
DISTRIBUTED LASSO FOR IN-NETWORK LINEAR REGRESSION∗

Juan Andrés Bazerque, Gonzalo Mateos and Georgios B. Giannakis

Dept. of ECE, Univ. of Minnesota, 200 Union Street SE, Minneapolis, MN 55455, USA

ABSTRACT

The least-absolute shrinkage and selection operator (Lasso) is a pop-
ular tool for joint estimation and continuous variable selection, es-
pecially well-suited for the under-determined but sparse linear re-
gression problems. This paper develops an algorithm to estimate
the regression coefficients via Lasso when the training data is dis-
tributed across different agents, and their communication to a cen-
tral processing unit is prohibited for e.g., communication cost or pri-
vacy reasons. The novel distributed algorithm is obtained after refor-
mulating the Lasso into a separable form, which is iteratively mini-
mized using the alternating-direction method of multipliers so as to
gain the desired degree of parallelization. The per agent estimate
updates are given by simple soft-thresholding operations, and inter-
agent communication overhead remains at affordable level. Without
exchanging elements from the different training sets, the local es-
timates provably consent to the global Lasso solution, i.e., the fit
that would be obtained if the entire data set were centrally available.
Numerical experiments corroborate the convergence and global op-
timality of the proposed distributed scheme.

Index Terms—Distributed estimation, Lasso, sparse regression.

1. INTRODUCTION

The least-absolute shrinkage and selection operator [1], best known
as the Lasso, is a regularization technique capable of performing
both estimation and continuous variable selection in linear regres-
sion problems. It combines the features of ridge regression and sub-
set selection – standard techniques traditionally utilized to improve
the least-squares (LS) estimates; see e.g. [2, p. 57]. The Lasso yields

β̂lasso = arg min
β

1

2
‖y −Xβ‖22 + λ‖β‖1 (1)

where the �1 (�22) norm of a vector is defined as the sum of abso-
lute values (squares) of its entries; the training data set {yl,xl}

N
l=1

is collected in the vector y := [y1 . . . yN]T ∈ R
N ; and the matrix

X := [x1 . . .xN]T ∈ R
N×p. The nonzero coefficients in the esti-

mate β̂lasso indicate which variables are relevant in the resulting lin-
ear predictor y = xTβ̂lasso. Parameter λ ≥ 0 controls the amount of
shrinkage over β̂lasso effected by the �1-norm sparsity-encouraging
penalty, and is typically chosen via model selection techniques such
as cross-validation (CV); see e.g., [2]. Problem (1) is also known as
basis pursuit denoising [3], in the context of finding the best sparse
signal expansion using an overcomplete basis set.

∗Work in this paper was supported by the NSF grants CCF-0830480 and
ECCS-0824007; and also through collaborative participation in the Commu-
nications and Networks Consortium sponsored by the U. S. Army Research
Laboratory under the Collaborative Technology Alliance Program, Coopera-
tive Agreement DAAD19-01-2-0011. The U. S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon.

Finding β̂lasso requires solving (iteratively) for any given value
of λ a quadratic program (QP) with linear constraints. While stan-
dard QP solvers can be invoked to this end, an increasing amount
of effort has been put recently into developing fast algorithms that
capitalize on the unique properties of the Lasso; see, e.g. [4], [5], [6]
and references therein.

Typically, the training set is assumed to be centrally available,
so that it can be jointly processed to obtain β̂lasso. However, col-
lecting all data in a central location or fusion center (FC) may be
prohibitive in various applications of interest. Distributed linear re-
gression problems commonly arise with wireless sensor networks
(WSNs), where data is inherently scattered across a large geographi-
cal area under surveillance. Sensors are battery operated, thus trans-
ferring all data to an FC (possibly located far away) may be infea-
sible due to power constraints imposed on the individual nodes. In-
network-based Lasso estimators also find application in the sensing
task of cognitive radio networks [7]. In other cases such as the Inter-
net or collaborative inter-laboratory studies, agents providing private
data for the purpose of e.g., fitting a sparse model, may not be willing
to share their training data but only the learning results [8].

