
5262 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

Distributed Sparse Linear Regression
Gonzalo Mateos, Student Member, IEEE, Juan Andrés Bazerque, Student Member, IEEE, and

Georgios B. Giannakis, Fellow, IEEE

Abstract—The Lasso is a popular technique for joint estimation
and continuous variable selection, especially well-suited for sparse
and possibly under-determined linear regression problems. This
paper develops algorithms to estimate the regression coefficients
via Lasso when the training data are distributed across different
agents, and their communication to a central processing unit
is prohibited for e.g., communication cost or privacy reasons.
A motivating application is explored in the context of wireless
communications, whereby sensing cognitive radios collaborate to
estimate the radio-frequency power spectrum density. Attaining
different tradeoffs between complexity and convergence speed,
three novel algorithms are obtained after reformulating the Lasso
into a separable form, which is iteratively minimized using the
alternating-direction method of multipliers so as to gain the
desired degree of parallelization. Interestingly, the per agent
estimate updates are given by simple soft-thresholding operations,
and inter-agent communication overhead remains at affordable
level. Without exchanging elements from the different training
sets, the local estimates consent to the global Lasso solution, i.e.,
the fit that would be obtained if the entire data set were centrally
available. Numerical experiments with both simulated and real
data demonstrate the merits of the proposed distributed schemes,
corroborating their convergence and global optimality. The ideas
in this paper can be easily extended for the purpose of fitting
related models in a distributed fashion, including the adaptive
Lasso, elastic net, fused Lasso and nonnegative garrote.

Index Terms—Distributed linear regression, Lasso, parallel op-
timization, sparse estimation.

I. INTRODUCTION

C ONSIDER the classical setup for linear regression, in
which an input vector is given,

and the goal is to predict the real-valued scalar response ,
where stands for matrix transposition. A linear approximation
to the regression function is adopted to this end, namely

, where is the vector
of model coefficients, and the intercept is . Given a training
data set , the model parameters are to be
estimated according to a suitable criterion. The long standing
and most popular criterion is least-squares (LS), which i) often
times yields unsatisfactory prediction accuracy and ii) fails
to provide a parsimonious model estimate whereby only the

Manuscript received January 29, 2010; accepted June 20, 2010. Date of publi-
cation July 01, 2010; date of current version September 15, 2010. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Huaiyu Dai. Work in this paper was supported by the NSF Grants
CCF-0830480 and ECCS-0824007. Part of the paper was presented at the Inter-
national Conference on Acoustics, Speech and Signal Processing, Dallas, TX,
March 15-19, 2010.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
mate0058@umn.edu; bazer002@umn.edu; georgios@umn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2010.2055862

most relevant predictor variables are selected; see, e.g., [18].
Parsimony is a particularly attractive feature for interpretation
purposes, especially in high-dimensional problems, where is
large.

The least-absolute shrinkage and selection operator [32], ab-
breviated as Lasso, is a regularization technique capable of per-
forming both estimation and variable selection. It combines the
features of ridge regression and subset selection, the two pop-
ular techniques traditionally employed to improve the LS es-
timates by separately dealing with the aforementioned limita-
tions i) and ii). Upon defining and
the regression matrix , the Lasso
estimator is the minimizer of the following nonsmooth convex
optimization problem

(1)

where denotes the vector of all ones, and
is the sparsity-encouraging -norm of vector .

The nonnegative parameter controls the amount of sparsity
(number of nonzero entries in), and is typically chosen
via model selection techniques such as cross-validation (CV);
see, e.g., [18]. Problem (1) is also known as basis pursuit de-
noising, a term coined by [7] in the context of finding the best
sparse signal expansion using an overcomplete basis.

Lasso is equivalent to a quadratic programming (QP)
problem; hence, an iterative procedure is required to determine

for a given value of . While standard QP solvers can
be certainly invoked to this end, an increasing amount of effort
has been put recently into developing fast algorithms that
capitalize on the unique properties of the Lasso. The LARS
algorithm [10] is an efficient scheme for computing the entire
path of solutions (corresponding to all values of). Coordinate
descent algorithms have been shown competitive, even outper-
forming LARS when is large, as demonstrated in [13]; see
also [36], and the references therein. Other approaches based
on variable decoupling have been proposed by [17] and [35].
Since is nondifferentiable, iterative subgradient methods
are also applicable despite their generally slow convergence
rate; see [30] for a survey.

