph signal in two different domains — the
vertex domain consisting of the nodes in V), and the graph frequency
domain spanned by the spectral basis of G. Therefore, signals can
be manipulated in the frequency domain to induce different levels of
interactions between neighbors in the network; see Section 2.3 for
more on graph filters for frequency decomposition.

To elaborate on this concept, consider the eigenvector decom-
position of the combinatorial graph Laplacian L := diag(W1) —
W to define the GFT and the associated notion of graph frequen-
cies. With A := diag(\1,...,An) denoting the diagonal matrix
of non-negative Laplacian eigenvalues and V := [v1,...,vy] the
orthonormal matrix of eigenvectors, one can always decompose the
symmetric graph Laplacian as L = VAVT. The GFT of x with
respect to the Laplacian L is the signal X = [Z1,..., 4~ defined
as X = VTx. The iGFT (inverse GFT) of X is given by x = VX,
which is a proper inverse by the orthonormality of V.

The iGFT formula x = Vx = Zi\le ZVvy allows one to syn-
thesize x as a sum of orthogonal frequency components vi. The
contribution of vy, to the signal x is the GFT coefficient Z. The
GFT encodes a notion of signal variability over the graph akin to the
notion of frequency in Fourier analysis of temporal signals. To un-
derstand this analogy, define the total variation of the graph signal x
with respect to the Laplacian L (also known as Dirichlet energy) as
the following quadratic form

TV(x) == x" Lx = Z Wij(zi — ;)% (1)
i#]

The total variation TV(x) is a smoothness measure, quantifying how
much the signal x changes with respect to the presumption on vari-
ability that is encoded by the weights W [1,11].

Back to the GFT, consider the total variation of the eigenvectors
vk, which is given by TV(vi) = viLvy = Ag. It follows that
the eigenvalues 0 = A1 < A2 < ... < An can be viewed as
graph frequencies, indicating how the eigenvectors (i.e., frequency

3221

components) vary over the graph G. Accordingly, the GFT and iGFT
offer a decomposition of the graph signal x into spectral components
that characterize different levels of variability.

2.3. Graph filtering

For graph signal x with GFT coefficients X, filtering can be done in
the frequency domain in a way akin to classical SP of time-varying
signals. As discussed in Section 2.2, eigenvalues of the Laplacian
correspond to graph frequencies and eigenvectors serve as frequency
basis. For instance, a low-pass filter can be designed by isolating the
lowest Ny, eigenvalues and their corresponding eigenvectors [17].
Define a spectral operation X, = Hy %, where H;, = diag(hr) and
hrn =1{n < Np} (I{-}is an indicator function). This is equiva-
lent to the following convolution operation in the vertex domain

xr =V%, = VHpx=VH_.V 'x = Hx, 2

where Hr, = VH. V7 is the low-pass graph filter. In addition
to Hp, a graph band-pass filter Hys and high-pass filter Hy can
also be defined analogously. In this way, all graph frequencies are
decomposed and assigned to each graph filter where H, takes the
lowest Ny, frequencies, Hs takes the middle Ny, frequencies and
Hy takes the highest Ny frequencies, with Ni, + Ny + Ng = N.
As these filters are mutually exclusive and span all graph frequen-
cies, we can map signals to the spectral domain via the GFT, filter
them and use the iGFT to map each frequency component back to
the vertex domain. This decomposes the original graph signal into
X = X1 + Xm + XH, which increases the resolution of the sig-
nal by partitioning it into components xr,, Xz, Xz that exhibit low,
medium and high variability with respect to G. In Section 3.3, we
perform this graph frequency decomposition of COVID-19 case data
to investigate various contagion patterns across US counties.

3. GSP ANALYSIS OF COVID-19 DATA

In this section, a graph frequency analysis is carried out on COVID-
19 prevalence data in the US. First, we define the graph signals as
well as the graph constructed for the study. Then a thorough fre-
quency analysis is conducted to identify contagion patterns across
US counties.

