

- Directed acyclic graphs (DAGs) have become prominent models in ML applications. \Rightarrow DAG edges may have causal interpretations [Peters17].
 - \Rightarrow Conditional independencies exist among variables in Bayesian networks.
- DAGs appear in a gamut of applications: biology, genetics, and finance [\Rightarrow The structure of the DAG is often unknown or unavailable.

Causal inference

Bayesian networks

- ► Learning graphs with cycles from nodal observations is a well-studied problem. \Rightarrow Imposing acyclicity is a challenge due to its **combinatorial** nature.
 - \Rightarrow Initial methods based on combinatorial/greedy search faced scalability issues.
 - \Rightarrow Recent work introduced non-convex continuous acyclicity functions [Zheng18].
- **Contribution**: Learning DAG structure based on a **convex acyclicity function**.
 - \Rightarrow Recovery guarantees under the simplifying assumption of non-negative weights.

Preliminaries: DAGs and linear SEM

A DAG $\mathcal{D} = (\mathcal{V}, \mathcal{E})$ is a set \mathcal{V} of *d* nodes and a set of edges \mathcal{E} . \Rightarrow The adjacency matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ encodes its connectivity. \Rightarrow The entry $W_{ii} \neq 0$ indicates a directed link $i \rightarrow j$.

- Structural equation model (SEM) widely used in causal inference. \Rightarrow A linear SEM generates the signals $X \in \mathbb{R}^{d \times n}$ according to $\mathbf{X} = \mathbf{W}^{\top} \mathbf{X} + \mathbf{Z}.$
 - \Rightarrow Exogenous input Z is a random variable with diagonal covariance.

DAG structure learning

► Given data $X = [x_1, ..., x_n] \in \mathbb{R}^{d \times n}$, adhering to a linear SEM determined by the DAG \mathcal{D} , \Rightarrow learn the adjacency matrix W by solving a score-minimization problem.

min $F(\mathbf{W}, \mathbf{X})$ subject to $\mathbf{W} \in \mathbb{D}$.

 \Rightarrow With F(W, X) being a score function of interest, such as least squares.

Challenges

- Learning a DAG solely from observational data X is NP-hard.
 - \Rightarrow The combinatorial acyclicity constraint $\mathbf{W} \in \mathbb{D}$ is difficult to enforce.
 - \Rightarrow The optimization problem may not be identifiable.

Non-negative Weighted DAG Structure Learning

Samuel Rey*, Seyed Saman Saboksayr[†] and Gonzalo Mateos[†]

*Dept. of Signal Theory and Communications, Rey Juan Carlos University, Madrid, Spain [†]Dept. of Electrical and Computer Eng., University of Rochester, Rochester, USA

Neural networks

Non-convex acyclicity functions

The pioneering work in [Zher \Rightarrow Key: The zero-level set corresponds to DAGs: $h(W) = 0 \iff W \in \mathbb{D}$.

Continuous acyclicity functions

Allow us to move from a combinatorial search to non-convex continuous optimization.

 $\min_{\mathbf{W}} F(\mathbf{W}, \mathbf{X}) \text{ s. to } \mathbf{W} \in \mathbb{D} \iff \min_{\mathbf{W}} F(\mathbf{W}, \mathbf{X}) \text{ s. to } h(\mathbf{W}) = 0$

- Examples of continuous acyclicity functions include NoTears [Zheng18] and DAGMA [Bello22]. $h_{ ext{notears}}(\mathbf{W}) = \operatorname{Tr}\left(e^{\mathbf{W} \circ \mathbf{W}}
 ight) - d, \qquad h_{ ext{dagma}}^{s}(\mathbf{W}) = d\log(s) - \log\det(s\mathbf{I} - \mathbf{W} \circ \mathbf{W}).$
- **Limitation**: The product $\mathbf{W} \circ \mathbf{W}$ renders the acyclicity functions non-convex.

Learning non-negative DAGs

► Idea: assume non-negative weights and harness additional structure to achieve convexity. \Rightarrow We learn a sparse DAG by minimizing the least squares score function.

$$\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \left\{ \frac{1}{2n} \|\mathbf{X} - \mathbf{W}^{\top} \mathbf{X} \|_{F}^{2} + \alpha \sum_{i,j=1}^{d} W_{ij} \right\}$$

► We demonstrate that the non-negativity of W leads to a convex acyclicity function.

Convex acyclicity function

For any matrix $\mathbf{W} \in \mathbb{R}^{d \times d}_+$ whose spectral radius is bounded by $\rho(\mathbf{W}) < s \in \mathbb{R}_+$, define

 $h_{ldet}(\mathbf{W}) := d \log(s) - \log \det(s\mathbf{I} - \mathbf{W}),$

Then, $h_{ldet}(\mathbf{W}) \ge 0$ for every \mathbf{W} such that $\rho(\mathbf{W}) < s$, and $h_{ldet}(\mathbf{W}) = 0$ if and only if $\mathbf{W} \in \mathbb{D}$.

• Using the convex acyclicity $h_{ldet}(\mathbf{W})$ in (1) leads to an **abstract convex optimization**. \Rightarrow Enables finding the global minimum at the expense of additional structure.

DAG learning algorithm

- Estimate the non-negative DAG structure using the method of multipliers. \Rightarrow Iterative method for constrained optimization with convergence guarantees.
- Let the augmented Lagrangian of (1) be given by

$$L_{\boldsymbol{C}}(\boldsymbol{\mathsf{W}},\boldsymbol{\lambda}) = \frac{1}{2n} \|\boldsymbol{\mathsf{X}} - \boldsymbol{\mathsf{W}}^{\top}\boldsymbol{\mathsf{X}}\|_{\boldsymbol{F}}^{2} + \alpha \sum_{i,i=1}^{d}$$

Method of	f multipliers for non-negative D	AG learning
Perform the following sequence of steps with positive co		
Step 1.	Update the adjacency matrix	$W^{(k+1)} = a$
Step 2.	Update the Lagrange multiplier	$\lambda^{(k+1)} = \lambda^{(k+1)}$
Step 3.	Update the penalty parameter	$c^{(k+1)} = \begin{cases} k \\ k \end{cases}$

 \blacktriangleright Convergence to the global optimum of (1) due to the convexity of $L_{c}(\mathbf{W}, \lambda)$. \Rightarrow Optimization problem in Step 1 solved via gradient descent.

2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2025)

$$= \mathbb{E}_{\mathbf{X}} \left[\left\| \mathbf{\Sigma}_{\mathbf{Z}}^{-\frac{1}{2}} \left(\mathbf{I} - \mathbf{W}^{\top} \right) \mathbf{X} \right\|_{2}^{2} \right].$$

s.to
$$W \ge 0$$
, $h_{ldet}(W) = 0$,

- networks derived from multiparameter singlecell data". Science, 2005.
- Bello22 K. Bello, B. Aragam, and P. Ravikumar. "DAGMA: Learning DAGs via M-matrices and a log-determinant acyclicity characterization". Neurips, 2022.