
PARALLELIZABLE ALGORITHMS FOR THE SELECTION OF GROUPED VARIABLES∗

Gonzalo Mateos, Juan Andrés Bazerque and Georgios B. Giannakis

Dept. of ECE, Univ. of Minnesota, 200 Union Street SE, Minneapolis, MN 55455, USA

ABSTRACT

Well-appreciated in statistics for its ability to select relevant
grouped features (factors) in linear regression models, the
group-Lasso estimator has been fruitfully applied to diverse
signal processing problems including RF spectrum cartogra-
phy and robust layered sensing. These applications motivate
the distributed group-Lasso algorithm developed in this pa-
per, that can be run by a network of wireless sensors, or,
by multiple processors to balance the load of a single com-
putational unit. After reformulating the group-Lasso cost
into a separable form, it is iteratively minimized using the
method of multipliers to obtain parallel per agent and per
factor estimate updates given by vector soft-thresholding op-
erations. Through affordable inter-agent communication of
sparse messages, the local estimates provably consent to the
global group-Lasso solution. Specializing to a single agent
network, or, to univariate factors, efficient (distributed) Lasso
solvers are rediscovered as a byproduct.

Index Terms— Sparsity, linear regression, (group-)Lasso,
parallel optimization, distributed estimation.

1. INTRODUCTION

Consider the classical problem of linear regression, where a
vector y ∈ R

n of observations is given along with a matrix
X ∈ R

n×p of inputs. Suppose the p features are split into
Nf disjoint factors (groups of features) such that the coeffi-
cient vector is β = [β′

1, . . . ,β
′
Nf

]′ ∈ R
p, where ′ denotes

transposition and βf corresponds to the coefficients of factor
f . The group least-absolute shrinkage and selection operator
(Lasso) [1] is a model selection and estimation technique used
to select relevant factors in linear regression, and yields

β̂glasso := argmin
β

1

2
‖y − Xβ‖2

2
+ μ

Nf∑
f=1

‖βf‖2 (1)

where μ ≥ 0 is a tuning parameter typically chosen via
model selection techniques such as cross-validation (CV);
see e.g., [1, 2]. If μ = 0, no sparsity is enforced since (1)
reduces to LS. As μ increases, more sub-vector estimates

∗Work in this paper was supported by the NSF grants CCF-0830480 and
ECCS-0824007.

βf become zero due to the effect of the group sparsity-
encouraging penalty, and the corresponding factors drop out
of the model. When Nf = p, (1) becomes the Lasso [3] that
performs variable – rather than factor – selection.

Finding β̂glasso requires solving (iteratively) for any given
value of μ a second-order cone program (SOCP). While stan-
dard SOCP solvers can be invoked to this end, an increasing
amount of effort has been put recently into developing fast al-
gorithms that capitalize on the unique properties of the group-
Lasso; see e.g. [1], [4], [5], [6], [7].

Typically, the training set is assumed to be centrally avail-
able, so that it can be jointly processed to obtain β̂glasso.
However, collecting all data in a central location may be pro-
hibitive in timely applications of interest. In-network-based
(group-)Lasso estimators find application in e.g., robust lay-
ered sensing [8], and in the sensing task of cognitive radio
networks [9, 10]. In other cases such as the Internet or col-
laborative inter-laboratory studies, agents providing private
data for the purpose of e.g., fitting a sparse model, may not
be willing to share their training data but only the learning
results. Distributed subgradient methods are applicable to
sparse linear regression [11] as well, but are typically slow.

Having this context in mind, the present paper develops
a consensus-based distributed algorithm for the group-Lasso,
which can be specialized for the Lasso as well. Problem (1)
is recast as a convex constrained minimization in Section 2,
and is iteratively optimized using the alternating-direction
method of multipliers (AD-MoM) [12, p. 253]. This way,
provably convergent parallel recursions are derived to up-
date each agent’s local estimate, that entail simple vector
soft-thresholding operations (Section 3). This is possible by
capitalizing on the closed form solution that (1) admits in the
orthonormal case [7], [4], and evidences the factor-level spar-
sity encouraging property of group-Lasso. On a per iteration
basis, agents only exchange their current local estimate with
their neighbors. By specializing to a dummy single agent
network, a novel centralized group-Lasso solver is obtained
in Section 4 as a byproduct. Different from [1] and [4], the al-
gorithm here can handle non orthonormal matrix X, and does
not require an inner Newton-Raphson recursion per iteration.
By comparing the centralized algorithm with its distributed
counterparts of Section 3, it is shown that the latter effectively
split the computational burden across agents.