3.1. COVID-19 data as graph signals

The raw data' is the cumulative number of confirmed COVID-19
cases per 100k residents for each of the N = 3142 counties in US
from Jan 22 to August 31 (223 days in total); see Fig. 3a. From the
cumulative data, we compute the number of daily confirmed cases
per 100k residents of each county. The dail gragh signals can be
stacked as columns of the matrix X € R3!42X223 where row i is
a time series of length 223 recording the daily confirmed cases in
county ¢ normalized by its population size. Selected time series are
depicted in Fig. 1, for a few of them two “waves” are apparent.
From Fig. 3a and Fig. 1 we may get a rough picture of which
counties suffer the most from COVID-19 infections. However, both
the snapshot in Fig. 3a and the trends in Fig. 1 offer limited amount
of information. There are hidden relationships between the signals
of each county that can offer further insights via a network-analytic
study. As the spread of epidemic diseases highly depends on the
population mobility patters, it is natural to take into account the com-
mute flow between counties in building a network graph. In this way,

!COVID-19 Data Repository by the Center for Systems Sci-
ence and Engineering (CSSE) at Johns Hopkins University,
https://systems.jhu.edu/research/public-health/ncov/
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Fig. 1: Daily confirmed number of cases for counties ranked in top 10 of (a)
average of cumulative number of cases; (b) variance of daily cases. Notice
that counties exhibit different contagion patterns in the forms of relatively
smooth lines and sudden spikes.

we may find different features of graph signals corresponding to the
commute flow graph and evidences of different patterns of the virus
contagion in different locations within the country.

3.2. Network graph construction

The US Census Bureau commute flow data from year 2011 to 2015
was used to construct the underlying graph that captures the popu-
lation mobility between US counties®. This is the most recent pub-
licly available dataset at the country level, and while imperfect in
many ways it still captures nominal flows trends. A weighted undi-
rected %raph G was constructed with N = 3142 counties as nodes
and (3 242) edges, where edge weights represent the average pop-
ulation mobility flow between two counties after being normalized
by the intra-flows (mobility within each county). Fig. 2 shows the
topology W of the resulting graph. As the counties are grouped by
the state they belong to, the dense diagonal blocks were observed
as expected as large portion of the commute flows happen within
states. Meanwhile, we can still observe relatively significant amount
of connections between counties in different states, suggesting long
distance commutes widely exist, especially between large cities or
traffic network hubs. The pairwise similarity patterns conveyed by
this flow network are much richer than those in the distance-based
graph adopted in our earlier (non-archival) work [25].

3.3. Frequency decomposition of graph signals

With the graph signals X and graph G, we can follow the procedure
in Section 2.2 and Section 2.3 and carry out frequency decompo-
sition of the daily case signals. The Laplacian matrix is formed
using W and its eigenvalues and eigenvectors were computed. A
low/high-pass filter was constructed by taking the lowest/highest

Zhttps://www.census.gov/data/tables/2015/demo/metro-
micro/commuting-flows-2015.html
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Fig. 2: Adjacency matrix of the commute graph of 3142 US counties. Each
entry is the normalized population mobility flow between two counties.

one fifth of the eigenvalues, respectively. After graph filtering as in
Section 2.3, the original graph signal X is now decomposed into
{X1, X, Xg} € R32X223 yhich represents signal compo-
nents that change slowly/mildly/rapidly with respect to the underly-
ing commute graph G [26]. In this work, we focus on low-pass and
high-pass signals as they correlate with distinct contagion patterns.
Following the same procedure in [17, 26], we take the row-wise
average of the absolute values in Xy, Xy and obtain two vectors
of length 3142 that quantify the signal magnitude per county with
respect to their energy occupancy in low-pass and high-pass spectral
band. For simplicity, in the following discussion, we use LP regions
to represent counties with high magnitude of low-pass signals, and
HP regions for counties with high magnitude of high-pass signals.
We thus decompose the signal of each county into low-pass and
high-pass frequency contributions and assess whether its signal con-
centrates more in either frequency band. Fig. 3 overlays the magni-
tudes of low-pass signals and high-pass signals of all counties on a
US map. As low-pass signals exhibit low variability with respect to
the underlying graph, LP regions have similar number of daily con-
firmed cases normalized by population size with neighboring coun-
ties, aligned with the commute flows in between. On the other hand,
high-pass signals are related with high variability regardless of the
graph structure. Thus HP regions shall present markedly distinct
and abnormal case counts relative to nearby counties, despite of the
population mobility between them. Analysis in the next section es-
tablishes a neat link between graph frequencies (low/high-pass) and
contagion spread patterns (i.e. due to cross-county spread or within
county outbreak) based on descriptive analysis of the graph signals.

