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Network Science analytics

Online social media Internet Clean energy and grid analytics
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» Network as graph G = (V, £): encode pairwise relationships
» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
» Interest here not in G itself, but in data associated with nodes in V

= The object of study is a graph signal
= Ex: Opinion profile, buffer levels, neural activity, epidemic



Graph signal processing and Fourier transform

X2
» Directed graph (digraph) G with adjacency matrix A e
= Aj = Edge weight from node / to node j
» Define a signal x€¢ RN on top of the graph °
X
= x; = Signal value at node / 504 ! xg
g
> Associated with G is the underlying undirected G
= Laplacian marix L = D — AY, eigenvectors V = [vq, - -, vp]

> Graph Signal Processing (GSP): exploit structure in A or L to process x

» Graph Fourier Transform (GFT): X = VTx for undirected graphs
= Decompose x into different modes of variation

= Inverse (i)GFT x = VX, eigenvectors as frequency atoms



Our work in context

v

Spectral analysis and filter design [Tremblay et al'17], [Isufi et al'16]
= GFT as a promising tool in neuroscience [Huang et al'16]

v

Noteworthy GFT approaches

Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura'17]
Lovasz extension of the graph cut size [Sardellitti et al'17]

Basis selection for spread modes [Shafipour et al'18]

Generalized variation operators and inner products [Girault et al'18]

Dictionary learning (DL) for GSP

» Parametric dictionaries for graph signals [Thanou et al'14]
» Dual graph-regularized DL [Yankelevsky-Elad'17]
» Joint topology- and data-driven prediction [Forero et al'14]
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» Our contribution: digraph (D)GFT (dictionary) design
» Orthonormal basis signals (atoms) offer notions of frequency
> Frequencies are distributed as even as possible in [0, fmax]
> Sparsely represents bandlimited graph signals



Signal variation on digraphs

» Total variation of signal x with respect to L

N
TV(x) = x"Lx = Z Al(xi — x;)?

ij=1,j>i
=- Smoothness measure on the graph G

» For Laplacian eigenvectors V = [vq,--- ,vy] = TV(vi) = Ak
= 0= A1 <--- < Ay can be viewed as frequencies

» Directed variation for signals over digraphs
N
DV(x) = > Ayl — x]%
ij=1

= Captures signal variation (flow) along directed edges
= Consistent, since DV(x) = TV(x) for undirected graphs



DGFT with spread frequeny components

» Find N orthonormal bases capturing low, medium, and high frequencies

» Collect the desired bases in a matrix U = [uy,--- ,uy] € RVXN
DGFT: %=U'x
= uy represents the kth frequency mode with 7, := DV(uy)

» Similar to the DFT, seek N evenly distributed graph frequencies in [0, f.x]
= fmax IS the maximum DV of a unit-norm graph signal on G

e
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Spread frequencies in two steps

» First: Find ., by solving

Umax = argmax DV(u) and  fia. := DV(umax).
llull=1

» Let vy be the dominant eigenvector of L
= Can 1/2-approximate fyax with Omax = argmax DV(v)

ve{vy,—vn}

» Second: Set u; = u,,;, = ﬁl,\, and uy = Umay and minimize

N-1
S(U) = Z [DV(ui+1) — DV(u))?

= 0(U) is the spectral dispersion function
= Minimized when free DV values form an arithmetic sequence



Spectral dispersion and sparsity minimization

» Sparsify a set of bandlimited signals X € RV*P — Minimize |[UT X||;

» Problem: given G and X, find sparsifying DGFT with spread frequencies

N—-1
. 2
min  W(U) = > [BV(uir1) = DV(u)]* + ul|UTX]|x
i=1
subjectto UTU =1
Ui = Umin
uy = Umax
» Non-convex, orthogonality-constrained minimization
» Non-differentiable W(U)
> Feasible since umax L Umin
» Variable-splitting and a feasible method in the Stiefel manifold:
(i) Obtain fuax (and Umax) by minimizing —DV(u) over {u|u’u =1}
(i) Replace U™ X with an auxiliary variable Y € RV*?, enforce Y = U7X
(iii) Adopt an alternating minimization scheme



Update U: Feasible method in the Stiefel manifold

» For fixed Y = Y, rewrite the problem of finding U, as

D A
minimize 6(U) := (U) + 5 (10— tin |2+l — timse ) + 2 ¥4 — UT X
subject to UTU = Iy

» Recall 5(U) := S ' [DV(uis1) — DV(u))?
> Choose large enough A > 0 to ensure u; = Upin and Uy = Umayx
> Let Uy be a feasible point at iteration k and the gradient G, = Vo(Uy)
= Skew-symmetric matrix By := G.U,T - UkaT
> Update rule U,1(7) = (14 5Bx) (1 - 3By) Uy
= Cayley transform preserves orthogonality (i.e., Uy 1 U,y = 1)

Theorem (Wen-Yin'13) Iterates converge to a stationary point
of smooth ¢(U), while generating feasible points at every iteration




Update Y: Soft thresholding

» For fixed U = U1, rewrite the problem of finding Y1 as
minimize  u||Y|1 + %HY — Ui "X|r

= Proximal operator that is component-wise separable

» Update Y1 in closed form via soft-thresholding operations

Yi1 = sign(Uxs1 " X) o Uk TX| = p/7]



Algorithm

1: Input: Adjacency matrix A, signals X € RN%P and A, W, 7, €1, €2 >0

2. Find unax by a similar feasible method and set uy,;, =

3: Initialize k = 0, Yo € RV*P at random

4. repeat

5: U-update: Initialize t = 0 and orthonormal I:JO € RV*N at random

6: repeat

7: Compute gradlent G, = V(/S(Ut) € RVxN

8: Form B, = G.0,” — U,G,”

9: Select 7; satisfying Armijo-Wolfe conditions )
10: UpcAJate LAlHl(Tt) :A(IN + %Bt)*l(l,\, — 5B:)U;
11: until ||Ut — Ut;lHF/HUtleF <e€
12: Return U, = U;

13: Y-update: Yk+1 = sign(UkTX) o (|UkTX| — /,L/’}/)+.

14: k<« k+1.
15: until ||U/A<TX - kalTX”l/HUk,lTX”l <6
16: Return U = U,.

» Overall run-time is O(N3) per iteration



Numerical test: US average temperatures

» Graph of the N = 48 contiguous United States
=- Connect two states if they share a border

= Set arc directions from lower to higher latitudes

> Test graph signal x — Average annual temperature of each state



Numerical test: Convergence behavior

> Average monthly temperature over ~ 60 years for each state
= Training signals X € R%8x12

» First, use Monte-Carlo method to study the convergence properties
> Plot W(U) = 6(U) + u||UTX||: versus k for 10 different initializations
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» Convergence is apparent, with limited variability on the solution



Numerical test: Spread and

sparse

» Heat maps of the trained X
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» Distribution of all the frequencies
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» Tradeoff: spectral dispersion for a sparser representation

» Still attain well dispersed frequencies



Closing remarks

v

Measure of directed variation to capture the notion of frequency on G

v

Find an orthonormal set of Fourier basis signals for digraphs

» Span a maximal frequency range [0, fnax] as evenly as possible
> Sparsify a training set of bandlimited graph signals

v

Adopt alternating scheme via a feasible method and soft-thresholding

i) Minimize smooth dispersion over the Stiefel manifold
ii) Encourage sparsity of the representation via soft-thresholding

v

Ongoing work and future directions
> Provide convergence guarantees for the alternating scheme
> Exploit knowledge on the signals being low, medium, or high-pass
> Scalable and fast digraph Fourier transform?



