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Abstract—We address the problem of learning a sparsifying
graph Fourier transform (GFT) for compressible signals on
directed graphs (digraphs). Blending the merits of Fourier and
dictionary learning representations, the goal is to obtain an
orthonormal basis that captures spread modes of signal variation
with respect to the underlying network topology, and yields
parsimonious representations of bandlimited signals. Accord-
ingly, we learn a data-adapted dictionary by minimizing a
spectral dispersion criterion over the achievable frequency range,
along with a sparsity-promoting regularization term on the GFT
coefficients of training signals. An iterative algorithm is developed
which alternates between minimizing a smooth objective over
the Stiefel manifold, and soft-thresholding the graph-spectral
domain representations of the signals in the training set. A
frequency analysis of temperature measurements recorded across
the contiguous United States illustrates the merits of the novel
GFT design.

Index Terms— Graph signal processing, graph Fourier
transform, directed graphs, dictionary learning.

I. INTRODUCTION

Network data supported on the vertices of a graph G
are becoming ubiquitous across disciplines spanning the bio-
behavioral sciences and engineering. Examples range from
measurements of neural activities at different regions of the
brain [1], to vehicle traces over transportation networks [2].
Such data, in a snapshot, can be thought of as graph signals
represented by vectors indexed by the N nodes of G. In
this context, the goal of graph signal processing (GSP) is
to broaden the scope of traditional signal and information
processing by developing algorithms that fruitfully exploit
the complex relational structure of said signals. Accordingly,
generalizations of signal processing tasks have been explored
in the literature; see [3] for a recent tutorial treatment.

Focusing on signal representations, noteworthy contribu-
tions include the graph Fourier transform (GFT) and the design
of data-adapted dictionaries incorporating the graph stucture.
Bringing together these two advances while building on our
previous work [4], here we address the problem of learning a
sparsifying digraph (D)GFT basis (dictionary) for compress-
ible signals on directed networks. In particular, we first use
our recently proposed approach to capture the notion of signal
variation (frequency) over digraphs and to approximately
find the maximum attainable frequency (fmax) [4]. Then we
design an orthonormal digraph (D)GFT basis such that: (i) the
resulting frequencies (i.e., the directed variation of the sought
orthonormal basis vectors) distribute as evenly as possible over
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[0, fmax]; and (ii) a given set of training bandlimited graph sig-
nals can be sparsely represented using a few basis vectors. This
design would facilitate more interpretable frequency analyses
and aid universal filter design in the spectral domain, while
offering parsimonious representations of signals on digraphs.
Related work. Learning (overcomplete) dictionaries to
sparsely represent signals has been an active area of research.
For example, the K-SVD method in [5] can be applied to graph
signals as vectors in R

N ; however, such methods do not explic-
itly account for G’s topology; see also [6]. In the GSP literature
for undirected graphs, the workhorse GFT approach based
on eigenvectors of the Laplacian matrix has been shown to
sparsely represent smooth graph signals [7]. A GFT framework
combining aspects of signal variation and energy to design
general orthonormal transforms for graph signals is proposed
in [8]. An efficient algorithm to learn parametric dictionaries
for signals over undirected networks is put forth in [9]; see
also the online dictionary-learning approach in [10] developed
to predict partially-observed dynamic graph processes such as
link loads on communication networks.