295978-1-61284-227-1/11/$26.00 ©2011 IEEE DSP/SPE 2011

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider J networked agents that are capable of perform-
ing some local computations, as well as exchanging messages
among neighbors. An agent should be understood as an ab-
stract entity, possibly representing a sensor node in a WSN, a
router monitoring Internet traffic, a hospital, insurance com-
pany or laboratory involved in e.g., a medical study; or a
sensing radio from a next-generation mobile communications
technology. The network is naturally modeled as an undi-
rected graph G(J , E), where the vertex set J := {1, . . . , J}
corresponds to the agents, and the edges in E represent pairs
of agents that can communicate. Agent j ∈ J communi-
cates with its single-hop neighboring agents in Nj , and the
size of the neighborhood is denoted by |Nj |. The graph G
is assumed connected, i.e., there exists a (possibly multihop)
path that joins any pair of agents in the network.

For the purpose of estimating an unknown vector β =
[β′

1, . . . ,β
′
Nf

]′ ∈ R
p, each agent j ∈ J has available a local

vector of observations yj ∈ R
nj as well as its own matrix of

inputs Xj ∈ R
nj×p. Agents collaborate to form the wanted

group-Lasso estimator (1) in a distributed fashion, which can
be rewritten as

β̂glasso := arg min
β

1

2

J∑
j=1

‖yj − Xjβ‖
2

2
+ μ

Nf∑
f=1

‖βf‖2 (2)

with y := [y′
1, . . . ,y

′
J]′ ∈ R

n with n :=
∑J

j=1
nj , and

X := [X′
1, . . . ,X

′
J]′ ∈ R

n×p. In lieu of a central controller,
the goal of this paper is to develop a distributed solver of
(2) based on in-network processing of the local training sets
{yj,Xj}j∈J . On a per iteration basis the algorithm should
comprise: (i) a communication step where agents exchange
messages with their neighbors; and (ii) a simple update step
where each agent uses this information to refine its local es-
timate. An additional desirable property is that the collection
of local estimates should eventually consent to the global so-
lution β̂glasso, namely, the estimate that would be obtained if
the entire training data set were centrally available.

2.1. Consensus-based reformulation of group-Lasso

To distribute the cost in (2), replace the global variable β

which couples the per-agent summands, with local variables
{βj ∈ R

p}J
j=1 representing candidate estimates of β per

agent. It is now possible to reformulate (2) as a convex con-
strained minimization problem

{
β̂j

}J

j=1
:= arg min

{βj}

1

2

J∑
j=1

⎡
⎣‖yj − Xjβj‖

2

2
+

2μ

J

Nf∑
f=1

‖βjf‖2

⎤
⎦

s. t. βj = βj′ , j ∈ J , j′ ∈ Nj (3)

where βj =
[
β′

j1, . . . ,β
′
jNf

]′
, j ∈ J . The equality con-

straints directly effect local agreement between neighboring

CRs. Since the communication graph G is assumed con-
nected, these constraints also ensure global consensus a
fortiori, meaning that βj = βj′ , ∀j, j′ ∈ J . As a direct
consequence of this observation, it follows that problems (2)
and (3) are equivalent, i.e., β̂glasso = β̂j , ∀ j ∈ J .

Problem (3) will be modified further for the purpose of
reducing the computational complexity of the resulting algo-
rithm. To this end, for a given a ∈ R

p consider the problem

min
β

⎡
⎣1

2
||β||22 − a′β + μ

Nf∑
f=1

‖βf‖2

⎤
⎦ , β := [β′

1, . . . ,β
′
Nf

]′

(4)

and notice that it is separable in the Nf subproblems

min
βf

[
1

2
||βf ||

2
2 − a′

fβf + μ‖βf‖2

]
, a := [a′

1, . . . ,a
′
Nf

]′.

(5)

Interestingly, each of these subproblems admits a closed-form
solution as given in the following lemma.