3.4. Frequency analysis w.r.t. contagion patterns

Here, we build a correspondence between low-pass (i.e., smooth,
diffusive) signals and cross-county contagion, as one possible con-
sequence of cross-county spread is that nearby counties will tend to
exhibit similar number of confirmed cases, leading to smooth signals
on G. Meanwhile, high-pass signals shall relate to within-county
outbreak, which makes the signal of the current county very dis-
similar to nearby counties, resulting in spiky signals. Intuitively,
LP regions are representative of cross-county spread and HP regions
capture highly localized within-county outbreaks.

3.4.1. Regions in each frequency component

Fig. 3a shows a snapshot of the cumulative confirmed cases for each
county. From the original data we can only see which county has
the most severe situation. Using the GFT and graph filtering, in-
formation is gleaned from the frequency domain. It is clear from
Fig. 3b that counties labeled as LP regions form various spatial
clusters, and low-pass signals are smoothly spread on the map. This
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Fig. 3: (a) Cumulative number of confirmed COVID-19 cases per 100k residents for each county by Aug 31; Magnitude of (b) low-pass (b) high-pass signals
of each county. Higher frequency components tend to be more localized in the vertex domain, whereas the signal energy distribution in the low-pass signal is
more spatially diffused. Due to the highly skewed distribution of case counts, each one of the 3142 values was assigned to one of nine severity levels via range
partitioning. Darker color (corresponding to higher severity level) represents higher number of cases.
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Fig. 4: Distribution of (a) average daily cases and (b) days to reach peak
for LP and HP regions. T-tests with p = 0.05 were carried out in both
comparison to prove the statistically difference between LP and HP regions.

suggests that most US counties are going through a wide-ranging
cross-county spread. On the other hand, HP regions are localized
in several isolated areas in Fig. 3c. Further investigations of local
news consistently reveal that all these HP regions have concentrated
outbreaks at migrant workers clinics, prisons, food plants, just to list
a few [27-29]. This makes their signals very different from neigh-
boring counties, thus being picked up by the high-pass graph filter.

3.4.2. Average daily cases per frequency band

One key metric in a pandemic is the average number of daily cases,
as it measures the severity of the contagion. For the top-50 ranked
LP and HP regions by signal magnitude, their average daily cases
were computed and shown in Fig. 4a. As observed, LP regions have
significant more daily confirmed cases than HP regions.

3.4.3. Number of days to reach peaks

Another key indicator is the number of days from the date of the
first case to the date with the most daily cases. This metric gives
insights on how fast the spread is. For the same top-50 LP and HP
regions, the number of days to reach peak was computed as depicted
in Fig. 4b. Apparently, HP regions take fewer days to reach peaks,
suggesting relatively faster spread of the virus.

The findings of this section linked the graph frequency compo-
nents with descriptive findings from raw case data such as average
daily cases and number of days to reach peaks. The fact that LP re-
gions have typically more daily cases and take longer to reach peaks
(compounded with the fact these regions are more densely gathered
as shown in Fig. 3b), leads to the conclusion that LP regions suf-
fer from cross-county spread with a continuous increasing rate and
a longer contagion period. Meanwhile, HP regions are spread-out in
isolated areas. These regions suffer from local outbreaks in highly-
concentrated places, which explains why they have very fast case
increase rates. They concentrate in the high-pass band as these out-
breaks make their signals very dissimilar to nearby regions.

(a) HP week 6 (b) HP week 8 (c) HP week 10

Q-

(d) LP week 7 (e) LP week 9 (f) LP week 11

Fig. 5: Magnitudes of high-pass and low-pass signals in different weeks.
Intermediate weeks of the same trends were not shown due to limited space.