Having this context in mind, the present paper develops a
consensus-based distributed algorithm for the Lasso. The novel ap-
proach entails reformulating (1) as a convex constrained optimiza-
tion problem, whose structure lends itself naturally to distributed
implementation. It is then possible to capitalize on this favorable
structure by resorting to the alternating-direction method of mul-
tipliers (AD-MoM), an iterative optimization method especially
well-suited for parallel processing [9, p. 253]. This way, provably
convergent local recursions are derived to update each agent’s local
estimate, as well as a vector of dual prices responsible of effecting
agreement across all agents. Thanks to the constrained reformu-
lation of (1), the updates are obtained in closed form by simple
soft-thresholding operations. On a per iteration basis, agents only
exchange their current local estimate with their neighbors, so that
the training data efficiently percolates to all agents without compro-
mising its secrecy. Finally, a distributed CV procedure is developed
to select the best λ in (1), in the sense of minimizing an estimate of
the expected prediction error. The algorithm exploits “warm starts”
to efficiently compute the Lasso path of solutions over a grid of
values for λ [4].

2. PRELIMINARIES AND PROBLEM STATEMENT

Consider J networked agents that are capable of performing some
local computations, as well as exchanging messages among neigh-
bors. An agent should be understood as an abstract entity, possibly
representing a sensor node in a WSN, a router monitoring Internet
traffic, a hospital, insurance company or laboratory involved in e.g.,
a medical study; or a sensing radio from a next-generation mobile
communications technology. The network is naturally modeled as
an undirected graph G(J , E), where the vertex set J := {1, . . . , J}

2978978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

corresponds to the agents, and the edges in E represent pairs of
agents that can communicate. Agent j ∈ J communicates with
its single-hop neighboring agents in Nj , and the size of the neigh-
borhood is denoted by |Nj |.

The graph G is assumed connected, i.e., there exists a (possibly
multihop) path that joins any pair of agents in the network.

Each agent j ∈ J has available a local training data set
{yl,xl}

Nj

l=1 = {yj ,XJ} of size Nj . Agents collaborate to form the
estimator (1) in a distributed fashion, which can be rewritten as

β̂lasso = arg min
β

1

2

J∑
j=1

‖yj −Xjβ‖
2
2 + λ‖β‖1 (2)

where y := [yT
1 . . .yT

J]T ∈ R
N×1 with N :=

∑J

j=1 Nj and X :=

[XT
1 . . .XT

J]T ∈ R
N×p.

The objective of this paper is to develop and analyze in terms
of convergence, a distributed algorithm for the Lasso based on in-
network processing of the locally available training data. The de-
scribed setup naturally suggests three characteristics that the algo-
rithm should exhibit: (i) convergence to the global solution β̂lasso in
(2); (ii) processing per agent should be kept as simple and efficient
as possible; and (iii) communications among agents should be con-
fined to the single-hop neighbors, and avoid exchanges of elements
from the different training sets.

3. DISTRIBUTED ESTIMATION VIA LASSO

This section introduces the D-Lasso algorithm, going through the
algorithmic construction steps, and salient features of its operation.
Its convergence to the global estimator β̂lasso is also established.

3.1. A consensus-based reformulation of the Lasso

To distribute the cost in (2), replace the global variable β which
couples the per-agent summands with local variables {βj}

J
j=1 rep-

resenting candidate estimates of β per agent. It is now possible to
reformulate (2) as a convex constrained minimization problem:

{
β̂j

}J

j=1
= arg min

{βj}

1

2

J∑
j=1

[
‖yj −Xjβj‖

2
2 +

2λ

J
‖βj‖1

]
(3)

s. t. βj = βi, j ∈ J , i ∈ Nj .

The equality constraints directly effect local agreement across each
agent’s neighborhood. If the communication graph G is further as-
sumed connected, these constraints also ensure global consensus a
fortiori, meaning that βj = βj′ , ∀j, j

′ ∈ J . Indeed, let P (j, j′) :
j, j1, j2, . . . , jn, j′ be a path on G that joins an arbitrary pair of
agents (j, j′). Because contiguous agents in the path are neighbors
by definition, the corresponding chain of equalities βj = βj1 =
βj2 = . . . = βjn = βj′ effected by the constraints in (3) imply
βj = βj′ as desired. Thus, the constraints can be eliminated by re-
placing all the {βj} with a common β, in which case the cost in (3)
reduces to the one in (2). The previous discussion has established
the following important result.