In linear regression problems, the training set
is typically assumed to be centrally available, so that

it can be jointly processed to obtain in (1). However,
collecting all data in a central location or fusion center (FC)
may be prohibitive in certain applications. Distributed linear
regression problems commonly arise with wireless sensor net-
works (WSNs), where data are inherently scattered across a
large geographical area [1], [24]. As sensors are battery oper-
ated, transferring all data to an FC (possibly located far away)
may be infeasible due to power constraints imposed on the in-
dividual nodes. In other cases, such as the Internet or collabo-
rative interlaboratory studies, agents providing private data for

1053-587X/$26.00 © 2010 IEEE

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5263

the purpose of fitting, e.g., a sparse model, may not be willing
to share their training data but only the learning results [8], [12].

In lieu of a central controller, it is the agents themselves that
are responsible for processing their locally available training
sets. The so-termed in-network processing introduces additional
algorithmic challenges, as the information is not centrally avail-
able and can not be “flooded” for massive dissemination. De-
centralized linear regression is based on successive refinements
of local model parameter estimates maintained at individual
agents. In a nutshell, each iteration of this broad class of fully
distributed algorithms comprises i) a communication step where
agents exchange messages with their neighbors and ii) an up-
date step where each agent uses this information to refine its
local estimate. Absence of hierarchy and the purely decentral-
ized nature of in-network processing dictate that the collection
of local (per agent) estimates should eventually consent to the
global solution, namely, the parameter estimates that would be
obtained if the entire data were centrally available.

Tutorial treatments of related consensus-based distributed
approaches can be found in [9] and [23]. Achieving consensus
across agents was considered in applications as diverse as
vehicle coordination [20], sample-averaging of distributed
sensor observations [37], sensing for cognitive radio (CR) [2],
[3], and distributed learning in WSNs [12]; see also [24]. A
general distributed estimation framework was put forth in [29],
which does not require the desired estimator to be expressible
in closed form in terms of (weighted) sample averages. Sev-
eral distributed estimation algorithms are rooted on iterative
optimization methods, which capitalize upon the separable
structure of the cost defining the desired estimator. The sample
mean estimator was formulated in [26] as an optimization
problem, and was solved in a distributed fashion using a primal
dual approach; see, e.g., [5]. Similarly, the schemes in [25] and
[27] are based in incremental (sub)gradient methods [4], [21].
Asynchronous variants for distributed (nonsmooth) optimiza-
tion were proposed in [22] and [38], and generalized to cope
with global convex constraints as well as subgradients affected
by stochastic errors [28].

Building on the optimization framework in [29], this paper
deals with consensus-based distributed algorithms for the
Lasso. The approach entails reformulating (1) as a convex
constrained optimization problem, whose structure lends itself
naturally to distributed implementation. It is then possible to
capitalize upon this favorable structure by resorting to the
alternating-direction method of multipliers (AD-MoM), an
iterative optimization method that can be traced back to the
work by [16] (see also [15]), and which is specially well-suited
for parallel processing [5]. This way decentralized recursions
are derived to update each agent’s local estimate, as well as
a vector of dual prices through which agreement across all
agents is effected. Three variants are developed which offer
the flexibility to choose the most favorable tradeoff between
computational complexity and convergence rate. This is pos-
sible by capitalizing on the closed-form solution that the Lasso
admits when the problem is scalar or orthonormal [18, p. 93].
On a per iteration basis, agents only exchange their current
local estimate with their neighbors, so that the training data ef-
ficiently percolate to all agents without compromising secrecy.
Convergence of the proposed distributed algorithms to the
global solution is also investigated. Finally, a distributed

CV procedure is developed to select the “best” in (1), in the
sense of minimizing an estimate of the expected prediction
error; see, e.g., [18]. The algorithm exploits “warm starts” to
efficiently compute the Lasso path of solutions over a grid of
values for [13].

