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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

⇒ Ex: Opinion profile, buffer levels, neural activity, epidemic
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Graph signal processing and Fourier transform

I Directed graph (digraph) G with adjacency matrix A

⇒ Aij = Edge weight from node i to node j

I Define a signal x∈ RN on top of the graph

⇒ xi = Signal value at node i 4

2

3

1

I Associated with G is the underlying undirected Gu

⇒ Laplacian marix L = D− Au, eigenvectors V = [v1, · · · , vN ]

I Graph Signal Processing (GSP): exploit structure in A or L to process x

I Graph Fourier Transform (GFT): x̃ = VTx for undirected graphs

⇒ Decompose x into different modes of variation

⇒ Inverse (i)GFT x = Vx̃, eigenvectors as frequency atoms
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GFT: Motivation and context

I Spectral analysis and filter design [Tremblay et al’17], [Isufi et al’16]

I Promising tool in neuroscience [Huang et al’16]

⇒ Graph frequency analyses of fMRI signals

I Noteworthy GFT approaches
I Eigenvectors of the Laplacian L [Shuman et al’13]
I Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura’17]
I Lovaśz extension of the graph cut size [Sardellitti et al’17]
I Greedy basis selection for spread modes [Shafipour et al’17]
I Generalized variation operators and inner products [Girault et al’18]

I Our contribution: design a novel digraph (D)GFT such that
I Bases offer notions of frequency and signal variation
I Frequencies are (approximately) equidistributed in [0, fmax]
I Bases are orthonormal, so Parseval’s identity holds
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Signal variation on digraphs

I Total variation of signal x with respect to L

TV(x) = xTLx =
N∑

i,j=1,j>i

Au
ij(xi − xj)

2

⇒ Smoothness measure on the graph Gu

I For Laplacian eigenvectors V = [v1, · · · , vN ] ⇒ TV(vk) = λk

⇒ 0 = λ1 < · · · ≤ λN can be viewed as frequencies

I Def: Directed variation for signals over digraphs ([x ]+ = max(0, x))

DV(x) :=
N∑

i,j=1

Aij [xi − xj ]
2
+

⇒ Captures signal variation (flow) along directed edges

⇒ Consistent, since DV(x) ≡ TV(x) for undirected graphs
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DGFT with spread frequeny components

I Goal: find N orthonormal bases capturing different modes of DV on G

I Collect the desired bases in a matrix U = [u1, · · · ,uN ] ∈ RN×N

DGFT: x̃ = UTx

⇒ uk represents the kth frequency mode with fk := DV(uk)

I Similar to the DFT, seek N equidistributed graph frequencies

fk = DV(uk) =
k − 1

N − 1
fmax, k = 1, . . . ,N

⇒ fmax is the maximum DV of a unit-norm graph signal on G

I Q: Why spread frequencies?
I Parsimonious representations of slowly-varying signals
I Interpretability ⇒ better capture low, medium, and high frequencies
I Aid filter design in the graph spectral domain
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Motivation for spread frequencies

Ex: Directed variation minimization [Sardellitti et al’17]

min
U

∑N

i,j=1
Aij [ui − uj ]+

s.t. UTU = I 4

2

3

1

I U∗ is the optimum basis where a = 1+
√

5
4 , b = 1−

√
5

4 , and c = −0.5

I All columns of U∗ satisfy DV(u∗k) = 0, k = 1, . . . , 4

⇒ Expansion x = U∗x̃ fails to capture different modes of variation

I Q: Can we always find equidistributed frequencies in [0, fmax]?
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Challenges: Maximum directed variation

I Finding fmax is in general challenging

umax = argmax
‖u‖=1

DV(u) and fmax := DV(umax).

I Let vN be the dominant eigenvector of L

⇒ Can 1/2-approximate fmax with ũmax = argmax
v∈{vN ,−vN}

DV(v)

I fmax can be obtained analytically for particular graph families
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Challenges: Equidistributed frequencies

I Equidistributed fk = k−1
N−1 fmax may not be feasible. Ex: In undirected Gu

f umax = λmax and
N∑

k=1

fk =
N∑

k=1

TV(vk) = trace(L)

I Idea: Set u1 = umin := 1√
N
1N and uN = umax and minimize

δ(U) :=
N−1∑
i=1

[DV(ui+1)− DV(ui )]2

⇒ δ(U) is the spectral dispersion function

⇒ Minimized when the free DV values form an arithmetic sequence
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Spectral dispersion minimization

I We cast the optimization problem of finding spread frequencies as

min
U

N−1∑
i=1

[DV(ui+1)− DV(ui )]2

subject to UTU = I

u1 = umin

uN = umax

I Non-convex, orthogonality-constrained minimization of smooth δ(U)
I Feasible since umax ⊥ umin

I Adopt a feasible method in the Stiefel manifold to design the DGFT:

(i) Obtain fmax (and umax) by minimizing −DV(u) over {u | uTu = 1}
(ii) Find the orthonormal basis U with minimum spectral dispersion
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Feasible method in the Stiefel manifold

I Rewrite the problem of finding orthonormal basis as

min
U

φ(U) := δ(U) +
λ

2

(
‖u1 − umin‖2 + ‖uN − umax‖2

)
subject to UTU = I

I Let Uk be a feasible point at iteration k and the gradient Gk = ∇φ(Uk)

⇒ Skew-symmetric matrix Bk := GkUk
T −UkGk

T

I Follow the update rule Uk+1(τ) =
(
I + τ

2Bk

)−1 (
I− τ

2Bk

)
Uk

I Cayley transform preserves orthogonality (i.e., Uk+1
TUk+1 = I)

I Is a descent path for a proper step size τ

Theorem (Wen-Yin’13) The procedure converges to a stationary point
of smooth φ(U), while generating feasible points at every iteration
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Algorithm

1: Input: Adjacency matrix A, parameters λ > 0 and ε > 0
2: Find umax by a similar feasible method and set umin = 1√

N
1N

3: Initialize k = 0 and orthonormal U0 ∈ RN×N at random
4: repeat
5: Compute gradient Gk = ∇φ(Uk) ∈ RN×N

6: Form Bk = GkUk
T −UkGk

T

7: Select τk satisfying Armijo-Wolfe conditions
8: Update Uk+1(τk) = (I + τk

2 Bk)−1(I− τk
2 Bk)Uk

9: k ← k + 1
10: until ‖Uk −Uk−1‖F ≤ ε
11: Return Û = Uk

I Overall run-time is O(N3) per iteration

Additional details in arXiv:1804.03000 [eess.SP]
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Numerical test: Synthetic graph

I Compute U and directed variations using
I Directed Laplacian eigenvectors [Chung’05]
I PAMAL method [Sardellitti et al’17]
I Greedy heuristic [Shafipour et al’17]
I Spectral dispersion minimization

0 1 2 3 4 5 6
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4

I Rescale DV values to [0, 1] and calculate spectral dispersion δ(U)

⇒ 0.256, 0.301, 0.118, and 0.076 respectively

⇒ Confirms the proposed method yields a better frequency spread
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Numerical test: US average temperatures

I Consider the graph of the N = 48 contiguous United States

⇒ Connect two states if they share a border

⇒ Set arc directions from lower to higher latitudes

45
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55

60

65

70

I Graph signal x → Average annual temperature of each state
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Numerical test: Denoising US temperatures

I Noisy signal y = x + n, with n ∼ N (0, 10× IN)

I Define low-pass filter H̃ = diag(h̃), where h̃i = I {i ≤ w} (for w = 3)

I Recover signal via filtering x̂ = UH̃ỹ = UH̃UTy

⇒ Compute recovery error ef = ‖x̂−x‖
‖x‖ ≈ 12%

⇒ Reverse the edge orientations and repeat the experiment
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Feasible Method: N-S
Feasible Method: S-N

I DGFT basis offers a parsimonious (i.e., bandlimited) signal representation

⇒ Adequate network model improves the denoising performance
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Closing remarks

I Measure of directed variation to capture the notion of frequency on G

I Find an orthonormal set of Fourier bases for signals on digraphs
I Span a maximal frequency range [0, fmax]
I Frequency modes are as evenly distributed as possible

I Two-step DGFT basis design via a feasible method over Stiefel manifold

i) Find the maximum directed variation fmax over the unit sphere
ii) Minimize a smooth spectral dispersion criterion over [0, fmax]
⇒ Provable convergence guarantees to a stationary point

I Ongoing work and future directions
I Complexity of finding the maximum frequency fmax on a digraph?

⇒ If NP-hard, what is the best approximation ratio
I Optimality gap between the local and global optimal dispersions?
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GlobalSIP’18 Symposium on GSP

Symposium on Graph Signal Processing

Topics of interest

· Graph-signal transforms and filters

· Distributed and non-linear graph SP

· Statistical graph SP

· Prediction and learning for graphs

· Network topology inference

· Recovery of sampled graph signals

· Control of network processes

· Signals in high-order and multiplex graphs

· Neural networks for graph data

· Topological data analysis

· Graph-based image and video processing

· Communications, sensor and power networks

· Neuroscience and other medical fields

· Web, economic and social networks

Paper submission due: June 17, 2018

2018 6th IEEE Global 
Conference on Signal and 
Information Processing 

November 26-28, 2018 
Anaheim, California, USA 
http://2018.ieeeglobalsip.org/ 

Organizers:

Gonzalo Mateos (Univ. of Rochester)

Santiago Segarra (MIT)

Sundeep Chepuri (TU Delft)
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