Proposition 1: If G is a connected graph, (2) and (3) are equivalent
optimization problems, in the sense that β̂lasso = β̂j , ∀ j ∈ J .

3.2. The D-Lasso algorithm

In order to tackle (3) in a distributed fashion, we will resort to the
AD-MoM [9]. To this end, consider first the auxiliary local variables

{{γ̃i
j}i∈Nj

, {γ̆i
j}i∈Nj

}j∈J , and replace the constraints in (3) with
the equivalent ones βj = γ̃i

j , βi = γ̆i
j , γ̃i

j = γ̆i
j , j ∈ J , i ∈ Nj .

Variables {γ̃i
j , γ̆

i
j} are only used to derive the local recursions but

will be eventually eliminated.
Next, consider the additional group of auxiliary local variables

{γj}
J
j=1, one per agent. Through them, the goal is to split the cost in

(3) so that the squared error loss depends on the {γj}, while the �1-
norm penalty is a function of the variables {βj}. This way, the opti-
mizations with respect to (w.r.t.) {βj} will be shown to boil down to
a Lasso in the so-termed orthonormal regression setup, which corre-
sponds to having XT X = Ip in (1), where Ip denotes the p×p iden-
tity matrix. Solutions in this case become available in closed form,
in the form of soft-thresholding operations [2, p. 69]. A similar idea
was applied to �1-norm regularized problems in [5]. While introduc-
ing appropriate constraints βj = γj that guarantee the equivalence
of the formulations, (3) can be recast as

min
{βj},γ

1

2

J∑
j=1

[
‖yj −Xjγj‖

2
2 +

2λ

J
‖βj‖1

]
(4)

s. t. βj = γj , j ∈ J
βj = γ̃i

j , βi = γ̆i
j , γ̃i

j = γ̆i
j , j ∈ J , i ∈ Nj

where γ := {γj , {γ̃
i
j}i∈Nj

, {γ̆i
j}i∈Nj

}j∈J for notational conve-
nience. As a consequence of Proposition 1, the optimal solutions of
(4) correspond to β̂lasso across all agents. Different from (2) how-
ever, (4) has a separable structure that facilitates distributed imple-
mentation. To capitalize on this favorable structure, associate La-
grange multipliers u := {uj , {ũ

i
j}i∈Nj

, {ŭi
j}i∈Nj

}j∈J with the
constraints in (4), and form the augmented Lagrangian function

La [{βj}, γ,u] =
1

2

J∑
j=1

[
‖yj −Xjγj‖

2
2 +

2λ

J
‖βj‖1

]

+
J∑

j=1

u
T
j (βj − γj) +

c

2

J∑
j=1

‖βj − γj‖
2
2

+
J∑

j=1

∑
i∈Nj

[
(ũi

j)
T (βj − γ̃

i
j) + (ŭi

j)
T (βi − γ̆

i
j)

]

+
c

2

J∑
j=1

∑
i∈Nj

[
‖βj − γ̃

i
j‖

2
2 + ‖βi − γ̆

i
j‖

2
2

]
. (5)

The constraints γ ∈ Cγ := {γ : γ̃i
j = γ̆i

j , j ∈ J , i ∈ Nj} have
not been dualized, while c > 0 is a preselected penalty coefficient.

The AD-MoM entails an iterative process comprising three steps
per iteration k = 0, 1, 2, First, the augmented Lagrangian is
minimized w.r.t. the collection {βj}, considering the auxiliary vari-
ables in γ and multipliers in u as fixed parameters. The resulting
minimizers define the updates {βj(k + 1)} corresponding to itera-
tion k+1. A unique set of minimizers is guaranteed to exist, from the
strict convexity of the augmented Lagrangian. The pertinent mini-
mization problem decouples into J sub-problems