Lemma 1: The minimizer β�
f of (5) is obtained via the vector

soft-thresholding operator Tμ(·) defined by

β�
f = Tμ(af) := (‖af‖2 − μ)

+

af

‖af‖2

(6)

where (·)
+

:= max{·, 0} .
Problem (4) is an instance of group-Lasso (1) when

X′X = Ip, and a := X′y. As such, result (6) can be viewed
as a particular case of the operators in [4] and [7]. However
it is worth to prove Lemma 1 directly, since in this case the
special form of (5) renders the proof neat in its simplicity.
Proof: It will be argued that the solver of (5) takes the
form β�

f = taf for some scalar t ≥ 0. This is because
among all βf with the same �2-norm, the Cauchy-Schwarz in-
equality implies that the maximizer of a′

fβf is colinear with
(and in the same direction of) af . Substituting βf = taf

into (5) renders the problem scalar in t, with solution t� =
(‖af‖ − μ)

+
/ (‖af‖) completing the proof. �

In order to take advantage of the result in Lemma 1, aux-
iliary variables γj , j ∈ J are introduced as copies of βj .
Upon introducing appropriate constraints γj = βj that guar-
antee the equivalence of the formulations, problem (3) can be
recast as

min
{βj ,γj ,γj′

j
}

1

2

J∑
j=1

⎡
⎣‖yj − Xjγj‖

2

2
+

2μ

J

Nf∑
f=1

‖βjf‖2

⎤
⎦ (7)

s. t. βj = γ
j′

j = βj′ , j ∈ J , j′ ∈ Nj

γj = βj , j ∈ J .

The additional set of dummy variables {γj′

j } is inserted for
technical reasons that will become apparent in the ensuing
section, and will be eventually eliminated.

296

3. DISTRIBUTED GROUP-LASSO ALGORITHM

The distributed group-Lasso algorithm is constructed by op-
timizing (7) using the alternating direction method of multi-
pliers (AD-MoM) [12]. In this direction, associate Lagrange
multipliers vj , v̄

j′

j and v̆
j′

j with the constraints γj = βj ,

βj = γ
j′

j and βj′ = γ
j′

j respectively, and consider the aug-
mented Lagrangian with parameter c > 0

Lc [{βr}, γ, v] =
1

2

J∑
j=1

⎡
⎣‖yj − Xjγr‖

2

2
+

2μ

J

Nf∑
f=1

‖βjf‖2

⎤
⎦

+

J∑
j=1

[
v′

j(βj − γj) +
c

2
‖βj − γj‖

2
2

]

+
J∑

j=1

∑
j′∈Nj

[
(v̆j′

j)′(βj − γ
j′

j) +
c

2
‖βj − γ

j′

j ‖2
2

]

+

J∑
j=1

∑
j′∈Nj

[
(v̄j′

j)′(βj′ − γ
j′

j) +
c

2
‖βj′ − γ

j′

j ‖2
2

]
(8)

where variables are grouped as γ := {γj, {γ
j′

j }j′∈Nj
}j∈J

and multipliers v := {vj , {v̆
j′

j , v̄j′

j }j′∈Nj
}j∈J .

Application of the AD-MoM to the problem at hand con-
sists of a cycle of Lc minimizations in block-coordinate de-
scent fashion w.r.t. {βj} firstly, and γ secondly, together
with an update of the multipliers per iteration k = 0, 1, 2,
Omitting the details that can be found in [10, Appendix D],
the four main properties of this procedure that are instrumen-
tal to the resulting algorithm can be highlighted as:

[P1] Thanks to the introduction of the local copies βj and

the dummy variables γ
j′

j , the minimizations ofLc w.r.t.
both {βj} and γ decouple per agent j, thus enabling
distribution of the algorithm. Moreover, the constraints
in (7) involve variables of neighboring agents only,
which allows the required communications to be local
within each agent’s neighborhood.

[P2] Introduction of the variables γj separates the quadratic
cost ‖yj − Xjγj‖2

2 from the group-Lasso penalty∑Nf

f=1
‖βjf‖2. As a result, minimization of (8) w.r.t.

βj takes the form of (4), which admits a closed-form
solution via the vector soft-thresholding operator Tμ(·)
in (6).

[P3] Minimization of (8) w.r.t. γ consists of an uncon-
strained quadratic problem, which can also be solved
in closed form. In particular, the optimal γ

j′

j at itera-

tion k takes the value γ
j′

j (k) = (βj(k) + βj′(k)) /2,
and thus can be eliminated.