The paper outline is as follows. In Section II, the problem of
distributed linear regression based on the Lasso is formulated. It
is further motivated through a spectrum sensing application for
CR networks as investigated in, e.g., [3]. An equivalent refor-
mulation of (2) based on consensus is put forth in Section III-A,
which has a structure amenable to distributed implementation
via the AD-MoM. This way two distributed algorithms for the
Lasso are developed, which respectively entail i) (iteratively)
solving a Lasso-type QP per agent (Section III-B), or ii) cyclic
coordinate-wise local updates based on soft-thresholding oper-
ations (Section III-C). Parallel updates with soft-thresholding
characterize the algorithm presented in Section IV, leading to
faster convergence but requiring an off-line matrix inversion
per agent. Section V deals with a distributed -fold CV algo-
rithm, for the purpose of selecting the tuning parameter via in-
network processing. Numerical tests with both simulated and
real data sets are presented in Section VI, which corroborate
the convergence of the proposed distributed algorithms as well
as their global optimality. Section VII includes a summarizing
discussion.

II. PROBLEM STATEMENT WITH SPECTRUM SENSING AS A

MOTIVATING APPLICATION

Consider networked agents that are capable of performing
some local computations, as well as exchanging messages
among neighbors. An agent should be understood as an abstract
entity, possibly representing a sensor node in a WSN, a router
monitoring Internet traffic, a hospital or laboratory involved in
e.g., a medical study; or a sensing CR from a next-generation
mobile communications technology. The network is naturally
modeled as an undirected graph , where the set of
vertices corresponds to the agents, and the
edges in represent pairs of agents that can communicate.
Agent communicates with the single-hop agents in its
neighborhood , and the size of the neighborhood is denoted
by . Global connectivity information can be compactly
captured in the symmetric adjacency matrix , with
entries if , and otherwise. The
graph Laplacian will be useful henceforth, where

, and . Graph is
assumed connected, i.e., there exists a (possibly multihop) path
that joins any pair of agents in the network.

Each agent has available a local training vector
and matrix . Agents collaborate to form the

common Lasso estimator (1) in a distributed fashion, which can
be rewritten as

(2)

where has size , and
. Each summand in (2) involves the cor-

responding agent’s data. Although the latter are distributed, the
summands are coupled through the global decision variables

. Each column of the matrix is assumed to be

5264 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

centered, i.e., for all . Since
each agent only has available entries of
each column , removal of the per-agent sample average is not
sufficient to remove the nonzero-mean of a column, and thus
render it zero mean. However, this does not impose a practical
limitation because it is possible to run, e.g., a consensus aver-
aging algorithm once to center each nonzero-mean column of

. After centering, the globally optimal intercept estimate is
[32], which can be computed only centrally. But

observe that ,
where is a local (weighted) average of the

entries in . This shows that can be obtained in a distributed
fashion, by consenting on the average of the locally available

. Henceforth, will be omitted for notational sim-
plicity and without loss of generality, using the intercept com-
pensated data in (2); see also Remark 1.

The objective of this paper is to develop and analyze in terms
of convergence, a class of distributed algorithms for the Lasso
based on in-network processing of the locally available training
data. The described setup naturally suggests three character-
istics that the algorithms should exhibit i) convergence to the
global solution in (2); ii) processing per agent should
be kept as simple and efficient as possible; and iii) commu-
nications among agents should be confined to the single-hop
neighbors, and avoid exchanges of elements from the different
training sets. The following application example further moti-
vates the distributed Lasso algorithms that are developed in the
present paper.

