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PROBLEM STATEMENT

• Windowed (localized) graph signal x(i) for node i:

x(i) := x ◦ φi = diag(x)φi,

where φi∈RN is a windowing signal around i∈V

• Akin to STFT, let the Windowed DGFT (WDGFT) be

X̃ = [x̃(1), · · · , x̃(N)] :=[UTx(1), · · · ,UTx(N)]

=UTdiag(x)Φ,

where Φ=[φ1, · · · ,φN ]=[φji]∈RN×N

• Q: How to learn Φ= [φ1, · · · ,φN ] capturing vertex-
frequency energy content of graph signals?

OBJECTIVE
Network graph: Weighted digraph G = (V,A), where
V is the set of vertices and A∈RN×N is the graph adja-
cency matrix
Graph signal: A vertex-valued process defined on G,
represented by x∈RN
Digraph Fourier transform (DGFT): Projection of x
onto a basis U∈RN×N capturing different orthonormal
modes of variation with respect to G ⇒ x̃ :=UTx

• Fourier transforms obscure the spatial dependency

• Q: How to extend classical short-time (aka win-
dowed) Fourier transforms to signals on digraphs?

SPECTRAL VS. SPATIAL RESOLUTION
Proposition 1. If w1 = 0, then the optimal value of (P2) is zero and is achieved by τi = 0, i.e., fi(0) = 0

⇒ w1 = 0 leads to constant all ones window⇒WDGFT ≡ DGFT⇒ No resolution in the vertex domain

Proposition 2. Let w1 < w′1 be two parameters for penalizing the DC component of the window. If τ is a local minima for
(P2) with w1, then the corresponding optimization problem for w′1 has a local (or asymptotic) minima greater than τ

⇒ Tradeoff between smoothness and locality of windows⇒ w1 can be tuned to achieve a desired resolution
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PRELIMINIARIES
Definition 1 (Total Variation). For a signal x on an
undirected graph G = (V,A) with Laplacian matrix L :=
diag(A1N )−A, the total variation is defined as

TV(x)=xTLx=
N∑

i,j=1,j>i

Aij(xi − xj)2

Definition 2 (Directed Variation). For a signal x on a
digraph G=(V,A), we define the directed variation as

DV(x)=
N∑

i,j=1

Aij [xi − xj ]2+

Spread DGFT design ([1]): Find a set of orthonormal
basis signals U :=[u1, · · · ,uN ]∈RN×N that

minimize
U

δ(U)=
N−1∑
i=1

(DV(ui+1)−DV(ui))
2

subject to UTU=I,u1=umin,uN =umax,

(P1)

where umin=
1√
N

1N and umax :=argmax‖u‖2=1 DV(u)

• δ(U) is a spectral dispersion measure

• (P1): Nonconvex, but differentiable loss function

⇒ Find a stationary point via a feasible method

Short-time Fourier transform (STFT):

X(f, i)=F{x(i)(t)}=F{x(t)w(t− i)}

• w(t) is an analysis window with a certain band τ ms

• Reveals the time-frequency dependencies of x(t)

NUMERICAL RESULTS

Figure 1: Undirected graph via stochastic block model
(N = 60, p1 = 0.5, p2 = 0.05, and 3 communities)

Figure 2: Directed structural brain networks
(N = 47 and 505 edges, among which 121 links are directed)

• Run Dijkstra algorithm to find a proximity matrix D

• Solve N independent subproblems (P2); see Fig. 3

• Construct signal x in Fig. 1 by adding u15 restricted
to the first 20 nodes, u30 restricted to the middle 20
nodes, and u45 restricted to the last 20 nodes

• Construct x in the directed case, by adding u10 re-
stricted to 24 highly connected nodes and u30 re-
stricted to the rest

• Obtain spectrograms |X̃| = |UTdiag(x)Φ|

• For the undirected graph, compare with [2]

Figure 3: Examples of fi(τi) in (P2) for different vertices.

.
Figure 4: Spectrograms for both undirected and directed examples. (a) Proposed windowed digraph Fourier transform for the
graph in Fig. 1 and a signal constructed by three different basis vectors using DGFT (b) Method in [2] for the same graph and a
signal constructed by three different eigenvectors of the Laplacian matrix (c) Proposed method for the directed brain graph

LEARNING WINDOWS

• Let D ∈ RN×N+ store the entries Dji denoting the
(directed) proximities or topological structure of the
graph from node i to node j

⇒ Ex: Dji can be the length of the shortest path
from node i to node j ⇒ Dii=0

• Let φii=1 and φji be inversely proportional to dji

⇒ Ex: An exponential decay φji=exp(−τidji)

• Learn τ =: [τ1, · · · , τN ] by penalizing the windows
for having certain frequency components

⇒ For w=[w1, · · · , wN ]T ∈RN+ , solve

min
τ∈RN

+

1

2
‖diag(w)UTΦ‖2F =

1

2

N∑
i=1

‖diag(w)UTφi‖22,

which decouples into N independent subproblems

min
τ i≥0

fi(τi) =
1

2
‖diag(w)UTφi‖22 (P2)

• Solve subproblems in parallel via gradient descent

⇒ g = dfi/dτi = −(di ◦ φi)TUWUTφi,

where W = diag([w2
1, · · · , w2

N ]) and di = D(:, i)

• Follow the update rule τk+1
i :=τki −ηkg(τki )

⇒ {τi}i converges to a stationary point of fi(τi)
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