[P4] It turns out that it is not necessary to carry out updates
of the Lagrange multipliers {v̄j′

j , v̆
j′

j }j′∈Nj
separately,

Algorithm 1 : DGLasso
Initialize to zero {βj(0), γj(0), pj(−1),vj(−1)}j∈J , and lo-
cally run:
for k = 0, 1,. . . do

Transmit βj(k) to neighbors in Nj .
Update pj(k) using (9).
Update vj(k) using (10).
Update βj(k + 1) using (11).
Update γj(k + 1) using (12).

end for

but only of their sums which are henceforth denoted by
pj :=

∑
j′∈Nj

(v̄j′

j + v̆
j′

j). Hence, there is one price pj

per agent j = 1, . . . , J , which can be updated locally.

Building on these four features, it is established in [10,
Appendix D] that the proposed AD-MoM scheme boils down
to four parallel recursions run locally per agent, where f =
1, . . . , Nf in (11) and Mj := cIp + X′

jXj in (12)

pj(k) = pj(k − 1) + c
∑

j′∈Nj

[βj(k) − βj′(k)] (9)

vj(k) = vj(k − 1) + c[βj(k) − γj(k)] (10)

βjf (k + 1) = Tμ/J

⎛
⎝cγjf (k) − pjf (k) − vjf (k)

+ c
∑

j′∈Nj

[βjf (k) + βj′f (k)]

⎞
⎠ /[c(2|Nj | + 1)],

(11)

γj(k + 1) = M−1
j

(
X′

jyj + cβj(k + 1) + vj(k)
)
.

(12)

Recursions (9)-(12) comprise the novel DGLasso algorithm,
tabulated as Algorithm 1.

The algorithm entails the following steps. During itera-
tion k +1, agent j receives the local estimates {βj′(k)}j′∈Nj

from the neighboring agents and plugs them into (9) to
evaluate the dual price vector pj(k). The new multiplier
vj(k) is then obtained using the locally available vectors
{γj(k), βj(k)}. Subsequently, vectors {pj(k),vj(k)} are
jointly used along with {βj′(k)}j′∈Nj

to obtain βj(k + 1)
via Nf parallel vector soft-thresholding operations Tμ/J (·)
defined in (6). Finally, the updated γj(k + 1) is obtained
from (12), and requires the previously updated quantities
along with the vector of local observations yj and regression
matrix Xj . The (k + 1)st iteration is concluded after agent
j broadcasts βj(k + 1) to its neighbors. The distributed
K−fold CV protocol in [13] can be utilized to tune μ.

DGLasso algorithm does not require nested iterations,
since all local updates are given in closed form. Even if an

297

arbitrary initialization is allowed, the sparse nature of the esti-
mator sought suggest the all-zero vectors as a natural choice.
With regards to communication cost, only the p scalars in βj

have to be broadcasted per iteration. When p is large, major
savings can be attained by only exchanging the set of nonzero
entries. Further, the inter-agent communication cost does not
depend on the size of the local training sets. A computational
cost analysis will be deferred to the ensuing section.

Remark 1 (Reduction to distributed Lasso algorithm) When
Nf = p and there are as many groups as entries of β, then the

sum
∑Nf

f=1
‖βf‖ becomes the �1-norm of β, and group-Lasso

reduces to Lasso. In this case, DGLasso offers a distributed
algorithm to solve Lasso that coincides with the one in [13].

To close this section, it is useful to mention that conver-
gence of Algorithm 1 is ensured by the convergence of the
AD-MoM [12]. This result is formally stated next.

Proposition 1: Let G be a connected graph, and consider
recursions (9)-(12) that comprise the DGLasso algorithm.
Then, for any value of the step-size c > 0, the iterates βj(k)
converge to the group-Lasso solution [cf. (2)] as k → ∞,
i.e.,

lim
k→∞

βj(k) = β̂glasso, ∀ j ∈ J . (13)

In words, all local estimates βj(k) achieve consensus
asymptotically, converging to a common vector that coincides
with the desired estimator β̂glasso. Formally, if the number of
parameters p exceeds the number of data n, then a unique so-
lution of (1) is not guaranteed for a general design matrix X.
Proposition 1 remains valid however, if the right-hand side of
(13) is replaced by the set of minima; i.e., limk→∞ βj(k) ∈

arg minβ
1

J

∑J
j=1

‖yj − Xjβ‖
2

2
+ μ

∑Nf

f=1
‖βf‖2.

