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 This article provides an overview of the current landscape of 
signal processing (SP) on directed graphs (digraphs). Di-
rectionality is inherent to many real-world (information, 

transportation, biological) networks, and it should play an in-
tegral role in processing and learning from network data. We 
thus lay out a comprehensive review of recent advances in 
SP on digraphs, offering insights through comparisons with 
results available for undirected graphs, discussing emerging 
directions, establishing links with related areas in machine 
learning and causal inference in statistics as well as illus-
trating their practical relevance to timely applications. To 
this end, we begin by surveying (orthonormal) signal rep-
resentations and their graph-frequency interpretations based 
on novel measurements of signal variation for digraphs. We 
then move on to filtering, a central component in deriving 
a comprehensive theory of SP on digraphs. Indeed, through 
the lens of filter-based generative signal models, we explore a 
unified framework to study inverse problems (e.g., sampling 
and deconvolution on networks), the statistical analysis of 
random signals, and the topology inference of digraphs from 
nodal observations.

Introduction and motivation
Coping with the panoply of challenges found at the conflu-
ence of data and network sciences necessitates fundamental 
breakthroughs in the modeling, identification, and controlla-
bility of networked (complex) system processes—often con-
ceptualized as signals defined on graphs [1]. Graph-supported 
signals abound in real-world applications, including vehicle-
congestion levels over road networks, neurological activity 
signals supported on brain-connectivity networks, and fake 
news that diffuse on online social networks. There is, how-
ever, an evident mismatch between our scientific understand-
ing of signals defined over regular domains such as time 
or space and graph signals, due, in part, to the fact that the 
prevalence of network-related problems and access to quality 
network data are recent events. To address these problems, 
machine learning and SP over graphs have emerged as active 
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areas aimed at making sense of large-scale data sets from a 
network-centric perspective. 

Upon modeling the domain of the information as a graph 
and the observations at hand as graph signals, the graph 
SP (GSP) body of work has put forth models that relate the 
properties of the signals with those of the graph, along with 
algorithms that fruitfully leverage this relational structure to 
better process and learn from network data. Most GSP efforts 
to date assume that the underlying networks are undirected 
[2]. Said graphs are equivalently represented by symmetri-
cal matrices whose (well-behaved) spectral properties can 
be used to process the signals associated with the network. 
The most prominent example is the graph 
Laplacian, which not only gives rise to a 
natural definition of signal smoothness but 
also offers a complete set of orthonormal 
eigenvectors that serve as a Fourier-type 
basis for graph signals [3].

Their scarcer adoption notwithstanding, 
digraph models are more adequate (and, in fact, more accu-
rate) for a number of applications. Information networks such 
as scientific citations or the World Wide Web itself are typi-
cally directed, and flows in technological (e.g., transportation, 
power, and communication) networks are often unidirectional. 
The presence of directionality plays a critical role when the 
measurements taken in those networks need to be processed 
to remove noise, outliers, and artifacts, and this requires new 
tools and algorithms that do not assume that the matrices rep-
resenting the underlying graphs are symmetrical. 

Gene-regulatory networks are highly nonreciprocal, and 
this lack of reciprocity needs to be accounted for when, for 
example, the goal is to predict a gene or a protein function-
ality from a small set of observations obtained from expen-
sive experiments. Pairwise relations among social actors are 
rarely purely symmetrical [4] and, in fact, when the graph 
captures some level of influence on a social network, the lack 
of symmetry is essential to accurately solve inverse problems 
that aim to separate the leaders from the followers [5]. More 
abstractly, when the graph encodes (often unknown) relations 
between observed variables, directionality is vital to identify 
the nodes representing the cause and those representing the 
effect [6], calling for fundamental changes in the algorithms 
that use available signal observations to learn the topology of 
the underlying graph. Accordingly, a first step to address these 
and other related questions is to develop judicious models that 
account for directionality while leading to tractable processing 
tools and efficient algorithms. That is precisely the goal of this 
tutorial article, which aims at delineating the analytical back-
ground and relevance of innovative tools to analyze and pro-
cess signals defined over digraphs. Throughout, concepts will 
be made accessible to SP researchers (including those with-
out a strong background in network science) via a combina-
tion of rigorous problem formulations and intuitive reasoning. 
A recurrent message with important practical ramifications 
interweaves the narrative—different from the undirected case, 
where graph spectrum-based tools offer a number of distinct 

advantages [3], vertex-domain generative graph signal models 
that rely on nonsymmetric network operators may be prefer-
able when it comes to signal and information processing on 
directed networks.  

GSP preliminaries, frequency analysis,  
and signal representations
After introducing the necessary graph-theoretic notation and 
background, this section presents different generalizations of 
smoothness and total-variation measurements for signals de-
fined on digraphs. This is particularly relevant to the graph 
Fourier transform (GFT), which decomposes a graph signal 

into components that describe different 
modes of variation with respect to the graph 
topology. Although adopting the real-val-
ued orthonormal eigenvectors of the Lapla-
cian as the frequency basis for undirected 
graphs is well motivated and widely used in 
practice [1], extending the GFT framework 

to digraphs is not a simple pursuit and different alternatives 
exist, as we explain in the “Digraph Fourier Transforms: Spec-
tral Methods” and “Digraph Fourier Transforms: Orthonormal 
Transform Learning” sections.

Graph signals and the graph shift operator
Let G  denote a digraph with a set of nodes N  (with cardinal-
ity N) and a set of links .E  If i is connected to j, then ( , ) .i j E!  
Because G  is directed, local connectivity is captured by the set 

{ | ( , ) },j j iN Ei !=:  which stands for the (incoming) neigh-
borhood of i. For any given ,G  we define the adjacency matrix 
A RN N! #  as a sparse matrix with nonzero elements Aji if and 
only if ( , ) .i j E!  The value of Aji captures the strength of the 
connection from i to j and, because the graph is directed, the 
matrix A is, in general, nonsymmetric.

The focus of the article is on analyzing and modeling 
(graph) signals defined on the node set .N  These signals can 
be represented as vectors [ , ..., ] ,x xx RN

T N
1 !=  with xi being 

the value of the signal at node i. As the vectorial representation 
does not explicitly account for the structure of the graph, G  
can be endowed with the so-called graph shift operator (GSO) 
S [7], [8]. The shift S RN N! #  is a matrix whose entry Sji can 
be nonzero only if i j=  or if ( , ) .i j E!  The sparsity pattern of 
the matrix S captures the local structure of ,G  but we make 
no specific assumptions on the values of its nonzero entries, 
which will depend on the application at hand [1]. 

To justify the adopted graph shift terminology, consider the 
directed cycle graph whose circulant adjacency matrix Adc  is 
zero, except for entries A 1ji =  whenever ( ) ,modi j 1N= +  
where ( )mod xN  denotes the modulus (remainder) obtained 
after dividing x by N. Such a graph can be used to represent 
the domain of discrete-time periodic signals with period N. If 

,S Adc=  then Sx  implements a circular shift of the entries in 
x, which corresponds to a one-unit time delay under the afore-
mentioned interpretation [1]. Note though that, in general, S 
need neither be invertible nor isometric, an important depar-
ture from the shift in discrete-time SP. The intuition behind 

Most GSP efforts to date 
assume that the  
underlying networks  
are undirected.
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S is to represent a linear transformation that can be computed 
locally at the nodes of the graph, while it can be more gen-
eral than the adjacency matrix. More rigorously, if the graph 
signal y is defined as ,y Sx=  then node i can compute yi as a 
linear combination of the signal values xj at node i’s neighbors 

.j Ni!  The GSO will play a fundamental role in defining 
the counterpart of the Fourier transform for 
graph signals, which is discussed in this sec-
tion, as well as graph filters that are intro-
duced in the “Graph Filters and Nonlinear 
Graph Signal Operators” section.

Digraph fourier transforms:  
Spectral methods
An instrumental GSP tool is the GFT, which 
decomposes a graph signal into orthonor-
mal components describing different modes 
of variation with respect to the graph topol-
ogy encoded in an application-dictated GSO S. The GFT al-
lows equivalently representing a graph signal in two different 
domains—the vertex domain consisting of the nodes in N  
and the graph-frequency domain spanned by the spectral basis 
of .G  Therefore, signals can be manipulated in the frequency 
domain for the purpose of, e.g., denoising, compression, and 
feature extraction (see also the “Graph Filters and Nonlinear 
Graph Signal Operators” section). For didactic purposes, it is 
informative to introduce first the GFT for symmetrical graph 
Laplacians associated with undirected graphs (see “A Moti-
vating Starting Point: The Graph Fourier Transform for Un-
directed Graphs”). In the remainder of this section, we show 
that the GFT can be defined for digraphs where the interpreta-
tion of components as different modes of variability is not as 
clean and, Parseval’s identity may not hold, but its value toward 

yielding parsimonious spectral representations of network pro-
cesses remains.