3.5. Temporal analysis of case counts

In the previous static analysis, a scalar value was assigned to each
county in each frequency component by taking a temporal (column-
wise) average of X, Xy. This approach was usefuk to link
low/high graph frequencies with contagion pattern of cross/within-
county spread. However, it ignores rich temporal information by
averaging the filtered signals. Instead of taking the average, here
we partitioned all 223 days into 7-day windows representing each
week from Jan. 22. We then took the column-wise average of each
weekly period. For concreteness, we focus on the New York city
area as it is represents a nice example of how a localized outbreak
transformed into widely regional spread. As shown in Fig. 5, a
(hihg-pass) localized outbreak started in the Westchester county at
week 6. After that, magnitudes of high-pass signals decreased while
low-pass signals started gaining dominance in the region. From the
relation between frequency bands and contagion patterns argued in
previous sections, we can see the transformation of a localized out-
break to a wider spread across NYC regions, and how it is manifests
via transitions on frequency-band occupancies.

4. CONCLUSIONS AND FUTURE WORK

In this work, we applied GSP tools for the analysis of COVID-19
contagion patterns. Novel information extracted from graph fre-
quency domain helps establish the link between graph low/high fre-
quency and the across/within-county contagion spread for US coun-
ties. We show that GSP can provide novel insights for mining and
learning vital information from complex data residing on irregular
domains. As more (currently proprietary) data are released, future
work consider dynamic mobility graphs with an emphasis on joint
time-vertex analyses at finer scales.

3223



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

5. REFERENCES

A. Ortega, P. Frossard, J. Kovacevié, J. M. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges,
and applications,” Proc. IEEE, vol. 106, no. 5, pp. 808-828,
2018.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online
learning of social representations,” in ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining (KDD), 2014,
pp. 701-710.

J. Zhang and J. M. Moura, “Diffusion in social networks as SIS
epidemics: Beyond full mixing and complete graphs,” IEEE J.
Sel. Topics Signal Process., vol. 8, no. 4, pp. 537-551, 2014.

X. Dong, A. Ortega, P. Frossard, and P. Vandergheynst, “Infer-
ence of mobility patterns via spectral graph wavelets,” in I[EEE
Intl. Conf. Acoust., Speech and Signal Process. (ICASSP).
IEEE, 2013, pp. 3118-3122.

M. Crovella and E. Kolaczyk, “Graph wavelets for spatial traf-
fic analysis,” in INFOCOM, vol. 3. 1EEE, 2003, pp. 1848—
1857.

Y. Li, R. Shafipour, G. Mateos, and Z. Zhang, “Supervised
graph representation learning for modeling the relationship be-
tween structural and functional brain connectivity,” in /EEE
Intl. Conf. Acoust., Speech and Signal Process. (ICASSP).
IEEE, 2020, pp. 9065-9069.

L. Wang, F. V. Lin, M. Cole, and Z. Zhang, “Learning clique
subgraphs in structural brain network classification with appli-
cation to crystallized cognition,” BioRxiv, 2020.

M. Newman, Networks. Oxford university press, 2018.

S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Net-
work topology inference from spectral templates,” IEEE Trans.
Signal Inf. Process. Netw., vol. 3, no. 3, pp. 467-483, 2017.

G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Con-
necting the dots: Identifying network structure via graph signal
processing,” IEEE Signal Process. Mag., vol. 36, no. 3, pp. 16—
43, 2019.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing
on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains,” IEEE Signal Process.
Mag., vol. 30, no. 3, pp. 83-98, 2013.

A. Sandryhaila and J. M. Moura, “Discrete signal processing
on graphs: Frequency analysis,” IEEE Trans. Signal Process.,
vol. 62, no. 12, pp. 3042-3054, 2014.

C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J.-
P. Thiran, R. Meuli, and P. Hagmann, “Predicting human
resting-state functional connectivity from structural connectiv-
ity,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, no. 6, pp. 2035-
2040, 2009.