A more general GFT definition is based on the Jordan
decomposition of adjacency matrix A = VJV−1, where
the spectral representation of graph signal x is x̃ = V−1x
[11]. While this definition is valid for digraphs, the associated
notion of signal variation in [11] does not ensure that constant
signals have zero variation. Moreover, V is not necessarily
orthonormal and Parseval’s identity does not hold; see also
[12]. A noteworthy directed GFT construction was put forth
in [13], which is based on minimization of the (convex) Lovász
extension of the graph cut size, subject to orthonormality con-
straints on the desired basis. However, the GFT basis vectors in
[13] may fail to yield signal representations capturing different
modes of signal variation with respect to G; see [4, Section III-
A]. Recently, we have proposed an orthonormal DGFT in [4]
whereby we learn a set of basis vectors corresponding to
spread frequency modes. However, none of these methods for
digraphs are data adaptive, since the dictionaries only account
for the graph structure.
Contributions. Here we propose a novel approach to sparsely
represent bandlimited signals in the graph spectral domain,
while the learnt atoms explicitly capture different modes of
variation with respect to the underlying digraph. We design
a novel DGFT basis with the following desirable properties:
P1) The basis vectors (dictionary atoms) provide notions of
frequency and signal variation over digraphs. P2) Frequency
modes are designed to be well spread from zero to fmax,
thus better capturing low, middle, and high frequencies to
enhance interpretability of frequency analyses. P3) The learnt
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dictionary is orthonormal so the transform preserves inner
products in the vertex and graph frequency domain; i.e.,
Parseval’s identity holds. P4) Bandlimited signals can be
sparsely represented in the graph spectral domain using a
few atoms of the basis (dictionary); i.e., the DGFT provides
parsimonious representations of historical signals as well as of
unseen samples from the subjacent generative network process.
In [4] we constructed a DGFT basis with properties P1)-P3).
On top of those, here we further make our DGFT data-adaptive
to sparsely represent a set of bandlimited graph signals at
hand. To that end, in Section II we formulate the problem of
learning a dictionary adhering to P1)-P4). Next, we develop
an alternating algorithm by leveraging a feasible method for
optimization with orthonormality constraints and embedded
soft-thresholding operations (outlined in Section III). With
the aid of computer simulations, the convergence behavior
and effectiveness of the proposed algorithm is examined in
Section IV. Concluding remarks are given in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first introduce some basic GSP concepts
and terminology. Then, we briefly review a notion of signal
variation and graph frequencies on digraphs which we utilize
to make frequency modes as spread as possible. Lastly, we
state the problem of learning a sparsifying (orthonormal)
DGFT basis with well-dispersed modes in the graph spectral
domain.
Notation and terminology. We consider a weighted digraph
G = (V,A), where V is the set of nodes with cardinality
|V| = N , and A ∈ R

N×N is the graph adjacency matrix
with Aij denoting the edge weight from node i to node j.
A graph signal x : V �→ R

N can be represented as a vector
of length N , where the ith entry denotes the signal value at
node i. For a given network topology A, suppose we observe
P compressible (e.g., bandlimited) graph signals collected in
a matrix X = [x1, · · · ,xP ] ∈ R

N×P . Then our goal is to
find N orthonormal basis vectors capturing different modes
of variation with respect to G, while sparsely representing the
signals X. We collect these desired basis vectors in a matrix
U := [u1, · · · ,uN ] ∈ R

N×N , where uk ∈ R
N represents

the kth frequency component. This means that the DGFT of
a graph signal x is x̃ = UTx. The inverse DGFT is x =
Ux̃ =

∑N
k=1 x̃kuk, which allows one to synthesize x as a

linear combination of orthogonal frequency modes uk.
A signal directed variation measure. To measure how a basis
vector u varies over the network and define graph frequencies,
we adopt the following notion of signal directed variation (DV)
over digraphs [14]

DV(u) :=

N∑

i,j=1

Aij [ui − uj ]
2
+, (1)

where [x]+ = max(0, x). One can then generalize the notion
of frequency to digraphs as the directed variation of the basis
signal uk; i.e., fk := DV(uk).

To gain more insight on (1), consider an arbitrary graph
signal x ∈ R

N on digraph G, where a directed edge denotes
the direction of signal flow from a larger value to a smaller

one. So, a directed edge from node i to node j would
contribute to the DV(x) only if the inequality xi > xj

holds true between the corresponding vertices (cf. the desirable
property P1 alluded to in Section I).
Spread frequencies. Similar to the discrete spectrum of
periodic time-varying signals, we seek N (approximately)
equidistributed graph frequencies covering the whole viable
spectrum to capture low, medium, and high frequencies.
To cover the whole spectrum of variations, we set u1 =
umin = 1√

N
for capturing the minimum frequency (i.e.,

DC component) and uN = umax := argmax‖u‖2=1 DV(u),
where fmax := DV(umax) is the maximum attainable directed
variation by a unit-norm vector. In this work, we rely on
the recently proposed method in [4, Algorithm 1] to find
umax. Having fixed the first and last columns of U and thus
their corresponding frequencies, ideally one would like the
free frequencies (i.e., f2, · · · , fN−1) to form an arithmetic
sequence between f1 = 0 and fN = fmax, yielding maximally-
spread frequency modes as in the DFT. However, this might
not always be feasible as discussed in [4, Section II-B].

