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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Network as graph G = (V,£): encode pairwise relationships
» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

> Interest here not in G itself, but in data associated with nodes in V
= The object of study is a graph signal
» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic



Graph signal processing and Fourier transform

X2
» Directed graph (digraph) G with adjacency matrix A e
= Aj = Edge weight from node / to node j
» Define a signal x€¢ RN on top of the graph °
X
= x; = Signal value at node / 504 ! xg
g
> Associated with G is the underlying undirected G
= Laplacian marix L = D — AY, eigenvectors V = [vq, - -, vp]

> Graph Signal Processing (GSP): exploit structure in A or L to process x

» Graph Fourier Transform (GFT): X = VTx for undirected graphs
= Decompose x into different modes of variation

= Inverse (i)GFT x = VX, eigenvectors as frequency atoms



GFT: Motivation and context

v

Promising tool in neuroscience [Huang et al'16]

= Graph frequency analyses of fMRI signals

v

Noteworthy GFT approaches

» Eigenvectors of the Laplacian L [Shuman et al'13]
» Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura'17]
> Lovasz extension of the graph cut size [Sardellitti et al’17]

» Our contribution: design a novel digraph (D)GFT such that
» Bases offer notions of frequency and signal variation
» Frequencies are (approximately) equidistributed in [0, fmax]
> Bases are orthonormal, so Parseval's identity holds



Signal variation on digraphs

» Total variation of signal x with respect to L

N
TV(x) = x"Lx = Z Al(xi — x;)?

ij=1,j>i
=- Smoothness measure on the graph G

> For Laplacian eigenvectors V = [vq, - ,vy] = TV(vk) = A«
= 0= A1 <--- < Ay can be viewed as frequencies

» Def: Directed variation for signals over digraphs
N
DV(x) = > Ayl — x]%
ij=1

= Captures signal variation (flow) along directed edges
= Consistent, since DV(x) = TV(x) for undirected graphs



DGFT with spread frequeny components

v

Goal: find N orthonormal bases capturing different modes of DV on G

v

Collect the desired bases in a matrix U = [uy,--- ,uy] € RVXN

= uy represents the kth frequency component with f; := DV(uy)

» Similar to the DFT, seek N equidistributed graph frequencies
k—1
f, =DV =——foax, k=1,...,N
o= DVlu) ==

= finax IS the maximum DV of a unit-norm graph signal on G

v

Q: Why spread frequencies?
= To better capture low, medium, and high frequencies
= Aid filter design in the graph spectral domain



Motivation for spread frequencies

> Ex: Directed variation minimization [Sardellitti et al'17]
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» U* is the optimum basis where a = 1+4‘/g, b= 1%4‘/5, and ¢ = —0.5

v

All columns of U* satisfy DV(u;) =0, k=1,...,4
= Expansion x = U*X fails to capture different modes of variation

v

Q: Can we always find equidistributed frequencies?



Challenges: Maximum directed variation

» Finding 7.« is in general challenging
> Solve the (non-convex) spherically-constrained problem

Umax = argmax DV(u) and frax = DV(umax).
[lufl=1

» Q: Can we find a basis Ui, with approximate Fonx & Fna?

Proposition: For a digraph G, recall G“ and its Laplacian L. Let vy be
the dominant eigenvector of L. Then,

oz
e — maX{DV(VN)7 DV(_V/V)} > 2

» We can 1/2-approximate fi,.x With Gimax = argmax DV(v)
ve{vy,—vn}



Challenges: Equidistributed frequencies

» Equidistributed f, = %fmax may not be feasible. Ex: In undirected G

N N
e =Amax & D fi=>_ TV(v) = trace(L)
k=1

max
k=1
> ldea: Set u; = Uy, = ﬁl,\, and uy = liyax and minimize

5(U) = 3 IDV(ur11) - DV(w)f

= 0(U) is the spectral dispersion function
= §(U) is minimized if the free DV values form an arithmetic sequence
= Consistent with our design criteria