From (13), all asymptotic (as n grows large) proper-
ties of centralized (group-)Lasso carry over to its distributed
counterpart developed here. Those include not only the
bias, but also weak support consistency as well as estimation
consistency, which for the centralized (group-)Lasso have
been studied in e.g., [14, 15]. One can for instance borrow
the weighted versions of the sparsifying penalties in [14]
and [15], with weights provided by the (distributed) LS esti-
mates in order to ensure the estimators enjoy (asymptotically)
the aforementioned oracle properties.

4. PARALLEL PROCESSING

The algorithmic framework developed so far for distributed
sparse estimation, can also be applied to obtain efficient cen-
tralized (group-)Lasso solvers as special cases of Algorithm
1. These will be briefly described next, since they are impor-
tant on their own right as standalone sparse linear regression
tools. Moreover, they will serve as a baseline for comparison
with the distributed algorithms of Section 3, for the purpose

Algorithm 2 : GLasso
Initialize to zero {β(0), γ(0),v(−1)}, and run:
for k = 0, 1,. . . do

Update v(k) = v(k − 1) + c[β(k) − γ(k)].
Update βf (k + 1) = (1/c)Tμ (cγf (k) − vf (k)) , ∀ f .
Update γ(k + 1) = M−1 (X′y + cβ(k + 1) + v(k)).

end for

of establishing that DGLasso has the property of parallelizing
computations in multiprocessor architectures.

Recalling the network setup described in Section 2, let
J = 1 so that the network collapses to a single agent, and sup-
pose that this central processing unit has available the training
data set {y,X}, say. In this case DGLasso yields a novel al-
gorithm for the standard (centralized) group-Lasso estimator
(2), termed GLasso and tabulated as Algorithm 2. To arrive
at this result, start from the DGLasso recursions (9)-(12) and
note that: (i) index j can be dropped since there is a single
agent; (ii) summations across neighborhoods disappear for
the same reason; and (iii) p(k) = 0, ∀ k since (9) simpli-
fies to p(k) = p(k − 1) and p(−1) = 0. Because there
are no consensus constraints to be enforced, it is reasonable
that p(k) is no longer needed. Alternatively, one can directly
arrive at Algorithm 2 after applying AD-MoM iterations to
solve the problem

min
{β,γ}

⎡
⎣1

2
‖y − Xγ‖2

2
+ μ

Nf∑
f=1

‖βf‖2

⎤
⎦ , s. t. γ = β (14)

which is equivalent to (1). The sequence of iterates β(k) gen-
erated by Algorithm 2 is thus provably convergent to β̂glasso

as k → ∞, for any value of c > 0 [12].
Notice that the thresholding operator Tμ in GLasso sets

the entire sub-vector βf(k + 1) to zero whenever ‖cγf(k) −
vf (k)‖2 does not exceed μ, in par with the group sparsifying
property of group-Lasso. After the thresholding, a propor-
tional shrinkage typical of ridge (�2-penalized) estimators is
performed [2]. In this case however, the shrinkage by a factor
of c is due to quadratic term in the augmented Lagrangian.
Not surprisingly, thresholding/proportional shrinkage type of
updates have been also obtained in cyclic coordinate descent
(CD) algorithms for the elastic net [16]. Different from [1],
GLasso can handle a general (not orthonormal) regression
matrix X. Compared to the block-CD method proposed in
[4], GLasso does not require an inner Newton-Raphson re-
cursion per iteration.

As discussed in Remark 1, if Nf = p so that the fac-
tors coincide with the scalar entries of β, then GLasso
yields the Lasso estimator. In particular, the vector soft-
thresholding operator simplifies to its well-known scalar
counterpart Sμ(z) := (|z| − μ)+sign(z). The Lasso esti-
mator is expressible in terms of Sμ whenever the problem
is orthonormal or scalar, and thus Sμ typically character-
izes the updates of cyclic CD solvers for Lasso [2, p. 93].

298

When specialized to Lasso, Algorithm 2 coincides with the
split Bregman method in [5], provided a single iteration is
carried out in the minimization of a suitable “energy” intro-
duced in [5, eq. (1.1)]. Such inexact minimization heuristic
is suggested in [5] for algorithmic efficiency reasons, with-
out recognizing its relation to AD-MoM and lacking formal
convergence guarantees. This connection between AD-MoM
and the split Bregman method was also pointed out in [17].
To estimate hierarchical sparse models or reconstruct signals
based on incomplete Fourier data, related ideas based on cost
decoupling to capitalize on alternating minimization methods
were applied in [18] and [19].