The Laplacian L D A= -  is not well defined for digraphs 
because D is rendered meaningless when edges have direction-
ality. One can instead consider a generic asymmetric GSO S, 
for instance, the adjacency matrix A or one of the several gener-

alized Laplacians for digraphs; see, e.g., [9] 
and [10]. Suppose the GSO is diagonalizable 
as ( ) ,diagS V V 1m= -  with [ , ..., ]V v vN1=:  
denoting the (nonorthogonal) eigenvectors 
of S and [ , ..., ]N

T
1m m m=:  its possibly com-

plex-valued eigenvalues. Then, a widely 
adopted alternative is to redefine the GFT 
as x V x1= -u  [8]. Otherwise, one can resort 
to the Jordan decomposition of S and use 
its generalized eigenvectors as the GFT 
basis; see also [11] for a careful treatment 
of the nondiagonalizable case, which relies 

on oblique spectral projectors to define the GFT. Setting the 
GFT to V 1-  for the directed case is an intuitively pleasing 
definition because frequency  shift operator, as in discrete-
time SP. Moreover, allowing for generic GSOs reveals the 
encompassing nature of the GFT relative to the time-domain 
discrete Fourier transform (DFT), the multidimensional DFT, 
and principal component analysis [12]. Toward interpreting 
graph frequencies, which are defined by the (possibly com-
plex-valued, nonorthogonal) eigenvectors of the nonsymmet-
ric S, consider the total-variation measure

	 ( ) ,TV x x Sx1 1= -: r � (1)

where / | | ,SS maxm=  and maxm  is the spectral radius of S [com-
pare (S1)]. Using (1) and following the rationale for undirected  

Consider an undirected graph G  with combinatorial 
Laplacian L D A= -  chosen as the graph shift operator 
[3], where D  stands for the diagonal degree matrix. 
The symmetrical L  can always be decomposed as 

( ) ,diagL V VTm=  with [ , ..., ]V v vN1=:  collecting the ortho-
normal eigenvectors of the Laplacian and [ , ..., ]N

T
1m m m=:  

its nonnegative eigenvalues. The graph Fourier transform 
(GFT) of x  with respect to L  is the signal [ , ..., ]x xx N

T
1=u u u  

defined as .x V xT=u  The inverse GFT (iGFT) of xu  is given 
by ,x Vx= u  which is a proper inverse by the orthogonality 
of .V

The iGFT formula xx Vx vk
N

k k1R= = =u u  allows one to synthe-
size x  as a sum of orthogonal-frequency components .vk  
The contribution of vk  to the signal x  is the real-valued GFT 
coefficient .xku  The GFT encodes a notion of signal variabili-
ty over the graph akin to the notion of frequency in the 
Fourier analysis of temporal signals. To understand this anal-

ogy, define the total variation of the graph signal x  with 
respect to the Laplacian L  (also known as Dirichlet energy) 
as the following quadratic form:

	 ( ) ( ) .A x xTV x x LxT
ij

i j
i j2

2= = -
1

: | � (S1)

The total variation TV ( )x2  is a smoothness measure, quanti-
fying how much the signal x  changes with respect to the 
graph topology encoded in .A

Back to the GFT, consider the total variation of the eigen-
vectors ,vk  which is given by TV ( ) .v v Lvk k

T
k k2 m= =  It fol-

lows that the eigenvalues 0 N1 2 f# # #m m m=  can be 
viewed as graph frequencies, indicating how the eigenvec-
tors (i.e., frequency components) vary over the graph .G  
Accordingly, the GFT and iGFT offer a decomposition of the 
graph signal x  into spectral components that characterize 
different levels of variability.

A Motivating Starting Point: The Graph Fourier Transform for Undirected Graphs

Vertex-domain generative 
graph signal models that 
rely on nonsymmetric 
network operators may be 
preferable when it comes 
to signal and information 
processing on directed 
networks.
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graphs, one can define a frequency ordering i j(m m  if 
( ) ( )TV TVv vi j1 12  [8]. Although applicable to signals on di-

graphs, unlike (S1), the signal-variation measure (1) does not 
ensure that constant signals have zero variation. In addition, 
(generalized) eigenvectors of asymmetric GSOs need not be 
orthonormal, implying that Parseval’s identity will not hold and 
hence, the signal power is not preserved across the vertex and 
dual domains. In general, this can be an issue for graph-filter-
ing methods operating in the spectral domain, thus motivating 
this article’s overarching theme of relying on vertex-domain 
operations for extensions to digraphs. From a computational 
standpoint, obtaining the Jordan decomposition for moderate-
sized graphs is expensive and often numerically unstable; see 
also [11] and the references therein for recent attempts toward 
mitigating this instability issue. Addressing the uniqueness 
of the representation is also critical when the GSO (even the 
combinatorial Laplacian) has repeated eigenvalues because the 
corresponding eigenspaces exhibit rotation-
al ambiguities that can hinder the interpret-
ability of graph-frequency analyses. To ad-
dress this (often overlooked shortcoming), 
[11] puts forth a quasi-coordinate-free GFT 
definition based on oblique spectral projec-
tors. Other noteworthy GFT approaches 
rely on projections onto the (nonorthogonal) eigenvectors of a 
judicious random-walk operator on the digraph [9], [10]; the 
interested reader is referred to [9, Sec. 7] for a collection of 
examples involving semisupervised learning and signal mod-
eling on digraphs.

Alternatives to the spectral GFT methods described thus far 
are surveyed in the following section. The focus shifts to ortho-
normal transform learning approaches, whereby optimization 
problems are formulated to find a suitable spectral representa-
tion basis for graph signals.

Digraph Fourier transforms: Orthonormal  
transform learning
The history of SP has repeatedly taught us how low frequen-
cies are more meaningful in human speech for the purpose 
of compression, high frequencies represent borders in images 
whose identification is key for segmentation, and different 
principal components offer varying discriminative powers 
when it comes to face recognition. Although analogous in-
terpretations are not always possible in more advanced repre-
sentations obtained with modern tools such as learned over-
complete dictionaries and neural networks (NNs), at a basic 
level, it remains true that orthonormal linear transformations 
excel at separating signals from noise. Motivated by this gen-
eral signal representation principle, a fresh look at the GFT 
for digraphs was put forth in [13] based on the minimization 
of the convex Lovász extension of the graph cut size (which 
can be interpreted as a measurement of signal variation on 
the graph capturing the edges’ directionality), subject to or-
thonormality constraints on the desired basis. The rationale 
behind the graph cut criterion is that its minimization leads 
to identifying clusters in .G  Accordingly, the learned GFT 

basis in [13] tends to be constant across clusters of the graph, 
offering parsimonious spectral representations of signals that 
are real valued and piecewise-constant over said clusters. The 
price paid for all of these desirable properties is that the result-
ing GFT basis may fail to yield atoms capturing different lev-
els of signal variation with respect to ,G  and the optimization 
procedure in [13] is computationally expensive due to repeated 
singular-value decompositions.

A related (optimization-based) approach in [14] searches 
for an orthonormal digraph Fourier transform (DGFT) 
basis [ , , ] ,U u u RN

N N
1 f != #:  where u Rk

N!  represents 
the kth frequency component. Toward defining frequencies, 
a more general notion of signal-directed variation (DV) for 
digraphs is introduced as ( ) [ ] ,A x xDV x i j ji i j

2R= -! +:  where 
[ ] ( , )maxx x0=+ :  denotes projection onto the nonnegative 
reals. To gain insight on DV, consider a graph signal x on the 
digraph ,G  and suppose a directed edge represents the direc-

tion of signal flow from a larger value to a 
smaller one. Thus, an edge from node i to 
node j (i.e., Aji > 0) contributes to ( )DV x  
only if xi > xj. Moreover, notice that if G  is 
undirected, then ( ) ( ) .DV TVx x2/  Analo-
gous to the GFTs surveyed in the “Digraph 
Fourier Transforms: Spectral Methods” 

section, we define the frequency = DV( )f uk k:  as the DV of 
the frequency component .uk  Because for all previous GFT 
approaches the spacing between frequencies can be highly 
irregular, the idea in [14] to better capture low, bandpass, and 
high frequencies is to design a DGFT such that the orthonor-
mal frequency components are as spread as possible in the 
graph-spectral domain. Beyond offering parsimonious repre-
sentations of slowly varying signals on digraphs, a DGFT with 
spread frequency components can facilitate more interpretable 
frequency analyses and aid filter design in the spectral domain. 
To this end, a viable approach is to minimize a so-termed spec-
tral-dispersion criterion

	

( ) ( )

. , , ( ) .

argmin

argmax
N

1

DV DV

s.t DV

U u u

U U I u u u

*

|| | |

T
N

N
N

i i
i

N

1
2

1

1

1
1

U

u

= -

= = =

+

=

-

=

6 @/
�

(2)

The cost function measures how well spread the correspond-
ing frequencies are over [ , ( )] .0 DV uN  Having fixed the first 
and last columns of U, the dispersion function is minimized 
when the free DV values are selected to form an arithme-
tic sequence over the attainable bandwidth. However, as the 
variables here are the columns of U, we can expect to obtain 
only approximately equidistributed frequencies. Finding the 
global optimum of (2) is challenging due to the noncon-
vexity arising from the orthonormality (Stiefel manifold) 
constraints, yet a stationary point can be provably obtained 
via the algorithm in [14]. Accordingly, the basis U*  in (2) 
and its counterpart in [13] may not be unique. In the “Ap-
plications” section, we illustrate a graph signal-denoising 
task whereby the DGFT basis learned from (2) is used to 

Orthonormal linear 
transformations excel  
at separating signals  
from noise.
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decompose and then (low- pass) filter temperatures recorded 
across the United States.

Graph filters and nonlinear graph signal operators
Here we consider operators whose inputs and outputs are 
signals defined on a digraph [see Figure 1(a) for a pictorial 
representation]. These operators are not only used to process 
information defined on digraphs (see also the “Applications” 
section), but also to postulate generative signal models for 
network data and solve statistical inference tasks surveyed 
in the “Inverse Problems on Digraphs,” “Statistical Digraph 
SP,” and “Digraph Topology Inference” sections. A key as-
pect throughout the discussion is how the topology of the 
digraph impacts the transformation of signals. The section 
begins by discussing linear graph filters [2, Ch. 11] and then 
builds on those to describe nonlinear (deep) architectures. 
After a brief outline of the current filtering landscape for un-
directed graphs, we focus on recent progress to tackle the 
challenges faced when extending those operators to the di-
rected case.

