

OBJECTIVE

Network graph: Weighted digraph $\mathcal{G} = (\mathcal{V}, \mathbf{A})$, where \mathcal{V} is the set of vertices and $\mathbf{A} \in \mathbb{R}^{N \times N}$ is the graph adjacency matrix

Graph signal: A vertex-valued process defined on \mathcal{G} , represented by $\mathbf{x} \in \mathbb{R}^N$

Digraph Fourier transform (DGFT): Projection of x onto a basis $\mathbf{U} \in \mathbb{R}^{N \times N}$ capturing different orthonormal modes of variation with respect to $\mathcal{G} \Rightarrow \tilde{\mathbf{x}} := \mathbf{U}^T \mathbf{x}$

- Fourier transforms obscure the spatial dependency
- Q: How to extend classical short-time (aka windowed) Fourier transforms to signals on digraphs?

PRELIMINIARIES

Definition 1 (Total Variation). For a signal x on an undirected graph $\mathcal{G} = (\mathcal{V}, \mathbf{A})$ with Laplacian matrix $\mathbf{L} :=$ $diag(\mathbf{A1}_N) - \mathbf{A}$, the total variation is defined as

$$TV(\mathbf{x}) = \mathbf{x}^T \mathbf{L} \mathbf{x} = \sum_{i,j=1,j>i}^N A_{ij} (x_i - x_j)^2$$

Definition 2 (Directed Variation). For a signal x on a digraph $\mathcal{G} = (\mathcal{V}, \mathbf{A})$, we define the directed variation as

$$DV(\mathbf{x}) = \sum_{i,j=1}^{N} A_{ij} [x_i - x_j]_{+}^2$$

Spread DGFT design ([1]): Find a set of orthonormal basis signals $\mathbf{U} := [\mathbf{u}_1, \cdots, \mathbf{u}_N] \in \mathbb{R}^{N \times N}$ that

minimize
$$\delta(\mathbf{U}) = \sum_{i=1}^{N-1} (DV(\mathbf{u}_{i+1}) - DV(\mathbf{u}_i))^2$$
 (P1

subject to $U' U = I, u_1 = u_{\min}, u_N = u_{\max},$

where $\mathbf{u}_{\min} = \frac{1}{\sqrt{N}} \mathbf{1}_N$ and $\mathbf{u}_{\max} := \arg \max_{\|\mathbf{u}\|_2=1} \mathrm{DV}(\mathbf{u})$

- $\delta(\mathbf{U})$ is a spectral dispersion measure
- (P1): Nonconvex, but differentiable loss function

 \Rightarrow Find a stationary point via a feasible method

Short-time Fourier transform (STFT):

$$\mathbf{X}(f,i) = \mathcal{F}\{x^{(i)}(t)\} = \mathcal{F}\{x(t)w(t-i)\}$$

- w(t) is an analysis window with a certain band τ ms
- Reveals the time-frequency dependencies of x(t)

REFERENCES

[1] R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova. A directed graph Fourier transform with spread frequency components. *IEEE Trans. Signal Process.*, 67(4):946–960, Feb 2019. [2] D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency analysis on graphs. *Applied and Computational Harmonic Analysis*, 40(2):260–291, 2016.

PROBLEM STATEMENT

• Windowed (localized) graph signal $\mathbf{x}^{(i)}$ for node *i*:

$$\mathbf{X} = [$$

where $\boldsymbol{\Phi} = [\boldsymbol{\phi}_1, \cdots, \boldsymbol{\phi}_N] = [\phi_{ji}] \in \mathbb{R}^{N \times N}$

LEARNING WINDOWS

 \Rightarrow **Ex**: D_{ii} can be the length of the shortest path from node *i* to node $j \Rightarrow D_{ii} = 0$