Y. Li, R. Shafipour, G. Mateos, and Z. Zhang, “Mapping
brain structural connectivities to functional networks via graph
encoder-decoder with interpretable latent embeddings,” in
IEEE Global Conf. Signal and Info. Process. (GlobalSIP).
IEEE, 2019, pp. 1-5.

S. Segarra, G. Mateos, A. G. Marques, and A. Ribeiro, “Blind
identification of graph filters with sparse inputs,” in /[EEE Intl.
Wrksp. Computat. Advances Multi-Sensor Adaptive Process.
(CAMSAP), 2015, pp. 449-452.

X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst,
“Learning laplacian matrix in smooth graph signal representa-
tions,” IEEE Trans. Signal Process., vol. 64, no. 23, pp. 6160—
6173, 2016.

3224

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

L. Goldsberry, W. Huang, N. F. Wymbs, S. T. Grafton, D. S.
Bassett, and A. Ribeiro, “Brain signal analytics from graph
signal processing perspective,” in IEEE Intl. Conf. Acoust.,
Speech and Signal Process. (ICASSP). 1EEE, 2017, pp. 851—
855.

J. Wang, V. D. Calhoun, J. M. Stephen, T. W. Wilson, and
Y. Wang, “Integration of network topological features and
graph Fourier transform for fMRI data analysis,” in Inzl. Symp.
Biomed. Imaging. 1EEE, 2018, pp. 92-96.

J. Richiardi, S. Achard, H. Bunke, and D. Van De Ville,
“Machine learning with brain graphs: predictive modeling
approaches for functional imaging in systems neuroscience,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 58-70, 2013.

M. R. Mehra, S. S. Desai, S. Kuy, T. D. Henry, and A. N.
Patel, “Cardiovascular disease, drug therapy, and mortality in
COVID-19,” N. Engl. J. Med., 2020.

Y. Zhang, M. Xiao, S. Zhang, P. Xia, W. Cao, W. Jiang
et al., “Coagulopathy and antiphospholipid antibodies in pa-
tients with COVID-19,” N. Engl. J. Med., vol. 382, no. 17, p.
€38, 2020.

A. Remuzzi and G. Remuzzi, “COVID-19 and Italy: what
next?” The Lancet, 2020.

W. Liu, Q. Zhang, J. Chen, R. Xiang, H. Song, S. Shu, L. Chen,
L. Liang, J. Zhou, L. You et al., “Detection of COVID-19 in
children in early January 2020 in Wuhan, China,” N. Engl. J.
Med., vol. 382, no. 14, pp. 1370-1371, 2020.

A. Kapoor, X. Ben, L. Liu, B. Perozzi, M. Barnes, M. Blais,
and S. O’Banion, “Examining COVID-19 forecasting us-
ing spatio-temporal graph neural networks,” arXiv preprint
arXiv:2007.03113, 2020.

Y. Li and G. Mateos, “Graph frequency analysis of COVID-19
prevalence in the United States,” in KDD Workshop on Mining
and Learning with Graphs. San Diego, CA, Aug. 24, 2020.

W. Huang, T. A. Bolton, J. D. Medaglia, D. S. Bassett,
A. Ribeiro, and D. Van De Ville, “A graph signal processing
perspective on functional brain imaging,” Proc. IEEE, vol. 106,
no. 5, pp. 868-885, 2018.

C. Herbert, “Echols adds 81 cases in 10 days,” 2020. [Online].
Available: https://www.valdostadailytimes.com/news/echols-
adds-81-cases-in-10-days/article_401df1be-a01f-11ea-b340-
b3c9f358f3e1.html

T. Loller, “Tennessee county leads US in coron-
avirus cases per capita,” 2020. [Online]. Available:
https://www.timesfreepress.com/news/breakingnews/story/

2020/may/12/tennessee-county-leads-us-coronavirus-cases-
capita/522779/

W. Joy, “Titus County: A look at one of the worst
COVID-19 hotspots in Texas,” 2020. [Online]. Available:
https://www.wfaa.com/article/news/health/coronavirus/titus-
county-a-look-at-one-of-texass-worst-covid- 19-hotspots/
287-2ac2d1ce-98ec-460d-bb6b-2df5b14e8827