Linear graph filters
Several definitions for graph filters coexist in the GSP litera-
ture. Early works focused on using the graph Laplacian L as the 
GSO and leveraged its eigendecomposition ( )diagL V VTm=  
(see “A Motivating Starting Point: The Graph Fourier Trans-
form for Undirected Graphs”) to define the graph-filtering 

operation in the spectral domain [3]. Specifically, if x denotes 
the input of the graph filter and y is its output, filtering a graph 
signal is tantamount to transforming the input signal to the 
graph Fourier domain as ,x V xT=u  applying a pointwise (di-
agonal) operator in the spectral domain to generate the out-
put ,yu  and finally, transforming the obtained output back onto 
the vertex domain as .y Vy= u  The pointwise spectral operator 
can be expressed as the multiplication by a diagonal matrix 

( )diag gu  so that ( ) .diagy g x=u u u  Alternatively, one can adopt a 
scalar kernel function :g R R"  applied to the eigenvalues of 
the Laplacian so that the frequency response of the filter can 
be obtained as ( ) ( ( )),gdiag diagg m=u  where (·)g  is applied en-
trywise. Regardless of the particular choice, the input–output 
relation can be written as

	 ( ( )) ( ) ,gdiag diagy V V x V g V xT Tm= = u � (3)

with the N × N matrix ( ( ))gdiagV VTm  representing the linear 
transformation in the nodal domain. An alternative definition 
consists of leveraging the interpretation of S as a reference 
graph signal operator and then building more general linear 
operators of the form [7]

	
= =, ,

h h h

hwith

y x Sx S x

Hx H S

L
L

l
l

L
l

0 1 1
1

0

1

g= + + + -
-

=

-

: : / � (4)

Graph Filters as Graph Signal Operators H _Gi: Linear Graph Filters With Nonsymmetrical S

H _Gi: Nonlinear Graph NN Architecture

GS Input GS Output

GS OutputGS Input

x, G y, G

H _Gi

H (h, S) : =
l = 0

L – 1

/ h l S
l

Hnv({hl}      S) : =
l = 0

l = 0

L – 1
L – 1 / diag(hl )S

l

Hev({Hl}      S) : =
l = 0

l = 0

L – 1
L – 1 / (Hl   &  S )S l– 1,

,

x z(0)
z(LN – 1) yz(LN )z(1)

T (1)
i (1) _Gi T (LN)

i (LN) _Giv(1)
G

v(LN)
G

(a)

(c)

(b)

Graph-Aware Pointwise
Nonlinearity

Graph-Aware Parametric
Linear Transformation

FIGURE 1. (a) Graph filters as generic operators that transform a graph signal (GS) input into an output. The graph filter processes the features of the 
input, taking into account the topology of the digraph where the signals are defined. (b) The different types of linear graph filters: a regular (shift-invariant) 
graph filter H, a node-variant graph filter ,Hnv  and an edge-variant graph filter .Hev  The number of parameters (coefficients) is L, NL, and ,LE  respec-
tively. Due to their polynomial definition, all of these filters can operate over digraphs (nonsymmetric S). (c) Nonlinear graph signal operators using a 
(potentially deep) NN with LN layers. Each layer consists of a parametrized graph-aware linear transformation (given, e.g., by any of the linear graph filters 
described previously) followed by a pointwise nonlinearity [cf. (6)–(8)]. 
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where the filter coefficients are collected in = [ , , ] ,h hh L
T

0 1f -:  
with L – 1 denoting the filter degree. Upon defining =x Sx( ) ( )l l1+ :  
and ,x x( )0 =  the output y in (4) can be equivalently written as 

.hy x( )
l
L

l
l

0
1R= =
-  As the application of the GSO S requires only 

local exchanges among (one-hop) neighbors, the latter expres-
sion reveals that the operators in (4) can be implemented in a 
distributed fashion with L – 1 successive exchanges of infor-
mation among neighbors [15]. This is a key insight (and ad-
vantage) of (4) that will be leveraged in subsequent sections. 
Note that the coefficients h can be given (e.g., when modeling 
known network-diffusion dynamics) or designed to accom-
plish a particular SP task, such as low-pass filtering (see, e.g., 
[15] for further details on graph-filter designs).

When L N=  and G  is symmetrical so that the GSO is 
guaranteed to be diagonalizable, the two previous definitions 
can be rendered equivalent. But this is not 
the case when the graph filter is defined on 
a digraph. To see why, note that the polyno-
mial definition in (4) is valid regardless of 
whether the GSO is symmetrical or not. Its 
interpretation as a local operator also holds 
true for digraphs provided that the notion 
of locality is understood, in this case, con-
sidering only the neighbors with incoming connections. The 
generalization of the definition in (3) to the directed case is, 
however, more intricate. 

As explained in the “GSP Preliminaries, Frequency Analy-
sis, and Signal Representations” section, different GFTs for 
digraphs exist. If the iGFT is given by the eigenvectors of 
the GSO, then one need only replace VT  with the (nonor-
thogonal) V 1-  in (3). If the GSO is diagonalizable and V 1-  
is adopted as the GFT, then the polynomial definition in (4) 
and the updated version of (3) are equivalent. If the GSO is 
not diagonalizable, the generalization of (3) is unclear, while 
(4) still holds. On the other hand, if the GFT is not chosen 
to be V 1-  but is one of the orthogonal (graph-smoothness-
related) dictionaries U presented in the “Digraph Fourier 
Transforms: Orthonormal Transform Learning” section, then 
the two definitions diverge. Specifically, linear operators of 
the form ( )diagU g UTu  will be symmetrical (meaning that the 
influence of the input at node i on the output at node j will be 
the same as that of node j on node i), while operators of the 
form h Sl

L
l

l
0
1R =
-  will not. Equally important is that, although 

a polynomial filter can always be implemented using local 
exchanges, there is no guarantee that the symmetrical trans-
formation ( )gdiagU UTu  can be implemented in a distributed 
fashion [15]. All in all, if the definition in (4) is adopted for the 
directed case, then graph filters are always well defined, their 
distributed implementation is still feasible, and the design and 
interpretation of the filter coefficients h as weights given to 
the information obtained after successive local exchanges is 
preserved. Their interpretation as diagonal spectral operators 
only holds, however, if V 1-  is used as a GFT and the GSO at 
hand is diagonalizable.

Generalizations of graph filters were introduced within the 
class of linear graph-aware signal operators. These include 

node- [15] and edge-variant graph filters [16], whose respective 
expressions are given by

	 = =( ) ( ) ,diag andH h S H H S Snv
l

L

l
l

ev l
l

L
l

0

1

0

1
1%

=

-

=

-
-: :/ / � (5)

where º denotes the Hadamard product, hl  is a vector of di-
mension N, and Hl  is a sparse matrix with the same support 
as S. Compared with its (node-invariant) counterpart in (4), we 
observe that the output generated by a node-variant filter can 
also be viewed as a linear combination of locally shifted in-
puts ,x S x( )l l=  but in this case, each node has the flexibility 
of using a different set of weights. The flexibility is even larger 
for edge-variant graph filters because nodes can change the 
weight they give to each of their neighbors (compare all of their 
neighbors for node-variant filters). Because both Hnv  and Hev  

build on a polynomial definition, they can 
seamlessly operate over digraphs. They thus 
inherit most of the properties described for 
the original polynomial graph filters in (4).

Graph NN architectures
Graph filters have also been used to de-
fine nonlinear operators that account for 

the topology of the graph, such as median filters [17] and 
Volterra graph filters. All of these works build their defini-
tions from the polynomial expression in (4) and hence can 
handle digraphs, although some of their properties (e.g., 
the conditions that a signal needs to satisfy to be a root of 
a median graph filter [17]) require minor modifications. A 
case of particular interest is that of deep graph NN (GNN) 
architectures [18], which have attracted significant attention 
in recent years for tackling machine learning problems in-
volving network data. Traditional (e.g., convolutional) NNs 
have been remarkably successful in tasks involving images, 
video, and speech, all of which represent data with an un-
derlying Euclidean domain that is regularly sampled over a 
grid-like structure. However, said structure one almost takes 
for granted is missing when it comes to signals defined on 
graphs. As argued next, GSP offers an ideal framework to 
fill in this fundamental gap.

The overall idea in GNN architectures is to define an 
input–output relation by using a concatenation of LN lay-
ers composed of a linear transformation that combines the 
different signal values and a scalar (pointwise) nonlinear 
function that increases the expressiveness of the mapping. 
Mathematically, with x and y denoting the input and the 
output to the overall NN architecture and ,  being the layer 
index, we have that

	 ,     ,     and wherez x y z( ) ( )L0 N= = � (6)

	 , ,L1z zT G( ) ( ) ( )
N

1
( ) ,# #=,
, ,

i
-

,t " , � (7)

	 ([ ] ), , , .L i j1 and allz z N( ) ( ) ( )
ij ij N

1
G ,# # !v=

, , ,+ t � (8)

In (6)–(8), z( ),  is the output of layer ,  and serves as input to lay-
er .1, +  The transformation ·T G( )

( )
,

i , " , is the linear operator 

Because both Hnv and Hev 
build on a polynomial 
definition, they can 
seamlessly operate  
over digraphs.
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implemented at layer ,, i ,^ h are the learnable parameters that 
define such a transformation, and :R R

( )
G "v
,  is a scalar non-

linear operator (possibly different per layer). When applied to 
graph signals, the NN architecture in (6)–(8) must account 
for the topology of the graph and, for that reason, the depen-
dence of both the linear and nonlinear operators on G  was 
made explicit. In most works, the role of the graph is consid-
ered when defining the linear operator in ·T G( )

( )
,

i , " , with the 
most widely used approach for (convolutional) GNNs being 
to replace ·T G( )

( )
,

i , " , with a graph filter. Precisely in inspir-
ing this approach is where GSP insights and advances have 
been transformative because basic shift-invariance properties 
and convolution operations are otherwise not well defined for 
graph signals [19].