A. Cooperative Spectrum Sensing for Cognitive Radio Networks

The proliferation of radio communication systems has led to
scarce bandwidth resources and expensive licenses that limit
access to emergent wireless applications. Extensive measure-
ment campaigns have evidenced however, that the perceived
under-utilization of the spectrum is caused by the current access
policy whereby fixed frequency bands are assigned per applica-
tion. This motivates the development of CRs capable of sensing
the spectrum and accessing it opportunistically; see, e.g., the
tutorial paper [19] and the references therein. A cooperative ap-
proach to the sensing task of CR networks can be devised, uti-
lizing a basis expansion model for the spectrum [3]

(3)

where the first equality models the power spectrum den-
sity (PSD) at frequency , and at the location of the

CR, as the superposition of the PSDs generated by
sources present. The coefficient represents the channel

gain modeling the average propagation loss between the source
and the CR , and is assumed to be a known function of

their distance. The second equality in (3) introduces a basis
expansion , where each source PSD is
expressed as a linear combination of rectangular pulses of unit
height . Hence, the parameter represents how much
power is emitted by source in the frequency band spanned
by the basis . In the cooperative scenario, sensing
CRs collect smoothed periodogram samples of the
received signal at frequencies . They obtain noisy

samples of the received PSD , where the
noise is modeled as a Gaussian random variable.

The sensing scheme capitalizes on two forms of sparsity. The
first one emerges from the narrowband nature of source-PSDs
relative to the broad swaths of usable spectrum; i.e., for each
source , spans a few frequency bands so that only a few

are nonzero. A second form of sparsity emerges when the
location of the sources—which are needed to specify —are
unknown. In this case, a grid of candidate locations is con-
sidered [3], augmenting , so that model (3) becomes linear
in the parameters . Because the number of sources
present is typically unknown, a best subset selection approach
entails exponential complexity. All in all, locating the active ra-
dios boils down to a variable selection problem, which motivates
well employment of the Lasso. Joint estimation of the
provides a characterization of the PSD not only across frequency
but also in space, which enables identification of the (un)occu-
pied frequency bands at arbitrary geographical locations, and
thus facilitates spatial frequency reuse.

Since data are collected by cooperating CRs at

different locations, the estimation of amounts to
solving a distributed parameter estimation problem. This de-
mands taking into account the network topology, and devising
a protocol to share the data. Communicating the CR measure-
ments to an FC presents scalability issues, because far away
nodes require extra power to communicate to the central unit,
and extra infrastructure that may not be affordable. Instead, fully
decentralized in-network processing is preferred whereby com-
munications are constrained to the single-hop neighborhood.

III. DISTRIBUTED LASSO ESTIMATION USING QUADRATIC

PROGRAMMING OR COORDINATE DESCENT

In this section, we introduce the distributed quadratic
program (DQP-)Lasso algorithm, first going through the algo-
rithmic construction steps and salient features of its operation.
The approach includes two main building blocks: i) recast
(2) into an equivalent separable form which facilitates dis-
tributed implementation; and ii) split the optimization problem
into simpler subtasks executed locally at each agent. The
algorithm is then simplified into the distributed coordinate
descent (DCD-)Lasso, which involves local updates given in
closed form.

A. A Consensus-Based Reformulation of the Lasso

To distribute the Lasso cost in (2), consider replacing the
global variable which couples the per-agent summands with
local variables representing candidate estimates of
per agent. It is now possible to reformulate (2) as the following
convex constrained minimization problem:

(4)

The equality constraints directly effect local agreement across
each agent’s neighborhood. Since the communication graph is
further assumed connected, these constraints also ensure global
consensus a fortiori, meaning that . In-
deed, let be a path on that joins
an arbitrary pair of agents . Because contiguous agents in

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5265

the path are neighbors by definition, the corresponding chain
of equalities effected
by the constraints in (4) imply as desired. Thus, the
constraints can be eliminated by replacing all the with a
common , say, in which case the cost in (4) reduces to the one
in (2). This simple argument establishes the following result.

Proposition 1: If is a connected graph, then (2) and (4)
are equivalent optimization problems, in the sense that

.

B. Quadratic Programming Distributed Lasso

To tackle (4) in a distributed fashion, we will resort to the
alternating-direction method of multipliers (AD-MoM) [15],
[16]. To this end, consider adding to problem (4) the auxiliary
local variables , one pair
per neighbor. Introducing these new variables (4) is rewritten as

(5)

The equivalence of (2) and (5), as stated in the following corol-
lary, is immediate because the latter only introduces the auxil-
iary variables in to yield an alternative representation of the
constraint set in (4).