βj(k + 1) = arg min
βj

⎧⎨
⎩

λ

J
‖βj‖1 + u

T
j (k)βj +

c

2
‖βj − γj(k)‖22

+
∑

i∈Nj

[
ũ

i
j(k) + ŭ

j
i (k)

]T

βj

+
c

2

∑
i∈Nj

[
‖βj − γ̃

i
j(k)‖22 + ‖βj − γ̆

j
i (k)‖22

]⎫⎬
⎭ (6)

2979

Algorithm 1 : D-lasso

Initialize to zero {βj(0), γj(0),pj(−1),uj(−1)}j∈J .
for k = 0, 1,. . . all j ∈ J do

Transmit βj(k) to neighbors inNj .
Update pj(k) via (7) and uj(k) via (8).
Update βj(k + 1) using (9).
Update γj(k + 1) using (10).

end for

that can be cast as an orthonormal Lasso (details in [10]). Due to the
variable splitting procedure that led to (4) and the block-coordinate
descent nature of the AD-MoM, the “undesirable” coupling term
‖yj −Xjγj‖

2
2 is not present in (6). For these reasons, it is possible

to obtain βj(k + 1) in closed form as detailed next [cf. (9)].
Second, La is minimized w.r.t. γ ∈ Cγ while keeping all other

variables fixed, to yield the updates γ(k + 1). Finally, in the third
step the Lagrange multipliers in u are updated via dual gradient as-
cent iterations [9], and the cycle of three steps is repeated for the
(k + 2)nd iteration. The aforementioned procedure amounts to a
block-coordinate descent method with dual variable updates. At
each step while minimizing the augmented Lagrangian, the variables
not being updated are treated as fixed parameters and substituted
with their most up to date values.

The separability of the augmented Lagrangian in (5) comes in
two flavors, first w.r.t. the variable groups {βj} and γ , as well as
across agents j ∈ J . This in turn leads to highly parallelized, sim-
plified recursions corresponding to the aforementioned three steps.
Specifically, the AD-MoM solver leads to the following recursions
to be run locally at every agent (detailed derivations are in [10])

pj(k) = pj(k − 1) + c
∑

i∈Nj

[βj(k)− βi(k)] (7)

uj(k) = uj(k − 1) + c[βj(k)− γj(k)] (8)

βj(k + 1) = [c(2|Nj |+ 1)]−1 S

⎛
⎝cγj(k)− pj(k)− uj(k)

+c
∑

i∈Nj

[βj(k) + βi(k)] , λ/J

⎞
⎠ (9)

γj(k + 1) =
[
cIp + X

T
j Xj

]−1 (
X

T
j yj + cβj(k + 1) + uj(k)

)
(10)

where pj(k) := 2
∑

i∈Nj
ũi

j(k). The function S : R
p × R → R

p

performs a coordinate-wise soft-thresholding operation, i.e., its ith
coordinate is given by [S(z, μ)]i = sign([z]i) (|[z]i| − μ)+ where
(·)+ := max(0, ·). Recursions (7)-(10) comprise the novel D-Lasso
algorithm, tabulated as Algorithm 1. As promised, the inherently re-
dundant auxiliary variables {γ̃i

j , γ̆
i
j , ŭ

i
j} have been eliminated. Each

agent, say the jth, does not need to separately keep track of all its
multipliers {ũi

j(k)}i∈Nj
, but only to update their sum pj(k).

The algorithm entails the following steps. During iteration k+1,
agent j receives the local estimates {βi(k)}i∈Nj

from its neigh-
bors and plugs them into (7) to evaluate the dual price vector pj(k).
The new multiplier uj(k) is then obtained using the locally available
vectors {γj(k), βj(k)}. Subsequently, vectors {pj(k),uj(k)} are
jointly used along with {βi(k)}i∈Nj

to obtain βj(k + 1) via the
soft-thresholding/proportional shrinkage operation in (9). Finally,
the updated γj(k + 1) is obtained from (10) using the locally avail-

able training data. The (k + 1)st iteration is concluded after agent j
broadcasts βj(k + 1) to its neighbors.