Early contributions following the graph-
filtering rationale have emerged from the 
machine learning community. The spectral 
approach in [19] relies on the Laplacian 
eigenvectors V and parametrizes the trans-
f o r m a t i o n ( )· diagV VT G( ) ( ) T

( ) i= ,,
i , " ,  

via ,g ( )i= ,u  the filter’s frequency response 
in (3) that is learned using backpropagation. 
Although successful in many applications, 
when dealing with digraphs these approaches suffer from the 
same limitations as those discussed for their linear counter-
parts. Moreover, scalability is often an issue due to the compu-
tational burden associated with calculating the eigenvectors of 
large (albeit sparse) graphs. Alternative architectures proposed 
replacing zT G( ) 1

( )
, ,

i
-

,
^ h" , with ( ) ,I A z( ) ( )1i- ,, -  where A is 

the (possibly nonsymmetric) adjacency matrix of the graph, and 
( )i ,  is a learnable scalar. To increase the number of parameters, 

some authors have considered learning the nonzero entries of 
A, assuming that its support is known. A more natural approach 
is to replace ·T G( )

( )
,

i , " , with the polynomial filter in (4) and 
consider the filter taps h ( )i= ,  as the parameters to be learned 
(see [18] and the references therein). Once again, implementing 
(6)–(8) with hH S( ) ( )

l
L

l
l

0
1R=, ,

=
-,  in lieu of ·T G( )

( )
,

i , " , exhibits a 
number of advantages because 1) the graph filter is always well 
defined (even for nondiagonalizable GSOs), 2) the degree of the 
filter controls the complexity of the architecture (the number of 
learnable parameters), and 3) the polynomial definition guaran-
tees that the resultant graph filter can be implemented efficient-
ly (via the successive application of sparse matrices), which is 
essential in scaling to large data sets. As in standard NN archi-
tectures, GNN parameters (i.e., the filter coefficients for each 
of the layers) are learned using stochastic gradient descent. For 
supervised learning tasks, the goal is to minimize a suitable loss 
function over a training set of (labeled) examples. The sparsity 
of S and the efficient implementation of polynomial graph fil-
ters [compare (3)] are cardinal properties to keep the overall 
computational complexity in check.

Beyond convolutional GNNs, the aforementioned findings 
are also valid for recurrent GNNs. Furthermore, one can also 
replace the graph filter hH S( ) ( )

l
L

l
l

0
1R=, ,

=
-,  either with a set of 

parallel filters, or with its node-variant H( )
nv
,  or edge-variant 

H( )
ev
,  counterparts. All of them preserve the distributed imple-

mentation of (4) while increasing the number of learnable 
parameters. As a result, the use of polynomial-based graph 
filter definitions that operate directly in the nodal domain 
to design NN architectures for digraphs opens a number of 
research avenues for deep learning over digraphs (see, e.g., 
[18]–[20] as well as other relevant articles in this special issue 
for additional details).

Inverse problems on digraphs
Inverse problems such as sampling and deconvolution have 
played a central role in the development of GSP. Different mod-
eling assumptions must be considered when addressing these 
problems for digraphs; a good practice is to leverage the con-

cepts introduced in the “GSP Preliminaries, 
Frequency Analysis, and Signal Represen-
tations” and “Graph Filters and Nonlinear 
Graph Signal Operators” sections and bal-
ancing practical utility with mathematical 
tractability. For instance, parsimonious 
signal models based on graph smoothness 
or bandlimitedness are widely adopted. Al-
ternatively, observations can be modeled as 
the outputs of graph filters driven by white, 

sparse, or piecewise constant inputs. This approach is particu-
larly useful in applications dealing with diffusion processes 
defined over real-world networks with directional links. In this 
section, we formally introduce a selection of prominent inverse 
problems, present established approaches for their solution, 
and identify the main challenges when the signals at hand are 
defined over digraphs.

Sampling and reconstruction
The sampling of graph signals and their subsequent recon-
struction have arguably been the most widely studied problems 
within GSP [2, Ch. 9]. Broadly speaking, the objective is to 
infer the value of the signal at every node from the observa-
tions at a few nodes by leveraging the structure of the graph. 
To describe the problem formally, let us introduce the fat, bi-
nary, M × N sampling matrix CM  and define the sampled sig-
nal as .x C xM=r  Notice that if M  represents the subset of M 
< N nodes where the signal is sampled, CM  has exactly one 
nonzero element per row, and the position of those nonzero 
elements correspond to the indexes of the nodes in .M  Then, 
the signal xr  is indeed a selection of M out of the N elements 
of x. This raises two fundamental questions: How can we re-
construct x from ,xr  and how can we design CM  to facilitate 
this reconstruction? 

Starting with the first question, early works assumed 
the graph to be undirected and the signal x to be band-
limited, i.e., to be a linear combination of just a few lead-
ing eigenvectors of the GSO. The GSO was typically set 
to the Laplacian L, with its eigenvectors [ , ..., ]V v vN1=  
being real valued and orthogonal. That is, the signal was 
assumed to be expressible as K : ,xx v V xk k K KkR= =1= u u  where 
x RK

K!u  collects the K active frequency coefficients, and 
VK  is a submatrix of the GFT. Indeed, because the leading 

As in standard NN 
architectures, GNN 
parameters (i.e., the filter 
coefficients for each of 
the layers) are learned 
using stochastic gradient 
descent.
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eigenvectors in V are those with the smallest total varia-
tion [cf. (S1)], this model was originally motivated by the 
practical importance of signals that vary smoothly with 
the underlying graph. Under the band-limited assumption, 
the sampled signal xr  is given by .x C x C V xK KM M= =r u  
Clearly, if the linear transformation represented by matrix 
C V RK

M K
M ! #  has full column rank (that is, if the rank of 

C VKM  is equal to K), then xKu  can be recovered from .xr  
Once the coefficients xKu  are known, the 
signal in the original domain can be found 
as ( ) .x V x V C V xK K K KM= = @u r  Hence, the 
critical factor used to characterize the 
recovery of x from xr  is the invertibil-
ity (and conditioning) of matrix ,C VKM  
which is a submatrix of V formed by the K 
columns corresponding to the active fre-
quencies and the M rows corresponding 
to the sampled nodes in .M  Note that a 
key difference with sampling in classical SP is that, design-
ing matrix CM  as a regular sampler is meaningless in GSP 
because the node indexing is completely arbitrary. 

Indeed, multiple approaches have been proposed to iden-
tify the most informative nodes on a graph for subsequent 
reconstruction. This is tantamount to leveraging the (spec-
tral) properties of C VKM  to design sampling matrices CM  
that lead to an optimal reconstruction. For example, by maxi-
mizing the minimum singular value of ,C VKM  the sampling 
set is designed to minimize the effect of noise in a mean-
squared-error sense [21]. The fact that the reconstruction 
matrix is a submatrix of the eigenvectors of the graph has 
also been exploited to design optimal low-pass graph-filter-
ing operators that can reconstruct the original signal x by 
implementing local exchanges [22] as well as efficient algo-
rithms that leverage the sparsity of the graph to compute VK  
efficiently [23].

When dealing with the sampling and reconstruction of 
signals defined on digraphs, a number of challenges arise. 
As introduced in the “Digraph Fourier Transforms: Spec-
tral Methods” section, multiple definitions of GFT coexist 
for digraphs. Some of those are based on generalizations of 
smoothness and lead to real-valued orthogonal dictionaries. 
In those cases, the results presented for signals in undirected 
graphs still hold, but the connections with polynomial low-
pass filtering and the ability to find the eigenvectors effi-
ciently are lost. Alternatively, one can use (a subset of) the 
eigenvectors of the nonsymmetric GSO as the basis for the 
signal x. The caveats being, in this case, that the GSO needs 
to be diagonalizable and that the resulting eigenvectors V are 
neither orthogonal nor real valued. The latter point implies 
that the frequency coefficients xKu  are complex valued as well 
so that the recovery methods for digraphs must be conceived 
in the complex field. Regarding the loss of orthogonality, this 
will typically deteriorate the conditioning of the submatrix 

,C VKM  which is critical in regimes where noise is present 
and M is close to K. Hence, when dealing with the sampling 
of real-world signals defined over digraphs, a first step is to 

decide which type of signal dictionary is going to be used. 
This likely depends on the prior domain knowledge as well 
as on the properties of the signals at hand. If no prior knowl-
edge exists, schemes considering different dictionaries (at the 
expense of increasing the sample complexity) may be pru-
dent. Moreover, in the cases where the selected basis is com-
posed of the eigenvectors of the GSO, the recovery problems 
need to be formulated in the complex domain, and oversam-

pling is likely to be required in scenarios 
where noise, outliers, or model mismatches 
are present.

Additional models for the observed sig-
nal have been studied in the digraph lit-
erature, including the cases where 1) the K 
dictionary atoms spanning x are not known 
a priori (thus leading to a sparse regression 
problem) [21], 2) the observations do not 
correspond to values of x but rather of S xi  

for varying i (which can be interpreted as sampling an evolv-
ing network process as opposed to a static one) [24], 3) total-
variation metrics are considered in the form of regularizers or 
constraints [25], and 4) the signal x is modeled as the output 
of a graph filter excited by a structured input [5], [26]. We 
revisit the two last cases while studying the next collection of 
inverse problems.

(Blind) deconvolution, system identification,  
and source localization
We now introduce a family of recovery and reconstruction 
problems involving signals over digraphs. The common de-
nominator across all of them is the assumption that the gen-
erative model y Hx=  holds, where y is a (partially) observed 
graph signal, H is a linear graph filter, and x is a potentially 
unknown and structured input. Building on this model and 
assuming that we have access to samples of the output y, the 
supporting digraph, and side information on H and x, the 
goal is to recover 1) the graph filter H (system identification), 
2) the values of x (deconvolution), 3) the support of x (source 
localization), and 4) both the graph filter and the values of x 
(blind deconvolution). 