 \Rightarrow Ex: An exponential decay $\phi_{ji} = \exp(-\tau_i d_{ji})$

 \Rightarrow For

$$\min_{\boldsymbol{\in}\mathbb{R}_{+}^{N}} \quad \frac{1}{2} \|\operatorname{diag}(\mathbf{w})\mathbf{U}^{T}\boldsymbol{\Phi}\|_{F}^{2} = \frac{1}{2} \sum_{i=1}^{N} \|\operatorname{diag}(\mathbf{w})\mathbf{U}^{T}\boldsymbol{\phi}_{i}\|_{2}^{2},$$

which decouples into N independent subproblems

where **W**

AWINDOWED DIGRAPH FOURIER TRANSFORM

RASOUL SHAFIPOUR[†], ALI KHODABAKHSH[‡] AND **GONZALO MATEOS**[†]

[†]Dept. of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA [‡]Dept. of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA

 $\mathbf{x}^{(i)} := \mathbf{x} \circ \boldsymbol{\phi}_i = \operatorname{diag}(\mathbf{x}) \boldsymbol{\phi}_i,$

where $\phi_i \in \mathbb{R}^N$ is a windowing signal around $i \in \mathcal{V}$

• Akin to STFT, let the Windowed DGFT (WDGFT) be

 $\tilde{\mathbf{X}} = [\tilde{\mathbf{x}}^{(1)}, \cdots, \tilde{\mathbf{x}}^{(N)}] := [\mathbf{U}^T \mathbf{x}^{(1)}, \cdots, \mathbf{U}^T \mathbf{x}^{(N)}]$ $= \mathbf{U}^T \operatorname{diag}(\mathbf{x}) \mathbf{\Phi},$

• **Q**: How to learn $\Phi = [\phi_1, \dots, \phi_N]$ capturing vertexfrequency energy content of graph signals?

• Let $\mathbf{D} \in \mathbb{R}^{N \times N}_+$ store the entries D_{ji} denoting the (directed) proximities or topological structure of the graph from node *i* to node *j*

• Let $\phi_{ii} = 1$ and ϕ_{ji} be inversely proportional to d_{ji}

• Learn $\boldsymbol{\tau} =: [\tau_1, \cdots, \tau_N]$ by penalizing the windows for having certain frequency components

$$\mathbf{w} = [w_1, \cdots, w_N]^T \in \mathbb{R}^N_+$$
, solve

$$\min_{i \ge 0} \quad f_i(\tau_i) = \frac{1}{2} \| \operatorname{diag}(\mathbf{w}) \mathbf{U}^T \boldsymbol{\phi}_i \|_2^2 \tag{P2}$$

• Solve subproblems in parallel via gradient descent

$$g = df_i / d\tau_i = -(\mathbf{d}_i \circ \boldsymbol{\phi}_i)^T \mathbf{U} \mathbf{W} \mathbf{U}^T \boldsymbol{\phi}_i,$$

$$\mathbf{T} = \operatorname{diag}([w_1^2, \cdots, w_N^2]) \text{ and } \mathbf{d}_i = \mathbf{D}(:, i)$$

• Follow the update rule $\tau_i^{k+1} := \tau_i^k - \eta^k g(\tau_i^k)$

 \Rightarrow { τ_i } converges to a stationary point of $f_i(\tau_i)$

SPECTRAL VS. SPATIAL RESOLUTION

Proposition 1. If $w_1 = 0$, then the optimal value of (P2) is zero and is achieved by $\tau_i = 0$, i.e., $f_i(0) = 0$

 $\Rightarrow w_1 = 0$ leads to constant all ones window \Rightarrow WDGFT \equiv DGFT \Rightarrow No resolution in the vertex domain

Proposition 2. Let $w_1 < w'_1$ be two parameters for penalizing the DC component of the window. If τ is a local minima for (P2) with w_1 , then the corresponding optimization problem for w'_1 has a local (or asymptotic) minima greater than τ

 \Rightarrow Tradeoff between smoothness and locality of windows $\Rightarrow w_1$ can be tuned to achieve a desired resolution

NUMERICAL RESULTS

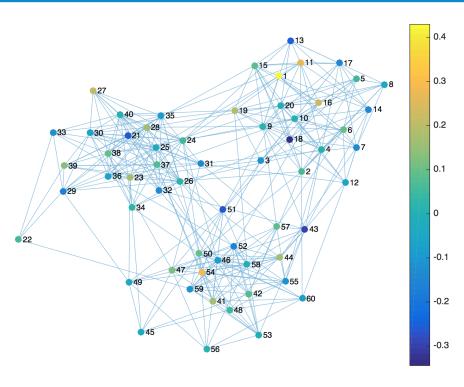


Figure 1: Undirected graph via stochastic block model $(N = 60, p_1 = 0.5, p_2 = 0.05, and 3 \text{ communities})$