Agents only exchange their sparse local estimates with their
neighbors, and the communication cost does not depend on the
size of the local training sets. The inversion of the p × p matrix
cIp + XT

j Xj in (10) as well as the evaluation of the local “ridge”
estimate [cIp + XT

j Xj]
−1XT

j yj have to be performed only once,
and can be done offline before D-Lasso is run. Given these quan-
tities, the updates (7)-(10) solely involve scaling/addition of sparse
p-dimensional vectors and a soft-thresholding operation in (9).

As asserted in the ensuing proposition, D-Lasso generates local
iterates βj(k) that converge to the global Lasso. The proof in [10]
amounts to checking that the qualification conditions for the conver-
gence of the AD-MoM (as per Proposition 4.2 in [9, p. 257]) are
satisfied by the optimization problem (4).

Proposition 2: Let G be a connected graph and consider the D-
Lasso recursions (7)-(10). Then, for any value of the penalty coeffi-
cient c > 0, the iterates βj(k) converge to the Lasso [cf. (2)], i.e.,
limk→∞ βj(k) = β̂lasso, ∀ j ∈ J .

If the number of parameters p is greater than the size of the data
set N , then a unique solution of (2) is not guaranteed for a general
X. Proposition 2 remains valid however, if the equality is replaced
by a set of minimizers; that is,

lim
k→∞

βj(k) ∈ arg min
β

1

2

J∑
j=1

‖yj −Xjβ‖
2
2 + λ‖β‖1.

4. DISTRIBUTED CROSS-VALIDATION

The D-Lasso algorithm in Section 3.2 assumes knowledge of the
regularization parameter λ. This section introduces an algorithm to
select λ, by performing CV in a distributed fashion. The training
data is not flooded across the network, and only local exchanges
(within the neighborhood) are required to this end.

The goal is to select the best parameter λ from a grid of candi-
date values λ ∈ Λ := {λ1, . . . , λL}, ordered as λ1 > λ2 > . . . >
λL, by properly modifying the leave-one-out CV technique (see e.g.,
[2].) For this purpose, each agent j ∈ J is set aside at a time and
the rest of the agents i ∈ J (−j) := {i ∈ J , i �= j} collaborate
to obtain β̂

(−j)
i by running the D-Lasso algorithm. After conver-

gence, the common β̂(−j) := β̂
(−j)
i is communicated to agent j

who forms the prediction error estimate based on its set aside data,
i.e., ej(λ) := ||yj −Xjβ̂

(−j)||22. The same process is repeated for
all λ = λ1, . . . , λL using “warm starts” as in [4], and the results are
stored in the L× 1 vector ej := [ej(λ1) . . . ej(λL)]T . Simulations
suggest that with this type of initialization, convergence can be at-
tained after a few iterations provided consecutive values of λ are not
too far apart.

After repeating this procedure for all λ ∈ Λ and all j ∈ J , each
agent has available the error vector ej . The decision on which λ to
use is based on the average of these errors across nodes j ∈ J .

e :=
1

J

J∑
j=1

ej .

This average can be carried out using consensus averaging algo-
rithms; see e.g., [11]. Once the vector e := [e(λ1) . . . e(λL)]T

becomes available to all agents, they can independently select the
best λ as the one corresponding to the minimum entry of e, i.e,

λdcv := arg min
λl∈Λ

{e(λl)}
L
l=1.

2980

2.533.54

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

log(λ)

C
oe

ffi
ci

en
ts

Lasso

2.533.54

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

log(λ)

C
oe

ffi
ci

en
ts

D−Lasso

Fig. 1. SRBCT data: profiles of estimated coefficients for the cen-
tralized Lasso (left) and using the D-Lasso algorithm (right). For the
latter, the path of solutions of a representative agent is shown.

Note that λdcv coincides with its centralized counterpart, that would
be obtained by a standard CV scheme when applied to the entire data
set using the same partition of the data in J folds. Generalized vari-
ants of this distributed CV technique are also possible by clustering
agents in groups that are set aside one at a time, possibly removing
part of the data of each user [10].