Because graph filters can be efficiently used to model 
local diffusion dynamics, the relevance of the aforementioned 
schemes goes beyond signal reconstruction and permeates to 
broader domains, such as opinion formation and source iden-
tification in social networks, inverse problems of biological 
signals supported on graphs, and the modeling and estimation 
of diffusion processes in multiagent networks, all of which are 
typically directed. In particular, we envision applications in 
marketing where, e.g., social media advertisers want to iden-
tify a small set of influencers so that an online campaign can 
go viral; in a health-care policy implementing network analyt-
ics to infer hidden needle-sharing networks of injecting drug 
users; or, in environmental monitoring using wireless sensor 
networks to localize heat or seismic sources. As an encom-
passing formal framework, consider the following optimiza-
tion problem:

When dealing with the 
sampling of real-world 
signals defined over 
digraphs, a first step is  
to decide which type of 
signal dictionary is going  
to be used.
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where L0  is a loss function between the observed signal y and 
its prediction generated by the chosen x and h. The regulariz-
ers rx, rh, and ry promote desirable features on the optimization 
variables, and , ,HX  and Y  represent prespecified feasibility 
sets. Although for the undirected case the generative filter H 
can be either defined in the spectral or in the vertex domain, 
in (9) the polynomial form has been selected. As pointed out 
in the “Graph Filters and Nonlinear Graph Signal Operators” 
section, the reasons for this choice are multiple: polynomial 
filters are always well defined (even for nondiagonalizable 
GSOs); the number of parameters is L (in contrast with N for 
those spectral formulations that do not consider an explicit 
parametrization), which is beneficial in the context of inverse 
problems; and the filter can be used to capture distributed dif-
fusion dynamics on directed networks, strengthening the prac-
tical value of the formulation in (9). Finally, even though (9) 
was posited for the generic case where both x and h are un-
known and y might be only partially observed, it can readily 
incorporate perfect knowledge of any of these variables just 
by fixing its value and dropping the corresponding feasibility 
constraint and regularization term. 

Focusing first on the problem of deconvolution, notice 
that the nonsymmetric filter H is completely known because 
both the GSO S and the filter coefficients h are assumed to be 
given. The goal then is to use incomplete observations of y to 
recover the values of y in the nonobserved nodes and to obtain 
the seeding values in x. Leveraging the notation introduced 
in the “Sampling and Reconstruction” section, we denote by 
y C y H xM M= =r  the sampled output, with H C HMM =  
being the corresponding M rows of H. As y and x are graph 
signals of the same size, the deconvolution problem is ill posed 
when M < N. Hence, to overcome this, we may assume some 
structural prior on the input x. A common assumption is that x 
is sparse. This corresponds to setups where the observed sig-
nal y can be accurately modeled by a few sources percolating 
across the entire network. Applications fitting this setup range 
from social networks where a rumor originated by a small 
group of people is spread across the network via local opin-
ion exchanges, to brain networks where an epileptic seizure 
emanating from few regions is later diffused across the entire 
brain [22]. Formally, (9) reduces to

	 ,argminx y H x x*
x2

2
1

x
M a= - +r � (10)

which is a classical sparse-regression problem with well-
established results showing that the recovery performance 
provably depends on the coherence of the nonsymmetric 
matrix .HM  The 1, -norm regularizer in (10) acts as a con-
vex surrogate of the sparsity-measuring 0,  pseudonorm. 
Whenever sparsity is assumed as a structural property of 

the input and the emphasis is on recovering the support of x, 
(10) and variations thereof (with imperfect knowledge of h) 
are referred to as source localization problems. In terms of 
the samples of y that are observed, the optimal selection (in 
cases where this selection can be designed) is nontrivial and 
considerations similar to those discussed in the “Sampling 
and Reconstruction” section apply here as well. Finally, note 
that the generative model y Hx=  can also be used for undi-
rected graphs and, as a result, the formulation in (10) and the 
associated algorithms can be used in such a case, the main 
difference being that the theoretical analysis of identifiabil-
ity and recovery is simpler when the GSO (and hence the 
filter) is symmetrical.

Moving on to the system identification problem, where the 
main objective is to find the filter coefficients h, it is crucial 
to note that y is a bilinear function in h and x. Hence, if we 
assume that x is given, then the system identification problem 
is very similar to the deconvolution problem where the roles of 
x and h are interchanged. In terms of structural priors for an 
unknown h, sparsity can also be employed. More specifically, 
it is instrumental to consider a weighted 1, -norm regulariza-
tion ( ) ( ) ,r diagh hh 1~=  where RL!~ +  is a weighting vec-
tor whose weights increase with , ..., ,l L1=  the entry index. 
In this way, the coefficients associated with higher powers of 
S in the filter specification are more heavily penalized, thus 
promoting a low-complexity and numerically stable model for 
explaining the observed data. For undirected graphs, the cost 
L0  that enforces the generative graph filter model to hold is 
often formulated in the spectral domain, bypassing the need of 
computing the powers of S. Although we advocate working on 
the nodal domain, when the GSO is diagonalizable, formulat-
ing the problem in the spectral domain is also feasible for the 
directed case. The matrices mapping the unknown h to the 
observations yr  would be complex valued, but the optimiza-
tion would still be carried over the real-valued vector h. From 
an algorithmic perspective, the main challenge would be to 
find the eigenvectors of the nonsymmetric S, while from an 
analytical point of view, the issue would be the characteriza-
tion of the conditioning of the (complex-valued) matrix that 
maps h to .yr

The more challenging problem of blind deconvolution 
arises when both the input x and the filter coefficients h are 
unknown. To formally tackle this problem, we explicitly write 
the fact that y is a bilinear function of h and x as ( ),y xhA T=  
where the linear operator A  is a function of the nonsymmetric 
S and acts on the outer product of the sought vectors. A direct 
implementation of the general framework (9) can be employed 
for the problem of blind identification, where the goodness-of-
fit loss ( )y xhA T

2

2
-  is combined with structure-promoting 

regularizers for both x and h. Notice, however, that this leads 
to a nonconvex optimization problem for which alternating 
minimization schemes (e.g., a block-coordinate descent meth-
od that alternates between x and h) can be implemented. To 
derive a convex relaxation, notice that y is a linear function of 
the entries of the rank-one matrix .Z xhT=  This motivates the 
statement of the following convex optimization problem:
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	 ( ) .argminZ y ZZ ZA*
* ,2

2
1 2 2 1

Z
a a= - + + � (11)

The nuclear-norm regularizer $ )  in (11) promotes a low-
rank solution because we know that Z should be the outer 
product of the true variables of interest, that is, x and h. On 
the other hand, the ,2 1,  mixed-norm Z z, ii

N
2 1 21R= =  is the 

sum of the 2,  norms of the rows of Z, thus promoting a row-
sparse structure in Z. This is aligned with a sparse input x forc-
ing rows of Z to be entirely zero from the outer product. After 
solving for ,Z*  one may recover x and h from, e.g., a rank-one 
decomposition of .Z*

Extensions to multiple input, multiple-output (MIMO) pairs 
(with a common filter) along with theoretical guarantees for 
the case where the GSO S is normal (i.e., SS S SH H= ) can be 
found in [5]. Interestingly, it was empirically observed and the-
oretically demonstrated that blind deconvolution in circulant 
graphs (such as the directed cycle that represents the domain 
of classic SP) corresponds to the most favorable setting. The 
related case of a single graph signal as the input to multiple 

filters (generating multiple outputs) was recently studied in [27], 
thus providing a generalization of the classical blind multi-
channel identification problem in digital SP. Moreover, [26] 
addresses the blind demixing case where a single observation 
formed by the sum of multiple outputs is available, and it is 
assumed that these outputs are generated by different sparse 
inputs diffused through different graph filters. This variation 
of the problem is severely ill posed, and strong regularization 
conditions should be assumed to ensure recovery, with the 
problem being easier if the graph filters are defined over dif-
ferent GSOs { } .Si i

I
1=  Figure 2 provides an overarching view 

of the problems mentioned in this section. See also [25] for 
additional signal-recovery problems that can be written in the 
encompassing framework of (9).

As previously explained, a key feature that allows using 
the problem formulations introduced in this section for sig-
nals defined on digraphs is that the generative graph filter 
was incorporated in polynomial form. Unfortunately, many 
of the theoretical guarantees for solving these problems rely 
heavily on the spectral analysis of the GSO, thus assuming 
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FIGURE 2. A summary of the inverse problems introduced. In the schematic representation, graph signals are depicted as red circles and graph operators 
as blue rectangles. Notice that filters are functions of the coefficients h  and the GSO S [cf. (4)]. However, because S  is assumed to be known for every 
problem considered, we succinctly represent filters by their coefficients, .h  The first four problems refer to the single-input, single-output scenario with 
blind deconvolution being the most challenging because only (a sampled version of) the output is observed. Note that the problem frameworks in (b) can 
be further extended to the case where the output is partially observed, as in (a). We omit this illustration to minimize redundancy and because these more 
challenging problems are generally ill posed even in the case where y is fully observed. 
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symmetry or at least normality of S. One of the main remain-
ing challenges for inverse problems in digraphs is the deri-
vation of recovery guarantees, along with the identification 
of key performance drivers that can accommodate nondi-
agonalizable GSOs and generalized (complex) eigenvec-
tors. Another important potential research direction is the 
incorporation of alternative generative models by replacing 
graph filters with the more general graph-signal operators 
presented in the “Graph Filters and Nonlinear Graph Signal 
Operators” section, such as node- and edge-variant filters (5) 
or GNNs (6)–(8). Especially in this latter case, system iden-
tification and blind deconvolution would become extremely 
challenging due to the incorporation of nonlinearities, mak-
ing the convex relaxation in (11) based on the linear operator 
A  no longer valid.

