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Network Science analytics

Online social media Internet Clean energy and grid analytics
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» Network as graph G = (V, £): encode pairwise relationships
» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
» Interest here not in G itself, but in data associated with nodes in V

= The object of study is a graph signal
= Ex: Opinion profile, buffer levels, neural activity, epidemic



Graph signal processing and Fourier transform

X2
» Directed graph (digraph) G with adjacency matrix A e
= Aj = Edge weight from node / to node j
» Define a signal x€¢ RN on top of the graph °
X
= x; = Signal value at node / 504 ! xg
g
> Associated with G is the underlying undirected G
= Laplacian marix L = D — AY, eigenvectors V = [vq, - -, vp]

> Graph Signal Processing (GSP): exploit structure in A or L to process x

» Graph Fourier Transform (GFT): X = VTx for undirected graphs
= Decompose x into different modes of variation

= Inverse (i)GFT x = VX, eigenvectors as frequency atoms



GFT: Motivation and context

v

Spectral analysis and filter design [Tremblay et al'17], [Isufi et al'16]

v

Promising tool in neuroscience [Huang et al'16]

= Graph frequency analyses of fMRI signals

v

Noteworthy GFT approaches

» Eigenvectors of the Laplacian L [Shuman et al'13]

» Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura'17]
> Lovasz extension of the graph cut size [Sardellitti et al'17]

> Greedy basis selection for spread modes [Shafipour et al'17]

> Generalized variation operators and inner products [Girault et al'18]

» Our contribution: design a novel digraph (D)GFT such that
» Bases offer notions of frequency and signal variation
» Frequencies are (approximately) equidistributed in [0, fmax]
> Bases are orthonormal, so Parseval's identity holds



Signal variation on digraphs

» Total variation of signal x with respect to L

N
TV(x) = x"Lx = Z Al(xi — x;)?

ij=1,j>i
=- Smoothness measure on the graph G

> For Laplacian eigenvectors V = [vq, - ,vy] = TV(vk) = A«
= 0= A1 <--- < Ay can be viewed as frequencies

» Def: Directed variation for signals over digraphs
N
DV(x) = > Ayl — x]%
ij=1

= Captures signal variation (flow) along directed edges
= Consistent, since DV(x) = TV(x) for undirected graphs



DGFT with spread frequeny components

v

Goal: find N orthonormal bases capturing different modes of DV on G

v

Collect the desired bases in a matrix U = [uy,--- ,upy] € RVXN
DGFT: %=U"x

= uy represents the kth frequency mode with f, := DV(uy)

v

Similar to the DFT, seek N equidistributed graph frequencies

k—1
fk = DV(Uk) :mfmax, k = 1, ey N

= finax IS the maximum DV of a unit-norm graph signal on G

v

Q: Why spread frequencies?
» Parsimonious representations of slowly-varying signals
> Interpretability = better capture low, medium, and high frequencies
> Aid filter design in the graph spectral domain



Motivation for spread frequencies

Ex: Directed variation minimization [Sardellitti et al'17]
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> U* is the optimum basis where a = Y8 p = 1=¥5 and ¢ = —0.5

> All columns of U* satisfy DV(u;) =0, k=1,...,4
= Expansion x = U*X fails to capture different modes of variation

» Q: Can we always find equidistributed frequencies in [0, finax]?



Challenges: Maximum directed variation

» Finding 7.« is in general challenging

Umax = argmax DV(u) and  fia. := DV(umax).
llull=1

» Let vy be the dominant eigenvector of L

= Can 1/2-approximate fyax with Omax = argmax DV(v)

ve{vy,—vn}

> frnax can be obtained analytically for particular graph families

veov

0 1 2 k-1 k k+1

Srmax = 2 max; ;A
Fr =2 W%, Fae = A



Challenges: Equidistributed frequencies

» Equidistributed f, = %fmax may not be feasible. Ex: In undirected G
N N
fnlqlax = Amax and Z fk = Z TV(Vk) = trace(L)
k=1 k=1
> ldea: Set u; = up, = ﬁl/\/ and upy = Upax and minimize

N-1
(V) = Z [DV(ujy1) — DV(Ui)]2
i—1

= §(U) is the spectral dispersion function

= Minimized when the free DV values form an arithmetic sequence



Spectral dispersion minimization

» We cast the optimization problem of finding spread frequencies as

N—-1

mUin Z [DV(ui11) — DV(u;)]”

i=1
subject to UTU =1
Ui = Umin

Uy = Umax

» Non-convex, orthogonality-constrained minimization of smooth §(U)
> Feasible since umax L umin