- Run Dijkstra algorithm to find a proximity matrix **D**
- Solve *N* independent subproblems (P2); see Fig. 3
- Construct signal x in Fig. 1 by adding u_{15} restricted nodes, and u_{45} restricted to the last 20 nodes
- Construct x in the directed case, by adding \mathbf{u}_{10} restricted to the rest
- Obtain spectrograms $|\tilde{\mathbf{X}}| = |\mathbf{U}^T \operatorname{diag}(\mathbf{x}) \Phi|$
- For the undirected graph, compare with [2]

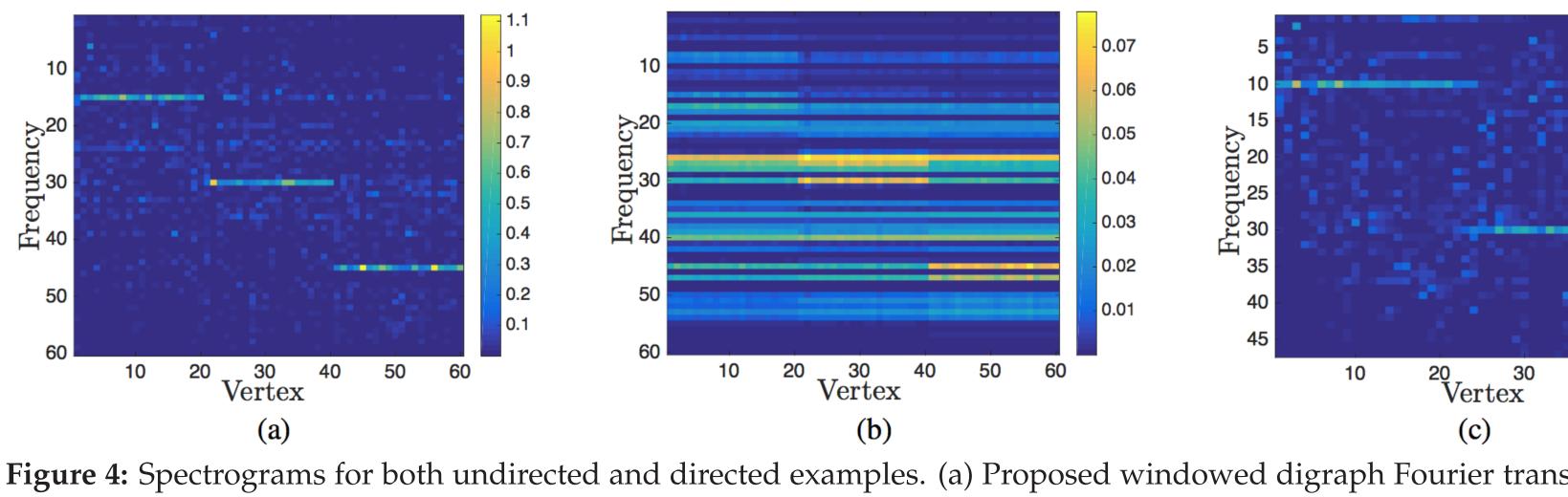


Figure 4: Spectrograms for both undirected and directed examples. (a) Proposed windowed digraph Fourier transform for the graph in Fig. 1 and a signal constructed by three different basis vectors using DGFT (b) Method in [2] for the same graph and a signal constructed by three different eigenvectors of the Laplacian matrix (c) Proposed method for the directed brain graph

to the first 20 nodes, \mathbf{u}_{30} restricted to the middle 20

stricted to 24 highly connected nodes and \mathbf{u}_{30} re-

CONTACT INFORMATION

Web www.ece.rochester.edu/~gmateosb/ Email gmateosb@ece.rochester.edu

Figure 2: Directed structural brain networks (N = 47 and 505 edges, among which 121 links are directed)

