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Motivation, context, and goal

▶ Directed acyclic graphs (DAGs) have become prominent models in ML applications.
⇒ DAG edges may have causal interpretations [Peters17].
⇒ Conditional independencies exist among variables in Bayesian networks.

▶ DAGs appear in a gamut of applications: biology, genetics, and finance [Sachs05].
⇒ The structure of the DAG is often unknown or unavailable.

Causal inference Bayesian networks Neural networks

▶ Learning graphs with cycles from nodal observations is a well-studied problem.
⇒ Imposing acyclicity is a challenge due to its combinatorial nature.
⇒ Initial methods based on combinatorial/greedy search faced scalability issues.
⇒ Recent work introduced non-convex continuous acyclicity functions [Zheng18].

▶ Contribution: Learning DAG structure based on a convex acyclicity function.
⇒ Recovery guarantees under the simplifying assumption of non-negative weights.

Preliminaries: DAGs and linear SEM

▶ A DAG D = (V , E) is a set V of d nodes and a set of edges E .
⇒ The adjacency matrix W ∈ Rd×d encodes its connectivity.
⇒ The entry Wij ̸= 0 indicates a directed link i → j .

▶ Define a graph signal x ∈ Rd whose properties depend on D.
⇒ xi depends on its parents PAi ={j ∈V :Wij ̸=0}.

▶ Structural equation model (SEM) widely used in causal inference.
⇒ A linear SEM generates the signals X ∈ Rd×n according to

X = W⊤X + Z.

⇒ Exogenous input Z is a random variable with diagonal covariance.

DAG structure learning

▶ Given data X = [x1, ...,xn] ∈ Rd×n, adhering to a linear SEM determined by the DAG D,
⇒ learn the adjacency matrix W by solving a score-minimization problem.

min
W

F (W,X) subject to W ∈ D.

⇒ With F (W,X) being a score function of interest, such as least squares.

Challenges
▶ Learning a DAG solely from observational data X is NP-hard.

⇒ The combinatorial acyclicity constraint W ∈ D is difficult to enforce.
⇒ The optimization problem may not be identifiable.

Non-convex acyclicity functions

▶ The pioneering work in [Zheng18] characterizes acyclicity via a smooth function h(W).
⇒ Key: The zero-level set corresponds to DAGs: h(W) = 0 ⇐⇒ W ∈ D.

Continuous acyclicity functions

Allow us to move from a combinatorial search to non-convex continuous optimization.

min
W

F (W,X) s. to W ∈ D ⇐⇒ min
W

F (W,X) s. to h(W) = 0

▶ Examples of continuous acyclicity functions include NoTears [Zheng18] and DAGMA [Bello22].

hnotears(W) = Tr
(

eW◦W
)
− d , hs

dagma(W) = d log(s)− log det(sI − W ◦ W).

▶ Limitation: The product W ◦ W renders the acyclicity functions non-convex.

Learning non-negative DAGs

▶ Idea: assume non-negative weights and harness additional structure to achieve convexity.
⇒ We learn a sparse DAG by minimizing the least squares score function.

Ŵ = argmin
W

 1
2n

∥X − W⊤X∥2
F + α

d∑
i ,j=1

Wij

 s. to: W ≥ 0, h(W) = 0. (1)

▶ We demonstrate that the non-negativity of W leads to a convex acyclicity function.

Convex acyclicity function

For any matrix W ∈ Rd×d
+ whose spectral radius is bounded by ρ(W) < s ∈ R+, define

hldet(W) := d log(s)− log det(sI − W), (2)

Then, hldet(W) ≥ 0 for every W such that ρ(W) < s, and hldet(W) = 0 if and only if W ∈ D.

▶ Using the convex acyclicity hldet(W) in (1) leads to an abstract convex optimization.
⇒ Enables finding the global minimum at the expense of additional structure.

DAG learning algorithm

▶ Estimate the non-negative DAG structure using the method of multipliers.
⇒ Iterative method for constrained optimization with convergence guarantees.

▶ Let the augmented Lagrangian of (1) be given by

Lc(W, λ) =
1

2n
∥X − W⊤X∥2

F + α

d∑
i ,j=1

Wij + λh(W) +
c
2

h(W)2.

Method of multipliers for non-negative DAG learning
Perform the following sequence of steps with positive constants 0 < γ < 1 and β > 1

Step 1. Update the adjacency matrix W(k+1) = arg min
W≥0

Lc(k)(W, λ(k)).

Step 2. Update the Lagrange multiplier λ(k+1) = λ(k) + c(k)h(W(k+1)).

Step 3. Update the penalty parameter c(k+1) =

{
βc(k) if h(W(k+1)) > γh(W(k))

c(k) otherwise.

▶ Convergence to the global optimum of (1) due to the convexity of Lc(W, λ).
⇒ Optimization problem in Step 1 solved via gradient descent.

Recovering the true DAG structure

▶ Our proposed algorithm recovers the true DAG structure W∗ in the infinite sample regime.
⇒ Assume the distribution of x is known and consider the following score function.

F̄ (W,x) = Ex

[∥∥∥∥Σ−1
2

z

(
I − W⊤

)
x
∥∥∥∥2

2

]
.

Theorem

Let x ∈ Rd be a random vector following a linear SEM with non-negative DAG W∗ ≥ 0 and
exogenous input z with covariance Σz known up to a scaling factor. Then, the estimate Ŵ
from solving

min
W

F̄ (W,x) s.to W ≥ 0, hldet(W) = 0,

with the iterates from Step 1 to Step 3, satisfies Ŵ = W∗.

Test case I - Number of samples

▶ Non-negative ER graphs with d = 100 nodes and average degree 4.
⇒ Signals sampled from linear SEM with z ∼ N (0, σI).

▶ We report the normalized error

nerr (Ŵ,W∗) = ∥W∗ − Ŵ∥2
F/∥W∗∥2

F .

▶ Convex acyclicity constraints outperform
alternatives.

▶ Error of convex method goes to 0 as the
number of samples grows.

⇒ Aligned with theoretical result.

Test case II - Number of ndoes

▶ We sample n = 1000 signals and consider ER and SF graphs.

▶ We report the normalized Structural
Hamming Distance (SHD).

▶ Convex logdet constraint consistently
outperforms the alternative.

▶ Convex constraint achieves a SHD of 0
even with moderately large ER graphs.

⇒ Recovers the true support even in
the small-sample regime.
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