Instead, by taking into account the graph structure and fixed
u1 and uN , one can consider the spectral dispersion function

δ(U) :=

N−1∑

i=1

[DV(ui+1)− DV(ui)]
2 (2)

which is minimized when the free frequencies form an arith-
metic sequence between f1 = 0 and fN = fmax (cf. the desir-
able property P2 stated in Section I). Such a spread frequency
distribution which captures different modes of variation with
respect to the graph would facilitate more interpretable spectral
analyses of graph signals and also aid filter design in the graph
spectral domain; see also [4] for illustrations.
Problem statement. In addition to the aforementioned design
considerations, we would like the DGFT basis to sparsely
represent a given set of bandlimited training signals X ∈
R

N×P in the spectral (dual) domain. Sparsity can be promoted
by minimizing ‖UTX‖0 = ‖X̃‖0, where the �0-(pseudo)
norm ‖.‖0 counts the number of non-zero entries in X̃. Since
the �0-norm criterion is in general NP-hard to optimize, we
minimize its closest convex approximant ‖X̃‖1 =

∑
i,j |X̃ij |

instead. Sparse recovery via �1-norm minimization has shown
remarkable success over the last decade or so, since the convex
relaxation often entails no loss of optimality.

Consolidating all the mentioned criteria, the DGFT design
as a dictionary learning task can be stated as

min
U

Ψ(U) := δ(U) + μ‖UTX‖1 (3)

subject to UTU = IN ,

u1 = umin,

uN = umax,

where regularization parameter μ > 0 trades-off the dispersion
of the frequency modes versus the sparsity of the training sig-
nals’ DGFT coefficients. For the extreme value of μ = 0, (3)
finds the most dispersed frequency components in [0, fmax].
By increasing μ we compromise the dispersion for sparser
representations of the observed signals’ DGFT coefficients.
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Note that the orthonormality (Stiefel manifold) constraints in
(3) ensures the desirable property P3.

Problem (3) is feasible (i.e., umax ⊥ umin) as shown in
[4, Proposition 3]. However, finding the global optimum of
(3) is challenging due to the non-convexity arising from the
orthonormality constraints as well as the objective function
[due to the cross-terms DV(ui)DV(ui+1)]. While the spectral
dispersion δ(U) is smooth, the non-differentiability of �1-norm
regularization term hinders a direct adoption of methods for
effectively minimizing differentiable cost functions over the
Stiefel manifold like the one developed in [15].

In the next section we adopt a variable splitting technique
that facilitates an alternating-minimization algorithm to solve
(3). The iterates are obtained by combing a (feasible) method
over the Stiefel manifold [15] along with sparsity-inducing
soft-thresholding operations.

III. ALTERNATING-MINIMIZATION SCHEME

Here we develop an iterative algorithm to find the orthonor-
mal basis U that solves (3). Our first idea is to replace UTX
with an auxiliary variable Y ∈ R

N×P and enforce the equality
constraint Y = UTX via a quadratic penalty term in the
objective. Accordingly, we reformulate (3) as

min
U,Y

δ(U) + μ‖Y‖1 + γ

2
‖Y −UTX‖F (4)

subject to UTU = IN

u1 = umin,

uN = umax,

and we adopt a block-coordinate descent approach, which
solves (4) cyclically over each variable U and Y while fixing
the other variable to its most up-to-date value.
Optimization in the Stiefel manifold. At each iteration k =
0, 1, 2 . . . we fix Y = Yk and update Uk+1 by bringing to
bear a feasible method for minimizing differentiable functions
over the Stiefel manifold [15]. Specifically, we would like to
solve the orthogonality-constrained, smooth problem

min
U

δ(U) +
γ

2
‖Y −UTX‖F

subject to UTU = IN (5)
u1 = umin,

uN = umax.

However, the general feasible method of [15] is tailored for
orthogonality constrained problems of the form

min
U∈Rn×p

φ(U), subject to UTU = Ip, (6)

where φ(U) : R
n×p → R is assumed to be differentiable.

To cast the optimization (5) in the favorable form of (6), we
penalize the objective in (5) with a measure of the constraint
violations to obtain

Uk+1 := argmin
U

φ(U) := δ(U) +
γ

2
‖Yk −UTX‖2F (7)

+
λ

2

(|u1 − umin‖2 + ‖uN − umax‖2
)

subject to UTU = IN ,

Algorithm 1 Sparsifying DGFT with spread frequency modes
1: Input: Adjacency matrix A, signals X ∈ R

N×P , and
parameters λ, μ, γ, ε1, ε2 > 0.