Spectral dispersion minimization

> We cast the optimization problem of finding spread frequencies as

mUin z_: [DV(ui11) — DV(u;)]”

subject to UTU =1
U3 = Upin

uy = l'jmax
= Tackle via feasible optimization method in the Stiefel manifold

» Here instead we resort to a simple yet efficient heuristic



A DGFT construction heuristic

» Use eigenvectors of L, the Laplacian of GY, to construct U

Fix fl =0 (ul - umin) and fN - ~max (U/\/ - l’:imax)

v

v

Let f; := DV(v;) and f; := DV(—v;), where v; is the ith eigenvector of L

v

Define the set of all candidate frequencies as F := {f,-,?,- l<i< N}

= Enforce orthonormality: opt exactly one from each pair {f;, f;}

v

2N=2 choices

Goal: find the most spread frequency set among the
= Exhaustive search intractable even for small graphs

= Q: Near-optimal solution in polynomial time?



Frequency selection via supermodular minimization

RC

» For frequency subset S C F, let s; < 55 < ... < 5., be the elements of S

» Spectral dispersion for S takes the form

m

6(S) = Z(Si+1 —5)% wheresy=0and s, = Forax
i=0

> Let 13 be the set of all subsets S C F satisfying [SN{f;,f;}|=1,1<i<N

» Frequency selection from F boils down to

mSin 0(S), s.t.SekB

= Supermodular minimization subject to a matroid basis constraint

= NP-hard and hard to approximate to any factor



Greedy DGFT bases selection: Algorithm

» Form a non-negative increasing submodular function to be maximized

S(S) = Frr%ax - 5(5)

» Maximize a monotone submodular function under matroid constraints

Noa N

= Can adopt a simple greedy algorithm [Fisher et al'78]

Input: Set of candidate frequencies F
Initialize S = ()
repeat
e « argmax;c{6(S) —6(SU{})}
S« Su{e}
Delete from F the pair {f;, f;} that e belongs to
until F =10



Greedy DGFT bases selection: Guarantees J

» Q: What about worst-case guarantees for the approximate solution?

Theorem (Fisher et al’78) Let S* be the solution of

msin 0(S), s t.SeB
and S8 be the output of the greedy algorithm. Then,

5(S8) >

max

X 5(5%) or equivalently §(S8) < %(1;2 +4(57))

» Usually performs significantly better in practice



Numerical test: Synthetic graph

3
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> Rescale DV values to the [0, 1] interval and calculate spectral dispersion
= 0.256, 0.301, and 0.118, respectively
= Confirms the proposed method yields a better frequency spread



Numerical test: US average temperatures

» Consider the graph of the contiguous 48 states of the United States
=- Connect two states if they share a border

= Set arc directions from higher to lower latitudes

> Graph signal x — Average annual temperature of each state




» Noisy signal y = x + n, with n ~ A/(0,10 1)
» Define low-pass filter H = diag(h), where h; = I1{i < w}
» Recover signal via filtering ¥ = UHy = UHU Ty

= Compute recovery error e = H)I(I;\)I(H
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» DGFT basis U offers parsimonious (i.e., bandlimited) signal representation



Closing remarks

Measure of directed variation to capture the notion of frequency on G

v

v

Find an orthonormal set of graph Fourier bases for digraphs

> Spans a maximal frequency range [0, fmax]
» Frequency components are as evenly distributed as possible

» Two-step DGFT basis construction approach using eigenvectors V of L

i) 1/2-approximate fmax with max {DV(vy), DV(—vn)}
if) Minimize spectral dispersion via a greedy algorithm

v

Ongoing work and future directions
» Complexity of finding the maximum frequency fn.x on a digraph?
= If NP-hard, what is the best approximation ratio
» Optimality gap between the local and global optimal dispersions?
= Generalize guarantees to any orthonormal basis