4.1. Computational load balancing

Consider the DGLasso recursions (9)-(12). Update (12) in-
volves inversion of the p × p matrix Mj := cIp + X′

jXj

per agent, that may be computationally demanding for suf-
ficiently large p. Fortunately, this operation as well as the
evaluation of the local “ridge” estimate [cIp +X′

jXj]
−1X′

jyj

can be carried out offline before running the algorithm. Other
than that, the updates comprising DGLasso are simple and
solely involve scaling/addition and thresholding of (eventu-
ally sparse) p-dimensional vectors. As pointed out in [5], in
several applications of interest there is specific structure that
can be exploited to efficiently invert the aforementioned ma-
trix. Circulant structure has been shown to arise in compres-
sive sampling for magnetic resonance imaging [5], hence the
inversion can be carried out through a suitable DFT. Spar-
sity is another characteristic of the matrix that can be capital-
ized upon in, e.g., multiple frequency-hopping signal estima-
tion [20].

In any case, the matrix inversion lemma can be invoked to
obtain

M−1
j = (1/c)

[
Ip − X′

j

(
cInj

+ XjX
′
j

)−1
Xj

]
.

In this new form, the dimensionality of the matrix to invert
becomes nj × nj , where nj is the number of locally ac-
quired data. For highly underdetermined regression problems
(nj � p) typically arising in genomics or computational
biology [2, Ch. 18], (D)GLasso enjoys considerable com-
putational savings through the aforementioned matrix inver-
sion identity. More importantly, one also recognizes that the
distributed operation parallelizes the numerical computation
across agents: if GLasso is run centrally with all network-
wide data y := [y′

1, . . . ,y
′
J]′ and X := [X′

1, . . . ,X
′
J]′ at

hand, then the matrix to invert has dimension n =
∑

j∈J nj ,
which increases linearly with the network size J . Beyond a
networked scenario as described in Section 2, DGLasso pro-
vides an attractive alternative for computational load balanc-
ing in timely multi-processor architectures.

µ

G
ro

up
 n

or
m

s

Iteration index k

G
ro

up
 n

or
m

s

Fig. 1. (top) Group-Lasso regularization path; (bottom) evo-
lution of the per factor norms for agents 2 and 7.

5. NUMERICAL EXAMPLE

A simulated test is now presented to corroborate the con-
vergence of DGLasso. The example will rely on the birth-
weight dataset considered in the seminal group-Lasso work
of [1]. The objective is to predict the human birthweight from
Nf = 8 factors including the mother’s age, weight, race,
smoke habits, number of previous premature labors, his-
tory of hypertension, uterine irritability, and
number of physician visits during the first trimester of
pregnancy. Third-order polynomials were considered to
model nonlinear effects of the age and weight on the
response, augmenting the model size to p = 12 by grouping
the polynomial coefficients in two subsets of three variables.
The network of J = 10 agents is simulated as a random geo-
metric graph on [0, 1]2, with communication range r = 0.4.
The n = 189 data samples are randomly split across agents,
so that nj = 18 for j ∈ [1, 9], and n10 = 27.

By running Algorithm 1 and using “warm starts” [16], the
path of group-Lasso solutions is computed at 100 different
values of the regularization parameter μ. The penalty coef-
ficient is set to c = 8, since several experiments suggested
this value leads to fastest convergence. Fig. 1 (top) shows the
regularization path for agent j = 2, where for diminishing
values of μ more factors enter the model. The dashed verti-
cal line indicates the model for μCV = 8.513, obtained via
the 10-fold distributed CV procedure in [13]. Consensus is

299

Iteration index k

E
rr

or
 to

 c
en

tra
liz

ed
 s

ol
ut

io
n

Fig. 2. Global estimation error evolution.

achieved after few iterations, as observed from Fig. 1 (bot-
tom) which depicts the evolution of the factors’ strength mea-
sured by ‖βjf‖2, for two representative agents with j = 2, 7.
DGLasso converges to the same prediction model as in [1],
and determines that visits is not significant even from the
first iterations, allowing for early model selection.