2: Find umax using [4, Algorithm 1] and set umin = 1√
N
1N .

3: Initialize k = 0, Y0 ∈ R
N×P at random.

4: repeat
5: U-update:
6: Initialize t = 0 and orthonormal Û0 ∈ R

N×N .
7: repeat
8: Compute gradient Ht := ∇φ(Ût) ∈ R

N×N .
9: Form Bt = HtÛ

T
t − ÛtH

T
t .

10: Select τt satisfying Armijo-Wolfe conditions [16].
11: Update Ût+1(τt) = (IN+ τt

2 Bt)
−1(IN− τt

2 Bt)Ût.
12: t ← t+ 1.
13: until ‖Ût − Ût−1‖F /‖Ût−1‖F ≤ ε1
14: Return Uk = Ût

15: Y-update:
16: Yk = sgn(UT

kX) ◦ (|UT
kX| − μ/γ)+.

17: k ← k + 1.
18: until ‖UT

kX−UT
k−1X‖1/‖UT

k−1X‖1 ≤ ε2
19: Return Û = Uk.

where λ > 0 is chosen large enough to ensure u1 = umin

and uN = umax. Leveraging a solver similar to the one
developed in [4, Section IV], one can guarantee convergence
to a stationary point of φ(U) by virtue of [15, Theorem 2],
while generating feasible points in the Stiefel manifold at every
inner iteration t = 0, 1, 2, . . ..

The resulting iterations to solve (7) [and thus (5)] are
tabulated under Algorithm 1; see steps 6 − 14 which are
performed until a stopping criterion is met. The gradient
matrix Ht := ∇φ(Ût) at step 9 can be computed as
Ht = Gt − γX(Yk − ÛT

t X)T , where Gt is the dispersion
function gradient calculated in [4, Equation (17)]. Matrix
Bt := HtÛ

T
t − ÛtH

T
t at step 10 is a skew-symmetric

projection of the gradient Ht onto the constraint’s tangent
space. The update rule at step 12 is known as the Cayley
transform which preserves the orthonormality for Ut+1, since
(I + τ

2Bt)
−1 and I − τ

2Bt commute. This update rule is a
descent path for a proper step size τ ; see [15] for more details.
In particular, one such step size τ can be obtained through
a curvilinear search satisfying the Armijo-Wolfe conditions
[16]. Steps 6 − 14 ensure that the update rule at 12th step is
a descent path and [15, Theorem 2] asserts that the overall
procedure converges to a stationary point of φ(U).
Spread and sparse DGFT. After finding a stationary solution
Uk at iteration k, we keep the the latest DGFT basis fixed and
solve the following problem with respect to Y:

min
Y

μ‖Y‖1 + γ

2
‖Y −UT

kX‖2F . (8)

For fixed Uk, the unknown variable Y in (8) is component-
wise separable. In particular, Yk can be obtained in a simple
closed form in terms of soft-thresholding operations, namely

Yk = sign(UT
kX) ◦ [|UT

kX| − μ/γ
]
+
, (9)
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Fig. 1. Graph signal of average annual temperature in Fahrenheit for the
contiguous US states digraph.

where ◦ and sgn(.) are the element-wise product and sign
function, respectively; see also step 16 in Algorithm 1.

In summary, the overall procedure in Algorithm 1 en-
tails alternating updates for U [i.e., by solving (7)] and
Y [i.e., solving (8)] until a certain termination condition is
met. This results in an approximate solution to the original
problem (3), and thus a data-driven DGFT basis with well-
dispersed frequencies that can sparsely represent signals from
the underlying process. We generally observe convergence
within a reasonable number of iterations; see the next section
for an empirical demonstration. Deriving formal convergence
guarantees for the alternating scheme would be a valuable
extension, which is a topic of ongoing investigation.

IV. PRELIMINARY NUMERICAL TEST

To gain insights on the behavior of the proposed data-driven
DGFT, here we carry out simulations on real-world graph sig-
nals. Specifically, we evaluate the performance of Algorithm 1
in yielding (near) maximally-spread frequency components
with sparse representations for given (bandlimited) training
signals as well as a test signal from a similar process.