Statistical digraph SP
Randomness is pervasive in engineering, and graph signals are 
no exception. For this reason, here we build upon the results 
presented in the previous sections to discuss recent advances 
and challenges to develop statistical models for random graph 
signals defined over digraphs. In the field of statistics, graphs 
quickly emerged as a convenient intuitive mathematical struc-
ture to describe complex statistical dependencies across mul-
tidimensional variables. A prominent example is that of Mar-
kov random fields (MRFs), which are symmetrical graphical 
models whose edges capture conditional dependencies across 
the variables represented by the nodes. Inference over MRFs is 
computationally affordable and, for the particular case of the 
signals being Gaussian, the graph describing the MRF can be 
inferred directly from the precision (inverse covariance) ma-
trix of the data. In parallel, digraphs have been used to capture 
one-directional conditional dependence (hence causal) rela-
tions, with Bayesian networks—which, in addition to being di-
rected, are acyclic—being the most tractable graphical model 
within this class.

GSP literature has also contributed to the statistical mod-
eling of random graph signals. The first step is to postulate 
how the graph structure plays a role in shaping the signal’s sta-
tistical properties and then analyze how the model put forth 
can be used to tackle inference tasks more effectively. As in 
the case of graphical models, most existing results focused on 
undirected graphs. 

Arguably, the most relevant line of work has been the gen-
eralization of the definition of weak stationarity to signals 
supported on either undirected graphs or on graphs whose 
GSO is a normal matrix [2, Ch. 12]. Although this latter 
characterization includes some digraphs (such as circulant 
and skew-Hermitian), the definitions cannot be applied to a 
generic nonsymmetric GSO. The key contribution of the arti-
cles reviewed in [2, Ch. 12] was to provide a dual definition 
for stationary graph processes, which was consistent with the 
vertex and frequency interpretations of graph signals. Spe-
cifically, it was stated that a zero-mean random graph signal x 
was weakly stationary on a known graph G  if 1) its covari-
ance matrix has the same eigenvectors as those of the GSO; 

or, equivalently, 2) the process can be modeled as the out-
put of a graph filter excited with a white input. This allowed 
for establishing parallelisms with the classical definition of 
weak stationarity for time-varying signals and opened the 
door to the development of efficient algorithms that estimate 
the second moment of a graph stationary process using fewer 
samples. For example, if the eigenvectors of the covariance 
and the GSO are the same, instead of estimating the N 2 
entries of the covariance matrix, one can focus on estimating 
only its N eigenvalues. 

However, from the initial discussion in the “Graph Filters 
and Nonlinear Graph Signal Operators” section, it follows that 
this convenient equivalence between the frequency and the 
vertex domains does not hold for digraphs. Indeed, if the GSO 
is not a normal matrix, its eigenvectors cannot coincide with 
those of the covariance matrix, which is guaranteed to be nor-
mal. As a result, one must adapt the definitions and sacrifice 
some of the properties shown for the symmetrical case. To be 
mathematically precise, let us recall that x is a zero-mean ran-
dom process defined on the digraph G  with GSO S, and let us 
denote by = [ ]C xxE T

x :  the N × N covariance matrix of x. We 
say that the random graph signal x is stationary in the nonsym-
metric S if it can be described as

	 , [ ] ,hwith andx Hw H S ww IEl
l

L
l T

0

1

= = =
=

-

: / � (12)

where ,L N#  and w is a white zero-mean random signal. By 
adopting the generative model in (12), it follows that the covariance 
of x can be written as [ ] [ ] ,C xx H ww H HHE ET T T T

x = = =  
which is not a polynomial on S, but on both S and .ST  As a 
result, it is no longer true that Cx  is diagonalized by the GFT 
associated with S. Nonetheless, the model in (12) is still ex-
tremely useful because it 1) provides an intuitive explanation 
of the notion of graph stationarity; 2) can be used to estab-
lish connections with higher-order, autoregressive directed 
structural equation models (SEMs) in statistics: and 3) gives 
rise to efficient estimators that, rather than targeting the 
estimation of the full covariance, try to estimate the filter 
coefficients h. Indeed, this latter point is also relevant for 
undirected graphs. 

Although approaches that focus on the spectral defini-
tion of stationary processes require estimating the N eigen-
values of Cx  (i.e., the power spectral density of the process 
x), the generative approaches based on (12) open the door to 
imposing additional structure on the generative filter. For 
example, one can consider a finite-impulse/infinite-impulse 
response filter with a number of coefficients L much smaller 
than the number of nodes N, which results in considerable 
gains in terms of either the sampling complexity or the esti-
mation error.

The generative model in (12) can be generalized or con-
strained to fit a range of suitable scenarios. Focusing first on 
the input signal, cases of practical interest include 1) consid-
ering nonwhite input processes w with known covariance, 2) 
requiring w to not only be white but also independent, and 3) 
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particularizing the distribution of w to tractable and practically 
meaningful cases. Two examples that fall into the final cat-
egory are modeling w as either a Gaussian or a (signed) Ber-
noulli vector, which is particularly relevant in the context of 
the diffusion of sparse signals. Alternatively, the model in (12) 
can be enlarged by considering other linear graph signal opera-
tors as generators, including the node- and edge-variant graph 
filters discussed in (5). Recent works have 
also proposed nonlinear generative mod-
els that exploit results in the deep learning 
literature to generate random signals over 
directed and undirected graphs. For exam-
ple, one can take the architecture in (6)–(8), 
replace ·T G( )

( )
,

i , " , with ,hH S( ) ( )
l
L

l
l

0
1R=, ,

=
-,  

use a random realization of the white signal w as input, and 
then view the output of the GNN architecture as the ran-
dom process to be modeled. Although characterizing how 
the coefficients { }h( ) L

1
N,
,=  affect the statistical properties of 

the output is certainly relevant, equally interesting problems 
arise when the goal is to use a set of realizations of the output 
x to learn the parameters of the nonlinear generative model 
(i.e., the filter coefficients { }h( ) L

1
N,
,= ) that best fit the avail-

able observations.
The statistical models briefly reviewed in this section 

accounted for nonsymmetric interactions among variables and 
can be leveraged, for example, to enhance covariance estima-
tion schemes, to denoise a set of observed graph signals, or to 
interpolate (predict) all the values of a graph signal using as 
input observations collected at a subset of nodes. Perhaps less 
obvious but arguably equally important, the postulated mod-
els can also be used to infer the graph itself. Indeed, if one 
has access to a set : { }xX r r

R
1= =  of R realizations of x and the 

graph is sufficiently sparse (so that the number of edges E  is 
much smaller than N 2), one could identify the L E+  degrees 
of freedom in (12) from the RN values in ,X  provided that R is 
sufficiently large. This is partially the subject of the next sec-
tion, which deals with the problem of inferring the topology of 
digraphs from a set of nodal observations.

Digraph topology inference
Capitalizing on the GSP advances surveyed thus far requires 
a specification of the underlying digraph. However, G  is often 
unobservable and, accordingly, network topology inference 
from a set of (graph signal) measurements is a prominent yet 
challenging problem, even more so when the graph at hand is 
directed. Early foundational contributions can be traced back 
several decades to the statistical literature of graphical model 
selection (see, e.g., [4, Ch. 7] and the opening of the “Statis-
tical Digraph SP” section). Discovering directional influence 
among variables is at the heart of causal inference, and iden-
tifying the cause-and-effect digraphs (so-termed structural 
causal models) from observational data are a notoriously dif-
ficult problem [6, Ch. 7 and 10]. 

Recently, the fresh modeling and signal representation per-
spectives offered by GSP have sparked renewed interest in 
the field. Initial efforts have focused mostly on learning undi-

rected graphs, which naturally give rise to more tractable (and 
often uniquely identifiable) formulations [12]. Therefore, next, 
we outline a few noteworthy digraph topology-identification 
approaches that are relevant to (or are informed by) the GSP 
theme of this article. In accordance with our narrative’s leit-
motif, we emphasize the key differences with the undirected 
case and review the main challenges associated with the new 

formulations.
We initiate our exposition with struc-

tural equation modeling, which broadly 
encapsulates a family of statistical methods 
that describe causal relationships between 
interacting variables in a complex system. 
This is pursued through the estimation of 

linear relationships among endogenous as well as exogenous 
traits. SEMs have been extensively adopted in economics, psy-
chometrics, social sciences, and genetics, among other disci-
plines (see, e.g., [28]). SEMs postulate a linear time-invariant 
network model of the following form, where the GSO is speci-
fied as the adjacency matrix :S A=

, ,x S x u i x Sx uN
,

it ij
j j i

N

jt ii it it t t t t
1

&!~ e eX= + + = + +
!=

/
� (13)

where [ , , ]x xxt t Nt
T

1 f=  represents a graph signal of endog-
enous variables at discrete-time t and [ , , ]u uut t Nt

T
1 f=  is a 

vector of exogenous influences. The term Sxt  in (13) models 
network effects, implying that xit is a linear combination of 
the instantaneous values xjt of node i’s in-neighbors .j Ni!  
The signal xit also depends on uit, where weight ii~  captures 
the level of influence of external sources, and we defined 
= ( , , ) .diagΩ NN11 f~ ~:  Vector te  represents measurement 

errors and unmodeled dynamics. Depending on the context, 
xt  can be thought of as an output signal, while ut  corresponds 
to the excitation or control input. In the absence of noise and 
letting Ω I=  for simplicity, (13) becomes ,x Hut t=  where 

( )H I S 1= - -:  is a polynomial graph filter, as in (4).
Given snapshot observations = { , } ,x uX t t t

T
1=:  SEM pa

rameters S and = [ , , ]NN
T

11 f~ ~ ~:  are typically estimated 
via penalized least squares, for instance, by solving

	
.