We also compare DGLasso with the distributed subgra-
dient method in [11], for which equal neighbor combining
weights, zero initial conditions, and a diminishing stepsize
α(k) = 10−2/k are adopted. As figure of merit, the global er-
ror metric ε(k) := J−1

∑J
j=1

‖β̂j(k)− β̂glasso‖2
2 is evaluated

for all schemes. Algorithm 2 was utilized to obtain β̂glasso,
and the resulting errors are depicted in Fig. 2. The decreas-
ing trend of ε(k) confirms that all local estimates converge
to β̂glasso, as stated in Proposition 1. All-zero initial vectors
speed up DGLasso. With regards to the subgradient method,
the speed of convergence is extremely slow since a descent
along a subgradient direction is not effective in nulling fac-
tors of the local estimates.

6. CONCLUDING REMARKS

An in-network processing-based algorithm for fitting a group-
Lasso model is developed in this paper, based on AD-MoM
iterations. Apart from an offline matrix inversion, the result-
ing per agent DGLasso updates are simple and given in closed
form. In a nutshell, the DGLasso recursions entail linear com-
binations of vectors and a soft-thresholding operation. Inter-
estingly, DGLasso has the property of parallelizing computa-
tions across agents, and requires affordable communications
of sparse messages within the neighborhood. The sequences
of local estimates generated by DGLasso are provably conver-
gent to β̂glasso, and the algorithm can outperform alternatives
based on distributed subgradient descent.

7. REFERENCES

[1] M. Yuan and Y.Lin, “Model selection and estimation in regres-
sion with grouped variables,” J. Royal Statistic. Soc. B, vol. 68,

pp. 49–67, 2006.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, second edition, 2009.

[3] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” J. Royal. Statist. Soc. B, vol. 58, pp. 267–288, 1996.

[4] A. T. Puig, A. Wiesel, and A. O. Hero, “A multidimensional
shrinkage-thresholding operator,” in Proc. of Wkshp. on Stat.
Signal. Proc., Cardiff, Wales, Aug/Sep 2009.

[5] T. Goldstein and S. Osher, “The split bregman method for l1
regularized problems,” SIAM Journal on Imaging Sciences,
vol. 2, pp. 323–343, 2009.

[6] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group
lasso and sparse group lasso,” Technical Report, 2010.

[7] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse
reconstruction by separable approximation,” IEEE Trans. Sig-
nal Process., vol. 57, pp. 2479–2493, 2009.

[8] V. Kekatos and G. B. Giannakis, “Selecting reliable sensors via
convex optimization,” in Proc. of Intl. Wkshp. on Signal Proc.
Adv. in Wireless Comm., Marrakech, Morroco, June 2010.

[9] J.-A Bazerque and G. B. Giannakis, “Distributed spectrum
sensing for cognitive radio networks by exploiting sparsity,”
IEEE Trans. Signal Process., vol. 58, pp. 1847–1862, 2010.

[10] J.-A Bazerque, G. Mateos, and G. B. Giannakis, “Group-lasso
on splines for spectrum cartography,” IEEE Trans. Signal Pro-
cess., (revised).

[11] A. Nedic and A. Ozdaglar, “Distributed subgradient methods
for multi-agent optimization,” IEEE Transactions on Auto-
matic Control, vol. 54, pp. 48–61, 2009.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Athena-Scientific, 1999.

[13] G. Mateos, J.-A Bazerque, and G. B. Giannakis, “Distributed
sparse linear regression,” IEEE Trans. Signal Process., 2010.

[14] H. Zou, “The adaptive lasso and its oracle properties,” J. Amer.
Statist. Assoc., vol. 101, pp. 1418–1429, 2006.

[15] H. Wang and C. Leng, “A note on adaptive group lasso,”
Computational Statistics and Data Analysis, vol. 52, pp. 5277–
5286, 2008.

[16] J. Friedman, T. Hastie, and R. Tibshirani, “Regularized paths
for generalized linear models via coordinate descent,” Journal
of Statistical Software, vol. 33, 2010.

[17] E. Esser, “Applications of lagrangian-based alternating direc-
tion methods and connections to split bregman,” Technical Re-
port, 2009.

[18] P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar, “Col-
laborative hierarchical sparse modeling,” in Proc. of 44th Conf.
on Info. Sciences and Systems, Princeton, NJ, March 2010.

[19] J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction
method for TVL1-L2 signal reconstruction from partial fourier
data,” IEEE Jrnl. Sel. Topics in Signal Process., vol. 4, pp.
288–297, 2010.

[20] D. Angelosante, G. B. Giannakis, and N. D. Sidiropoulos,
“Estimating multiple frequency-hopping signal parameters via
sparse linear regression,” IEEE Trans. Signal Process., 2010.

300