We consider a digraph of 48 contiguous United States
(excluding Alaska and Hawaii which are not connected by
land). A directed edge joins two states if they share a border,
and the direction of the arc is set so that the state whose
barycenter has a lower latitude points to the one with higher
latitude – consistent with the temperature flow. We also
consider the states annual average temperature used as the
test signal x ∈ R

48 which is shown in Fig. 1. To train the
proposed Algorithm 1, we use average monthly temperature
over the past ∼ 60 years of each state as the training
signals1 X ∈ R

48×12. Our goal is to sparsely represent the
signals while capturing meaningful, spread, and broad modes
of variation with respect to the graph. To that end, we run
Algorithm 1 on the training signals X for the established graph
model.

First we use the Monte-Carlo method to study the con-
vergence properties of the algorithm. As the iterations of

1Temperature data obtained from http://www.weatherbase.com and
https://www.ncdc.noaa.gov, respectively

Algorithm 1 evolve in Fig. 2-(a), we show the objective
function Ψ(U) in (3). We do so for 10 different initializations
and report the median as well as the first and third quartiles
versus number of iterations. While still there is no theoretical
guarantees on the overall convergence of Algorithm 1, we
observe that the realizations converge to limiting values with
small variability in this practical setting.

Fig. 2-(b) depicts the heat maps of the non-DC components
absolute values for the trained X̃ obtained using Algorithm 1
when μ �= 0 (data-adaptive) (left) and when μ = 0 (i.e.,
method in [4] which does not take the signals into consid-
eration) (right). Each column in Fig. 2-(b) depicts a sample’s
spectral representation excluding the DC component. As we
can see, we achieve sparser representations in the Fourier
domain for properly chosen μ.

In addition, Fig. 2-(c) compares the test signal (x) represen-
tations in the graph spectral domain (x̃) using two mentioned
approaches. Notice that x̃ is naturally lowpass bandlimited
and can be captured by a few atoms of the obtained basis
even when μ �= 0 due to the interpretability originated from
the design considerations (cf. δ(U) in (2) and (3)). However,
for the data-adapted algorithm (i.e. μ �= 0), the test signal x
is more sparsely representable, which showcases the effective-
ness of the obtained data-driven approach. To better appreciate
this, we also plot the cumulative energy distributions of both
methods, defined by the percentage of the total energy present
in the first i frequency components for i = 1, · · · , N . It is
apparent from Fig. 2-(c) that the first few components of x̃
capture more of its energy when μ �= 0.

Finally, Fig. 3 depicts the distribution of all the frequen-
cies for the basis vectors obtained by Algorithm 1 and its
counterpart in [4] which is the special case of Algorithm 1
with μ = 0. In Fig. 3, each vertical line indicates the directed
variation (frequency) associated with a basis vector. Although
we compromised the spectral dispersion for having sparse
representations, but Fig. 3 shows that we can still achieve
relatively well dispersed frequencies.

V. CONCLUSION

We considered the problem of finding a sparsifying or-
thonormal Fourier basis for bandlimited graph signals sup-
ported on a digraph. The notion of frequency was captured via
a recently proposed directed variation measure of basis vectors
over directed networks. Then frequency modes were designed
to evenly span the entire viable frequency range (with respect
to the graph), while at the same time sparsely representing the
given training signals. To that end, we developed an iterative
algorithm that alternates between a feasible method over the
Stiefel manifold to minimize a spectral dispersion criterion,
and a proximal operator stemming from a sparsity-promoting
regularization term on the DGFT coefficients of the training
signals. The overall procedure to find a desirable basis was
validated on real-world temperature signals supported on a
directed network of the US contiguous states.

With regards to future directions, a formal convergence
guarantee for the developed algorithm is of interest. Further-
more, it would be a significant improvement to exploit the
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Fig. 2. (a) Median and the 25th and 75th percentiles of the objective function in (3) vs. the number of iterations k in Algorithm 1, obtained by running 10
Monte-Carlo simulations. (b) Non-DC components of the trained signals DGFT (X̃) using Algorithm 1 when μ = 0 (left) and when μ �= 0 (right). (c) DGFT
of the test signal (x̃) one with and one without sparsity regularization, along with their cumulative energy distribution across frequencies.
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Fig. 3. Comparison of directed variations using Algorithm 1 for a tuned μ �= 0 and μ = 0, where the latter boils down to the method in [4]. Colored boxes
show the difference between two consecutive frequencies for each method, while the frequency values correspond to the vertical boundary lines.

knowledge on the passband of the bandlimited signals to yield
better spectral dispersion versus the sparsity trade-off.
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