» Adopt a feasible method in the Stiefel manifold to design the DGFT:
(i) Obtain fiax (and Umax) by minimizing —DV(u) over {u |u"u =1}
(ii) Find the orthonormal basis U with minimum spectral dispersion



Feasible method in the Stiefel manifold

» Rewrite the problem of finding orthonormal basis as

) ‘ A
mdn O(U) = 5(U) + 5 (”ul - umin||2 + HUN - umax||2)

subject to v'u=1I

> Let Uy be a feasible point at iteration k and the gradient G, = V¢ (Uy)
— Skew-symmetric matrix By := G, U, — U, G,

> Follow the update rule U, 1(7) = (1+ 3By) " (1 - By) Uy

> Cayley transform preserves orthogonality (i.e., U1 Upyr = 1)
> Is a descent path for a proper step size 7

Theorem (Wen-Yin’13) The procedure converges to a stationary point
of smooth ¢(U), while generating feasible points at every iteration




Algorithm

Input: Adjacency matrix A, parameters A > 0 and € > 0

Find unax by a similar feasible method and set u,;, = ﬁl/\/

Initialize k = 0 and orthonormal Uy € RV*N at random
repeat
Compute gradient G, = Vo(U,) € RVXN
Form By = G, U, " — UG, "
Select 7y satisfying Armijo-Wolfe conditions
Update Uk+1(7—k) = (l TkB ) l(l — kBk)Uk
k+—k+1
until ||Ux — Uy_1]lr <e¢
Return U = U,

NSO R MR
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» Overall run-time is O(N3) per iteration



Numerical test: Synthetic graph

15
» Compute U and directed variations using 11

Directed Laplacian eigenvectors [Chung'05] -
PAMAL method [Sardellitti et al’17] 12 14
Greedy heuristic [Shafipour et al'17]
Spectral dispersion minimization -
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> Rescale DV values to [0, 1] and calculate spectral dispersion §(U)
= 0.256, 0.301, 0.118, and 0.076 respectively
= Confirms the proposed method yields a better frequency spread



Numerical test: US average temperatures

» Consider the graph of the N = 48 contiguous United States
=- Connect two states if they share a border

= Set arc directions from lower to higher latitudes

> Graph signal x — Average annual temperature of each state



Numerical test: Denoising US temperatures

» Noisy signal y = x + n, with n ~ A(0,10 x Iy)
» Define low-pass filter H = diag(ﬁ), where h; = I{i <w}
» Recover signal via filtering 8 = UHy = UHU Ty

= Compute recovery error ef = H“—H ~ 12%

= Reverse the edge orientations and repeat the experiment

400

100 1.1

1 W
09

609§ 08
——Feasible Method: N-S

1 Tl e

0 1 2 3 4 5 6 7 5 10 15 20 25 30 3 40 45 10 20 30 40
Node v

300

» DGFT basis offers a parsimonious (i.e., bandlimited) signal representation

= Adequate network model improves the denoising performance



Closing remarks

v

Measure of directed variation to capture the notion of frequency on G

v

Find an orthonormal set of Fourier bases for signals on digraphs

> Span a maximal frequency range [0, fmax]
» Frequency modes are as evenly distributed as possible

» Two-step DGFT basis design via a feasible method over Stiefel manifold
i) Find the maximum directed variation fmax over the unit sphere
if) Minimize a smooth spectral dispersion criterion over [0, fmax]
= Provable convergence guarantees to a stationary point

v

Ongoing work and future directions
» Complexity of finding the maximum frequency fnax on a digraph?
= If NP-hard, what is the best approximation ratio
» Optimality gap between the local and global optimal dispersions?
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Symposium on Graph Signal Processing

Topics of interest

- Graph-signal transforms and filters

- Distributed and non-linear graph SP
- Statistical graph SP

- Prediction and learning for graphs

- Network topology inference

- Recovery of sampled graph signals

- Control of network processes
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- Signals in high-order and multiplex graphs

- Neural networks for graph data

- Topological data analysis

- Graph-based image and video processing

- Communications, sensor and power networks

- Neuroscience and other medical fields

- Web, economic and social networks
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