2
,

 ( ), , , , ,

argmin

S i N0 1s.t diag

S x Sx Ωu S

Ω
,

t t t
t

T

ii

1
1

S

f~

a= - + +

= = =

~ =

2t /
	 (14)

where the 1, -norm penalty promotes sparsity in the adjacen-
cy matrix. Both edge sparsity and endogenous inputs play a 
critical role in guaranteeing that the SEM parameters (13) are 
uniquely identifiable (see also [28]). Acknowledging the limi-
tations of linear models, [29] leverages kernels within the SEM 
framework to model nonlinear pairwise dependencies among 
network nodes (see the “Applications” section for results on the 
identification of gene-regulatory networks).

Although SEMs capture only contemporaneous relation-
ships among the nodal variables (i.e., SEMs are memoryless), 

Discovering directional 
influence among variables 
is at the heart of causal 
inference.
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sparse vector autoregressive models (SVARMs) account for 
linear time-lagged (causal) influences instead (see, e.g., [30]). 
Specifically, for a given model order L and unknown sparse-
evolution matrices { } ,S( )l

l
L

1=  SVARMs postulate a multivari-
ate linear dynamical model of the form .x S x( )

t l
L l

t l t1 eR= += -  
Here, a directed edge from vertex j to i is typically said to be 
present in G  if S 0( )

ij
l
!  for all , , .l L1 f=  The aforementioned 

AND rule is often explicitly imposed as a constraint during 
the estimation of SVARM parameters through the require-
ment that all matrices S( )l  have a common support. This can 
be achieved, for instance, via a group lasso penalty, which pro-
motes sparsity over edgewise coefficients = [ , , ]S Ss ( ) ( )

ij ij ij
L T1

f:  
jointly [30]. The sparsity assumption is often well justified due 
to physical considerations or for the sake of interpretability, but 
here (as well as with SEMs), it is also critical to reliably esti-
mate G  from limited and noisy time-series data = { } .xX t t

T
1=:

SVARMs are also central to popular digraph topology-
identification approaches based on the principle of Granger 
causality (see, e.g., [6, Ch. 10]). Said principle is based on 
the concept of precedence and predictability, where node j’s 
time series is said to “Granger-cause” the time series at node 
i if the knowledge of { }x ,j t l l

L
1- =  improves the prediction of 

xit compared to using only { } .x ,i t l l
L

1- =  Such a form of causal 
dependence defines the status of a candidate edge from j to 
i, and it can be assessed via judicious hypothesis testing [28]. 
Recently, a notion different from Granger’s was advocated to 
associate a graph with causal network effects among vertex 
time series, effectively blending VARMs with graph filter-
based dynamical models. The so-termed causal graph pro-
cess (CGP) introduced in [31] also considers S A=  and has 
the form

	
( )

( ) ,

h h h

h h

x S x I S x

I S x

t li
i

l

l

L
i

t l t t

L LL
L

t L t

01
10 11 1

0g g

e

e

= + = +

+ + + + +

==

- -

-

//
�

(15)

where S is the (possibly asymmetric) adjacency matrix en-
coding the unknown graph topology. The CGP model cor-
responds to a generalized VARM with coefficients given by 

( , ) ,hH S h Si
i

l li
i

0R= =:r  where : [ , , , , ] .h h h hh li LL
T

10 11 f f=r  
This way, the model can possibly account for multihop nodal 
influences per time step. Unlike SVARMs, matrices ( , )H S hl r  
need not be sparse for larger values of l, even if S is itself 
sparse. Given data { }xX t t

T
1= =:  and a prescribed value of L, 

to estimate ,S  one solves the nonconvex optimization problem

( , ) .argmin x H S x hh SS
,

t l
l

L

t l
t L

T

11

2

1 1
S h

a b= - + +
=

-

= +

t r r
r

//
� (16)

Similar to the sparse SEMs in (14) and SVARMs, the estima-
tor encourages sparse graph topologies. Moreover, the 1, -norm 
regularization on the filter coefficients hr  effectively imple-
ments a form of model-order selection. A divide-and-conquer 
heuristic is advocated in [31] to tackle the challenging problem 
(16), whereby one 1) identifies the filters ( , )H H S hl l=: r  so that 

,x H xt l t li
l

l
L

01. R R= = -  exploiting that Hl  and Hll commute for 

all , ;l ll  2) recovers a sparse S using the estimates { }Hl
t  and 

leverages the shift-invariant property of graph filters; and 3) 
estimates hr  given { , }SHl

t t  via the lasso. For full algorithmic 
details and their accompanying convergence analysis, see [31].

In [32], observations from M network processes are mod-
eled as the outputs of a polynomial graph filter [i.e, ,x Hwm m=  
as in (4)] excited by (unobservable) zero-mean independent 
graph signals wm  with arbitrarily correlated nodal compo-
nents. Observations of the output signals along with prior sta-
tistical information on the inputs are first utilized to identify 
the nonsymmetric diffusion filter H. Such a problem entails 
solving a system of quadratic matrix equations, which can be 
recast as a smooth quadratic minimization subject to Stiefel 
manifold constraints (see [32] for details). Given an estimate 

,Ht  the approach used in [32] to infer the digraph topology is to 
find a generic GSO S that satisfies certain desirable topologi-
cal properties and commutes with H. For instance, by focusing 
on the recovery of sparse graphs, one solves

	 , . , ,argmin s.t  S S S HS SHS F1
S

! # e= -t t t � (17)

where S  is a convex set specifying the type of GSO sought 
(say, the adjacency matrix of a digraph), and the constraint 

S SHH F # e-t t  encourages the filter H to be a polynomial 
in S while accounting for estimation errors (see [2], [12], and 
[31]). Imposing this last constraint offers an important depar-
ture from the related (undirected) graph-learning algorithms 
in [12], [33], and [2, Ch. 13], which identify the structure of 
network-diffusion processes from observations of stationary 
signals [cf. (12) but with symmetrical H]. These approaches 
first estimate the eigenvectors of H and then constrain S to 
be diagonalized by those eigenvectors in a convex problem 
to recover the unknown eigenvalues. Although this naturally 
entails a search over the lower-dimensional space of GSO 
eigenvalues, the formulation (17) avoids computing an ei-
gendecomposition and, more importantly, solving a problem 
over complex-valued variables. This was not an issue in [33] 
because the focus therein was on undirected graphs with real-
valued spectrums. In closing, note that the graph-filtering 
model advocated in [32] is a special case of (15) provided that 
S A=  and, instead of multivariate time-series data, one relies 
on independent replicates from multiple network processes 
(obtained, e.g., via interventions, as in causal inference [6]).

Applications
We highlight four real-world applications of the methods sur-
veyed in this article. The experiments were chosen to demon-
strate the practical value of SP schemes applied to digraphs, 
with the diversity of the data sets considered (climate records, 
text excerpts, handwritten characters, and gene-expression lev-
els) underscoring the versatility of the tools.

Frequency analysis for temperature-signal denoising
We consider a digraph G  of the N 48=  contiguous United 
States (Alaska and Hawaii are excluded). A directed edge joins 
two states if they share a border, and the edge direction is set 

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 29,2020 at 21:03:39 UTC from IEEE Xplore.  Restrictions apply. 



112 IEEE SIGNAL PROCESSING MAGAZINE   |   November 2020   |

so that the state whose barycenter is more to the south points 
to the one more to the north. As the graph signal ,x R48!  
we consider the average annual temperature of each state [see 
Figure 3(a)]. The temperature map confirms that the latitude 
affects the average temperatures of the states, justifying the 
proposed latitude-based graph-construction scheme.

We determine a GFT basis U for this digraph via spec-
tral-dispersion minimization as in (2) and test its utility in a 
denoising task. More specifically, our goal is to recover the 
temperature signal from noisy measurements ,y x wy= +  
where the additive noise wy  is a zero-mean, Gaussian ran-
dom vector with covariance matrix .10IN  To achieve this, 
we implement a low-pass graph filter that retains the first K 
components of the signal’s DGFT and eliminates the rest, i.e., 

[ , , ] ,h hh N
T

1 f=u u u  where ,h k KIk #=u " ,  and K is a prescribed 
spectral window size. Hence, we estimate the true temperature 
signal as ( ) ( )diag diag .x U h U h U yy T= =t u u u

The original signal x is bandlimited compared to the noisy 
signal y, which spans a broader range of frequencies [see Fig-
ure 3(b)]. To better observe the low-pass property of x, we also 
plot the cumulative energy of both x and y, defined by the per-
centage of the total energy present in the first k frequency com-
ponents for , , .k N1 f=  Setting the spectral window at ,K 3=  
the average recovery error e x x xf = -t  determined 
by 1,000 Monte Carlo simulations of independent noise was 
approximately 12%. Figure 3(c) shows a realization of the noisy 

graph signal y superimposed with the denoised temperature 
profile ,xt  and it can be seen that, indeed, xt  closely approxi-
mates x. The recovery error increases when the edge directions 
are ignored (i.e., G  is treated as undirected) and when they are 
selected randomly (i.e., every edge is directed but the specific 
orientation is chosen uniformly at random between the two 
possibilities), as opposed to following the south-to-north orien-
tation that captures the temperate flow (see [14] for additional 
details and experiments).

GNNs for authorship attribution
We illustrate the performance of GNNs for classification in 
digraphs through an authorship attribution problem based on 
real data. The goal is, using a short text excerpt as input, to 
decide whether the text was written by a particular author. To 
capture the style of an author, we consider author-specific word 
adjacency networks (WANs), which are digraphs whose nodes 
are function words (i.e., prepositions, pronouns, conjunctions, 
and other words with syntactic importance but little semantic 
meaning [34]) and whose edges represent probabilities of di-
rected coappearance of two function words within texts writ-
ten by the author [see Figure 4(a)].

