
Spread and Sparse: Learning Interpretable
Transforms for Bandlimited Signals on Digraphs

Rasoul Shafipour

Dept. of Electrical and Computer Engineering

University of Rochester

rshafipo@ece.rochester.edu

http://www.ece.rochester.edu/~rshafipo/

Co-author: Gonzalo Mateos

Acknowledgment: NSF Awards CCF-1750428 and ECCS-1809356

Pacific Grove, CA, October 30, 2018

Spread and Sparse: Learning Interpretable Transforms for Bandlimited Signals on Digraphs Asilomar 2018 1

mailto:rshafipo@ece.rochester.edu
http://www.ece.rochester.edu/~rshafipo/


Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

⇒ Ex: Opinion profile, buffer levels, neural activity, epidemic
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Graph signal processing and Fourier transform

I Directed graph (digraph) G with adjacency matrix A

⇒ Aij = Edge weight from node i to node j

I Define a signal x∈ RN on top of the graph

⇒ xi = Signal value at node i 4

2

3

1

I Associated with G is the underlying undirected Gu

⇒ Laplacian marix L = D− Au, eigenvectors V = [v1, · · · , vN ]

I Graph Signal Processing (GSP): exploit structure in A or L to process x

I Graph Fourier Transform (GFT): x̃ = VTx for undirected graphs

⇒ Decompose x into different modes of variation

⇒ Inverse (i)GFT x = Vx̃, eigenvectors as frequency atoms
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Our work in context

I Spectral analysis and filter design [Tremblay et al’17], [Isufi et al’16]

⇒ GFT as a promising tool in neuroscience [Huang et al’16]

I Noteworthy GFT approaches

I Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura’17]
I Lovaśz extension of the graph cut size [Sardellitti et al’17]
I Basis selection for spread modes [Shafipour et al’18]
I Generalized variation operators and inner products [Girault et al’18]

I Dictionary learning (DL) for GSP
I Parametric dictionaries for graph signals [Thanou et al’14]
I Dual graph-regularized DL [Yankelevsky-Elad’17]
I Joint topology- and data-driven prediction [Forero et al’14]

I Our contribution: digraph (D)GFT (dictionary) design
I Orthonormal basis signals (atoms) offer notions of frequency
I Frequencies are distributed as even as possible in [0, fmax]
I Sparsely represents bandlimited graph signals
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Signal variation on digraphs

I Total variation of signal x with respect to L

TV(x) = xTLx =
N∑

i,j=1,j>i

Au
ij(xi − xj)

2

⇒ Smoothness measure on the graph Gu

I For Laplacian eigenvectors V = [v1, · · · , vN ] ⇒ TV(vk) = λk

⇒ 0 = λ1 < · · · ≤ λN can be viewed as frequencies

I Directed variation for signals over digraphs ([x ]+ = max(0, x))

DV(x) :=
N∑

i,j=1

Aij [xi − xj ]
2
+

⇒ Captures signal variation (flow) along directed edges

⇒ Consistent, since DV(x) ≡ TV(x) for undirected graphs
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DGFT with spread frequeny components

I Find N orthonormal bases capturing low, medium, and high frequencies

I Collect the desired bases in a matrix U = [u1, · · · ,uN ] ∈ RN×N

DGFT: x̃ = UTx

⇒ uk represents the kth frequency mode with fk := DV(uk)

I Similar to the DFT, seek N evenly distributed graph frequencies in [0, fmax]

⇒ fmax is the maximum DV of a unit-norm graph signal on G
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Spread frequencies in two steps

I First: Find fmax by solving

umax = argmax
‖u‖=1

DV(u) and fmax := DV(umax).

I Let vN be the dominant eigenvector of L

⇒ Can 1/2-approximate fmax with ũmax = argmax
v∈{vN ,−vN}

DV(v)

I Second: Set u1 = umin := 1√
N

1N and uN = umax and minimize

δ(U) :=
N−1∑
i=1

[DV(ui+1)− DV(ui )]2

⇒ δ(U) is the spectral dispersion function

⇒ Minimized when free DV values form an arithmetic sequence
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Spectral dispersion and sparsity minimization

I Sparsify a set of bandlimited signals X ∈ RN×P → Minimize ||UTX||1

I Problem: given G and X, find sparsifying DGFT with spread frequencies

min
U

Ψ(U) :=
N−1∑
i=1

[DV(ui+1)− DV(ui )]2 + µ||UTX||1

subject to UTU = I

u1 = umin

uN = umax

I Non-convex, orthogonality-constrained minimization
I Non-differentiable Ψ(U)
I Feasible since umax ⊥ umin

I Variable-splitting and a feasible method in the Stiefel manifold:

(i) Obtain fmax (and umax) by minimizing −DV(u) over {u | uTu = 1}
(ii) Replace UTX with an auxiliary variable Y ∈ RN×P , enforce Y = UTX
(iii) Adopt an alternating minimization scheme
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Update U: Feasible method in the Stiefel manifold

I For fixed Y = Yk , rewrite the problem of finding Uk+1 as

minimize
U

φ(U) := δ(U) +
λ

2

(
‖u1 − umin‖2 + ‖uN − umax‖2

)
+
γ

2
‖Yk −UTX‖2F

subject to UTU = IN

I Recall δ(U) :=
∑N−1

i=1 [DV(ui+1)− DV(ui )]2

I Choose large enough λ > 0 to ensure u1 = umin and uN = umax

I Let Uk be a feasible point at iteration k and the gradient Gk = ∇φ(Uk)

⇒ Skew-symmetric matrix Bk := GkUk
T −UkGk

T

I Update rule Uk+1(τ) =
(
I + τ

2 Bk

)−1 (
I− τ

2 Bk

)
Uk

⇒ Cayley transform preserves orthogonality (i.e., Uk+1
TUk+1 = I)

Theorem (Wen-Yin’13) Iterates converge to a stationary point
of smooth φ(U), while generating feasible points at every iteration
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Update Y: Soft thresholding

I For fixed U = Uk+1, rewrite the problem of finding Yk+1 as

minimize
Y

µ‖Y‖1 +
γ

2
‖Y −Uk+1

TX‖F

⇒ Proximal operator that is component-wise separable

I Update Yk+1 in closed form via soft-thresholding operations

Yk+1 = sign(Uk+1
TX) ◦

[
|Uk+1

TX| − µ/γ
]
+
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Algorithm

1: Input: Adjacency matrix A, signals X ∈ RN×P , and λ, µ, γ, ε1, ε2 > 0
2: Find umax by a similar feasible method and set umin = 1√

N
1N

3: Initialize k = 0, Y0 ∈ RN×P at random
4: repeat
5: U-update: Initialize t = 0 and orthonormal Û0 ∈ RN×N at random
6: repeat
7: Compute gradient Gt := ∇φ(Ût) ∈ RN×N

8: Form Bt = GtÛt
T − ÛtGt

T

9: Select τt satisfying Armijo-Wolfe conditions
10: Update Ût+1(τt) = (IN + τt

2 Bt)
−1(IN − τt

2 Bt)Ût

11: until ‖Ût − Ût−1‖F/‖Ût−1‖F ≤ ε1
12: Return Uk = Ût

13: Y-update: Yk+1 = sign(Uk
TX) ◦ (|Uk

TX| − µ/γ)+.
14: k ← k + 1.
15: until ‖Uk

TX−Uk−1
TX‖1/‖Uk−1

TX‖1 ≤ ε2
16: Return Û = Uk .

I Overall run-time is O(N3) per iteration
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Numerical test: US average temperatures

I Graph of the N = 48 contiguous United States

⇒ Connect two states if they share a border

⇒ Set arc directions from lower to higher latitudes
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I Test graph signal x → Average annual temperature of each state
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Numerical test: Convergence behavior

I Average monthly temperature over ∼ 60 years for each state

⇒ Training signals X ∈ R48×12

I First, use Monte-Carlo method to study the convergence properties
I Plot Ψ(U) = δ(U) + µ||UTX||1 versus k for 10 different initializations
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I Convergence is apparent, with limited variability on the solution
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Numerical test: Spread and sparse

I Heat maps of the trained X̃ I Spectral representation of test signal
|X̃ 2:N,· | with µ = 0
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|X̃ 2:N,· | via proposed algorithm (µ ̸= 0)
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|X̃ 2:N,· | via proposed algorithm (µ ̸= 0̸̸ )|X̃ 2:N,· | with µ = 0
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I Distribution of all the frequencies
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I Tradeoff: spectral dispersion for a sparser representation
I Still attain well dispersed frequencies
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Closing remarks

I Measure of directed variation to capture the notion of frequency on G

I Find an orthonormal set of Fourier basis signals for digraphs
I Span a maximal frequency range [0, fmax] as evenly as possible
I Sparsify a training set of bandlimited graph signals

I Adopt alternating scheme via a feasible method and soft-thresholding

i) Minimize smooth dispersion over the Stiefel manifold
ii) Encourage sparsity of the representation via soft-thresholding

I Ongoing work and future directions
I Provide convergence guarantees for the alternating scheme
I Exploit knowledge on the signals being low, medium, or high-pass
I Scalable and fast digraph Fourier transform?
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