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Recovering the true DAG structure

» Directed acyclic graphs (DAGs) have become prominent models in ML applications. » The pioneering work in characterizes acyclicity via a smooth function H(W). » Our proposed algorithm recovers the true DAG structure W* in the infinite sample regime.
= DAG edges may have causal interpretations . = Key: The zero-level set corresponds to DAGs: h(W) =0 < W < D. = Assume the distribution of x is known and consider the following score function.
=- Conditional independencies exist among variables in Bayesian networks. ) -
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» DAGs appear in a gamut of applications: biology, genetics, and finance . Continuous acyclicity functions F(W,x) = [y ||zz ° (' — WT) X ,
= The structure of the DAG is often unknown or unavailable. Allow us to move from a combinatorial search to non-convex continuous optimization. ) -
Theorem
- min F(W,X)s.toWeD <= min F(W,X)s.to h(W)=0
J\ [ =] [ JE==a w W Let x € R be a random vector following a linear SEM with non-negative DAG W* > 0 and
AN exogenous input z with covariance Xz known up to a scaling factor. Then, the estimate W
@ from solving
IN A ]‘\/ _
. . . . ' , > —
» Examples of continuous acyclicity functions include NoTears and DAGMA . "W Al sde 20, i) =0
/\ B WoW s a with the iterates from Step 1 to Step 3, satisfies W = W*.
Causal inference Bayesian networks Neural networks hnotears(W) = Tr (e ) —d, hdagma(w) = dlog(s) — logdet(sl — W o W).

» Limitation: The product W o W renders the acyclicity functions non-convex.
» Learning graphs with cycles from nodal observations is a well-studied problem. Test case | - Number of samples

= Imposing acyclicity is a challenge due to its combinatorial nature. Learning non-negative DAGs
= Initial methods based on combinatorial/greedy search faced scalability issues. > Non-negative ER graphs with d =100 nodes and average degree 4.

= Recent work introduced non-convex continuous acyclicity functions

= Signals sampled from linear SEM with z ~ N(0, ol).

» ldea: assume non-negative weights and harness additional structure to achieve convexity.

» Contribution: Learning DAG structure based on a convex acyclicity function. = We learn a sparse DAG by minimizing the least squares score function. 10°
= Recovery guarantees under the simplifying assumption of non-negative weights.

» We report the normalized error
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Preliminaries: DAGs and linear SEM W ij=1 ~
o o . E » Convex acyclicity constraints outperform
. » We demonstrate that the non-negativity of W leads to a convex acyclicity function. S -2 alternatives
» ADAG D = (V, &) is asetV of d nodes and a set of edges £. S 10 '
: : dxd : - . - === COL1DE
- $Ee ad{[acevr&?y ng)a.trg Wte 5 4 e:]c(;)?ei 'ts connectivity. Convex acyclicity function —sfe— DAGMA » Error of convex method goes to 0 as the
= The entry Wj; 7 O Indicates a directed link / — /. For any matrix W € R9*? whose spectral radius is bounded by p(W) < s € R, define 10—3 (R NoTears | 5 number of samples grows.
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» Define a graph signal x € R% whose properties depend on D. higet(W) := dlog(s) — log det(sl — W), (2) (a) Number of samples n = Aligned with theoretical result.

= X; depends on its parents FA;={jeV: W;#0}.

Then, hjye(W) > 0 for every W such that p(W) < s, and hjye(W) = 0 if and only if W € D. O

» Structural equation model (SEM) widely used in causal inference.
= A linear SEM generates the signals X & RA*N according to

» Using the convex acyclicity h;yo4(W) in (1) leads to an abstract convex optimization.

» We sample n = 1000 signals and consider ER and SF graphs.

X=W'X+7Z. = Enables finding the global minimum at the expense of additional structure.
= Exogenous input Z is a random variable with diagonal covariance. . . ;. _*_9 ][‘)‘fg;fiR:g: B‘fgﬁng X » We report the normalized Structural
DAG learning algorithm ~ Hamming Distance (SHD).
DAG structure learning % | |
» Estimate the non-negative DAG structure using the method of multipliers. 3 1. @ > Convex logdet constraint consistently
> Givendata X — [x,. .. %, c 297 adhering to a linear SEM determined by the DAG D, = lterative method for constrained optimization with convergence guarantees., Té [ T * outperforms the alternative.
= learn the adjacency matrix W by solving a score-minimization problem. > Let the augmented Lagrangian of (1) be given by E 0.5 > Convex constraint achieves a SHD of 0
min F(W,X) subjectto W € D. 1 d - : even with moderately large ER graphs.
W ’ Lo(W, ) = %HX—WTXH%JMX > W,-j+)\h(W)+§h(W)2. ----- 2 - _ X |
= With F(W, X) being a score function of interest, such as least squares. i j=1 50 100 250 500 = Recovers the true support even in
the small-sample regime.
Method of multipliers for non-negative DAG learning (b) Number of nodes d PIe Te9

3 | ‘ l ‘ 4 ) Perform the following sequence of steps with positive constants 0 < v < 1and g > 1
DAG structure
o L0 0 e emm | Step 1. Updiate the adjacency matrix Wk — arg in L (W.A)
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