We select N 211=  functions words as nodes and build the 
WAN for Emily Brontë. More specifically, we count the num-
ber of times each pair of function words coappear in 10-word 
windows while also recording their relative order. We then 
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normalize the counts out of each node to sum up to one, thus 
obtaining a weighted digraph whose weights are between 0 and 
1. As for the graph signals, they are defined as each function 
word’s count among 1,000 words. Splitting Emily Brontë’s 
texts between training and test sets on an 80:20 ratio, her WAN 
is generated from function word coappearance counts in the 
training set only. The graph signals in the training set corre-
spond to 1,000-word excerpts by Brontë and by a pool of 21 
other contemporary authors. Each set of graph signals has an 
associated binary label where 1 indicates that the text has been 
written by Brontë and excerpts by the rest of the authors are 
labeled as 0. Test samples are defined analogously. The train-
ing and test sets consisted of 1,092 and 272 excerpts, respec-
tively, both with equally balanced classes, and cross entropy 
was chosen as the loss function.

Several specific GNN architectures were compared in this 
experiment, all of which followed the general structure in (6)–
(8) but for different choices of the nonlinearity .( )

Gv
,  Indeed, the 

popular pointwise rectified linear unit (ReLU) was contrasted 
with more sophisticated graph-localized (but not necessarily 
pointwise) median and maximum activation functions (see 
[34] for details). Figure 4(b) presents the authorship attribution 
accuracy results after conducting 10 rounds of simulations by 
varying the training and test splits. We can see that the median 
and maximum GNNs performed consistently better than the 
ReLU GNNs on discerning between texts written by Brontë 
and other authors in the pool. Localized activation functions 
outperformed the pointwise ReLU, with smaller average test 
errors as well as smaller deviations around this average. Equal-
ly important, the simulations also show that their associated 
error was 1–2% lower than that achieved by NN architectures 
that symmetrized the WAN. This superior performance under-

scores the importance of leveraging the digraph structure in 
the architecture of GNNs, not only in the linear operators via 
the incorporation of graph filters but also in the determination 
of nonlinearities.

Graph sampling for handwritten digit recognition
Our goal here is to employ the sampling theory introduced in 
the “Sampling and Reconstruction” section to classify hand-
written digits with minimal labels, as developed in [21]. More 
precisely, we consider a digraph whose ,N 10 000=  nodes 
correspond to gray-scaled images in the Modified National In-
stitute of Standards and Technology (MNIST) data set equally 
distributed among the 10 classes (0–9-digit characters). The 
edges are obtained from a 12-nearest-neighbor construction 
computed from the Euclidean distance between vector repre-
sentations of the images. The graph is directed by construction 
because one node being in the 12-nearest neighborhood of an-
other node does not guarantee that the relation in the opposite 
direction holds. This directionality can be especially relevant 
in the treatment of outliers in the embedded space, where every 
outlier still has an incoming neighborhood of size 12 but does 
not belong to the incoming neighborhood of other nodes, thus 
having a minimal effect in the label propagation. The edges 
are then weighted using a normalized Gaussian kernel so that, 
within each neighborhood of size 12, the closer connections 
have a larger weight. Intuitively, images representing the same 
digit tend to have similar pixel values and, hence, are more 
likely to belong to the neighborhood of each other. Thus, if 
we consider the value of the signal at a given node to be the 
digit represented by the image associated with that node, the 
whole graph signal will be piecewise constant in the graph 
and thus amenable to being reconstructed from observations 
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FIGURE 4. Identifying the author of a text using GNNs [34]. (a) An example of a WAN with 40 function words as nodes built from the play “The 
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at a few nodes. Furthermore, to account for the fact that the 
signal values are categorical, instead of considering a graph 
signal of dimension ,x RN!  we consider the alternative bi-
nary matrix representation ,X RN 10! #  where X 1ij =+  if 
the ith image is a picture of the digit j and X 1ij =-  other-
wise. Each column of X is modeled as a band-limited signal 
that can be written as the linear combination of the K leading 
columns of V, that is, the eigenvectors of the nonsymmetric 
adjacency matrix A. 

The graph representation of the MNIST digits is shown 
in Figure 5(a), where the edges were removed for clarity, 
and the coordinates of each node are given by the corre-
sponding rows of the first three columns of the iGFT V. 
The enlarged black nodes indicate the optimal choice for 
10 samples. Optimality, in this case, refers to the design of 
CM  to maximize the minimum singular value of C VM K  
(see the “Sampling and Reconstruction” section). Given 
that we have to (pseudo-)invert this matrix for reconstruc-
tion, a good condition number entails a robust behavior in 
the presence of noise. It is apparent that the images repre-
senting the same digit form clusters and that the optimal 
samples boil down to choosing representative samples from 
each cluster. The same procedure can be repeated for the 
United States Postal Service’s (USPS’) handwritten digits 
data set consisting of ,N 11 000=  images to obtain Fig-
ure 5(b). For both cases, one can compute the classification 
accuracy obtained from the reconstructed graph signals 
for a different number of optimal samples [see Figure 5(c)]. 

As expected, the accuracy increases with the number of 
samples. Furthermore, note that even when observing only 
50 samples (0.5 and 0.45% of the MNIST and USPS data 
sets, respectively), the reconstruction accuracy is nearly 
0.9, highlighting the importance of incorporating the 
graph structure via optimal samplers that can accommo-
date digraphs. This method was shown to outperform other 
graph-based, active semisupervised learning techniques 
(see [21] for additional details and experiments).

Kernel-based topology inference for gene-expression data
Consider now the problem of identifying gene-regulatory to-
pologies, where nodes represent individual genes and directed 
edges encode causal regulatory relationships between gene 
pairs. Due to the inherent directional nature of regulatory in-
teractions [4, Ch. 7.3], we must recover a digraph as opposed to 
an undirected relational structure. In this context, we compare 
the inferred digraphs recovered when implementing different 
kernels for SEM inference. The experiments were performed 
on gene-regulatory data collected from T 69=  unrelated 
Nigerian individuals under the International HapMap project 
(see [29] and the references therein for additional details). From 
the 929 identified genes, expression levels and genotypes of the 
expression quantitative trait loci (eQTLs) of N 39=  immune-
related genes were selected and normalized. The genotypes of 
eQTLs were considered as exogenous inputs ,ut  whereas the 
gene-expression levels were treated as the endogenous vari-
ables xt  [compare (13)].

Figure 6 depicts the identified topologies, where the dif-
ferent graphs correspond to different choices for the kernel, 
and the visualizations only include nodes that have at least a 
single incoming or outgoing edge. More precisely, Figure 6(a) 
portrays the resulting network based on a linear SEM, while 
Figure 6(b) and (c) illustrate the results from nonlinear SEMs 
based on a polynomial kernel of second order and a Gauss-
ian kernel with unit variance, respectively. In the three cases, 
the identified networks are very sparse, and the nonlinear 
approaches unveil all of the edges identified by the linear 
SEMs, along with a number of additional edges. Clearly, con-
sidering the possibility that interactions among genes may be 
driven by nonlinear dynamics, nonlinear frameworks encom-
pass linear approaches and facilitate the discovery of causal 
(directed) patterns not captured by linear SEMs. The newly 
unveiled gene-regulatory interactions could potentially be the 
subject of further studies and direct experimental corrobora-
tion by geneticists to improve our understanding of causal 
influences among immune-related genes across humans.

Emerging-topic areas and conclusions
Contending that signals defined on digraphs are of paramount 
practical importance, this article outlined recent approaches to 
model, process, and learn from these graph signals. Accord-
ingly, this article stretched in a comprehensive and unifying 
manner all the way from the definition of GFTs and graph sig-
nal operators especially designed for digraphs to the problem of 
inferring the digraph itself from the observed signals. A wide 
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the sampling of graph signals [21]. (a) A 3D representation of the MNIST 
images colored by true class (digits 0–9). The 10 enlarged nodes cor-
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USPS data set. (c) Classification accuracy as a function of the number of 
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range of signal-recovery problems was selectively covered, 
focusing on inverse problems in digraphs, including sampling, 
deconvolution, and system identification. A statistical view-
point for signal modeling was also discussed by extending the 
definition of weak stationarity of random graph processes to 
the directed domain. The last stop was to review recent results 
that applied the tools surveyed in this article to the problem of 
learning the topology of a digraph from nodal observations, 
an approach that can lead to meaningful connections between 
GSP and the field of causal inference in statistics. A common 
theme in the extension of established GSP concepts to the less-
explored realm of digraphs is that the definitions and notions 
that rely heavily on spectral properties are challenging to gen-
eralize, whereas those that can be explicitly postulated in the 
vertex domain are more amenable to be extended to digraphs.

A diverse gamut of potential research avenues naturally fol-
lows from the developments presented. Efficient approaches 
for the computation of the multiple GFTs for digraphs (akin 
to the fast Fourier transform in classical SP) would facilitate 
the adoption of this methodology in large-scale settings. The 
incorporation of nonlinear (median, Volterra, and NNs) graph 
signal operators as generative models for the solution of inverse 
problems is another broad area of promising research. Deep 
generative models for signals defined in regular domains (such 
as images) have shown remarkable success over the last several 

years, and part of that success can be extended to our more 
challenging domain. Equally interesting is that the use of deep 
learning to generate the graphs themselves (as opposed to the 
graph signals) has recently gained traction so that, as discussed 
in this article, one can conceive NN architectures that learn 
(and even generate) digraphs from training graph signals while 
encoding desirable topological features. One final direction of 
future research is the extension of the concepts discussed in this 
article to the case of higher-order directed relational structures. 
The generalization of GSP to hypergraphs through tensor mod-
els and simplicial complexes has been explored in recent years, 
but their analysis in directed scenarios is almost uncharted 
research territory.
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