5. NUMERICAL EXAMPLE

A simulated test is now presented to corroborate the convergence of
the D-Lasso algorithm. The data is taken from the example in [2, p.
651], which consists of N = 63 samples of p = 2308 genes mea-
sured with microarrays. The entries of y take values in {1, 2, 3, 4},
corresponding to classes of small round blue-cell tumors (SRBCT)
found in children. For the purpose of illustration, the response vari-
able is treated here as quantitative so that this becomes a highly un-
derdetermined linear regression problem. The network of J = 10
agents is simulated as a random geometric graph on the unity square,
with communication range r = 0.3. Data is randomly split across
agents, so that Nj = 6 for j ∈ [1, 9] and N10 = 9.

By running the D-Lasso algorithm and using “warm starts”, the
path of Lasso solutions is computed at 100 different values of the
regularization parameter λ. The values are evenly spaced on a log-
arithmic scale in the interval [10−4λmax, λmax], where λmax is the
minimum value such that β̂lasso �= 0 [4]. The penalty coefficient is
set to c = 7, since several experiments suggested this value leads to
fastest convergence. For agent j = 3, the results for the first 25 val-
ues of log(λ) are depicted on the right plot in Fig. 1. To corroborate
that consensus is achieved to the desired global estimator, the path
of solutions is also computed (centrally) via standard second-order
cone programming software. The resulting regularization paths are
shown on the left plot in Fig. 1, and are essentially identical to the
ones obtained using the D-Lasso algorithm. As λ decreases, so does
the amount of shrinkage, and more variables enter the model. The
piecewise-linear coefficient profile appears as piecewise-nonlinear
because log(λ) is used in the abscissa.

The leave-one-agent-out CV (in this case also ten-fold CV) pro-
cedure in Section 4 yields an optimum value of λdcv = 0.4874,
where only 32 variables enter the model. The Lasso selects those
genes with the strongest effects, a feature particularly attractive when

it comes to interpretation of high-dimensional data.

6. CONCLUDING REMARKS

An in-network processing-based algorithm for fitting a Lasso model
is developed in this paper, that is suitable for distributed, sparse, lin-
ear regression tasks. The Lasso is reformulated into an equivalent
constrained form, whose structure lends itself naturally to distributed
implementation via the alternating-direction method of multipliers.
Apart from an offline matrix inversion, the resulting per agent D-
Lasso updates are extremely simple: just linear combinations of vec-
tors and soft-thresholding operations. Agents only exchange sparse
messages within the neighborhood, and the communication cost is
independent of the size of the local training sets. The sequences
of local estimates generated by the D-Lasso algorithm are provably
convergent to β̂lasso, while a distributed cross-validation procedure is
proposed to select the tuning parameter λ.

The framework and techniques introduced here to develop the
D-Lasso algorithm are readily applicable to other related models.
These include the adaptive Lasso that guarantees consistency of esti-
mation and variable selection, the elastic net for correlated variables,
and the smoothness-encouraging fused Lasso; see e.g. [2]1.

7. REFERENCES

[1] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” J. Royal. Statist. Soc. B, vol. 58, pp. 267–288, 1996.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, Springer, second edition, 2009.

[3] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM Journal on Scientific
Computing, vol. 20, pp. 33–61, 1998.

[4] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani, “Path-
wise coordinate optimization,” Ann. Appl. Stat., vol. 1, pp.
302–332, 2007.

[5] T. Goldstein and S. Osher, “The split bregman method for l1
regularized problems,” UCLA CAM Report 08-29.

[6] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse
reconstruction by separable approximation,” IEEE Trans. Sig-
nal Process., vol. 57, pp. 2479–2493, 2009.

[7] J.-A Bazerque and G. B. Giannakis, “Distributed spectrum
sensing for cognitive radio networks by exploiting sparsity,”
IEEE Trans. Signal Process., 2010 (to appear).

[8] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu,
“Tools for privacy preserving distributed data mining,” ACM
SIGKDD Explorations, vol. 4, 2003.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation: Numerical Methods, Athena-Scientific, second
edition, 1999.

[10] G. Mateos, J.-A Bazerque, and G. B. Giannakis, “Distributed
sparse linear regression,” Ann. Appl. Stat., (submitted).

[11] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings
of the IEEE, vol. 95, pp. 215–233, Jan. 2007.

1The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies of
the Army Research Laboratory or the U. S. Government.

2981