Corollary 1: If is a connected graph, then (2) and (5) are
equivalent optimization problems, in the sense that

.
Corollary 1 establishes that the optimal solutions of (5) cor-

respond to across all agents. Different from (2) how-
ever,(5) has a separable structure that facilitates distributed im-
plementation. To capitalize on this favorable structure, associate
Lagrange multipliers with
the constraints in (5), and form the quadratically augmented La-
grangian function

(6)

The constraints
have not been dualized, and is a preselected penalty

coefficient. The extra quadratic terms in (6) render strictly
convex with respect to (w.r.t.) the variables and . This
important property will be exploited later on. Other attractive
features of the augmented Lagrangian for parallel optimization
methods are discussed in [5, Sec. 3.4.4].

The AD-MoM entails an iterative process comprising three
steps per iteration ; see, e.g., [5], [16, p. 253],
and further details in the Appendix. The augmented Lagrangian
is first minimized w.r.t. the collection , considering the

auxiliary variables in and multipliers in as fixed parame-
ters. The resulting minimizers define the updates cor-
responding to iteration . Note that a unique set of minimizers

is guaranteed to exist, from the strict convexity of the
augmented Lagrangian. Subsequently, is minimized w.r.t.

while keeping all other variables fixed, to yield the
updates . Finally, the Lagrange multipliers in are up-
dated via dual gradient ascent iterations [5], and the cycle is
repeated for the iteration. The aforementioned proce-
dure amounts to a block-coordinate descent method with dual
variable updates. At each step while minimizing the augmented
Lagrangian, the variables not being updated are treated as fixed
and are substituted with their most up to date values.

Reformulating the Lasso problem as (5) renders the aug-
mented Lagrangian in (6) highly decomposable. The sepa-
rability comes in two flavors, both w.r.t. the variable groups

and , as well as across agents . This in turn leads
to highly parallelized, simplified recursions corresponding to
the aforementioned three steps. Specifically, it is shown in
the Appendix that if the multipliers are initialized to zero, the
distributed algorithm reduces to the following updates carried
out locally at every agent

(7)

(8)

where , and all initial values are set
to zero.

Recursions (7) and (8) entail local updates, and comprise the
distributed quadratic programming Lasso (DQP-Lasso) algo-
rithm tabulated as Algorithm 1. The inherently redundant set
of auxiliary variables and multipliers have been
eliminated. Each agent, say the , does not need to separately
keep track of all its multipliers , but only to update
the (scaled) sum . In the end, agent has to store and up-
date only two -dimensional vectors, namely .
A unique feature of this distributed setup is that agents commu-
nicate their updated local estimates with their neighbors,
in order to carry out the tasks (7) and (8).

Algorithm 1: DQP-Lasso

All agents initialize to zero , and
locally run

for do
Transmit to neighbors in .

Update via (7).

Update by solving (8).

end for

The overall operation of the algorithm can be described as
follows. During iteration , agent receives the local es-
timates from its neighbors and plugs them into

5266 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

(7) to evaluate its dual price vector . Subsequently,
is jointly used along with and the local training
data set to obtain , after solving (8). The

iteration is concluded after agent broadcasts to
its neighbors. The local optimization (8) is a QP. In particular, it
can be recast as the Lasso in (2) with the substitutions ,

, and the augmented data

As such, (8) can be iteratively solved using standard optimiza-
tion routines for quadratic programming, second-order cone
programming; or alternatively, using coordinate descent or
subgradient algorithms. In summary, the DQP-Lasso entails a
global outer iteration to attain consensus (in the index), and
also local inner iterations ran at every agent to minimize (8) and
update for all . Per iteration of the consensus loop,
there is a communication step whereby agents exchange their
updated local estimates across the neighborhood, followed by
local dual price vector updates [cf. (7)].

As asserted in the following proposition, the DQP-Lasso al-
gorithm generates a sequence of local iterates that con-
verge to the desired Lasso estimate . A proof can be found
in the Appendix.

Proposition 2: Let be a connected graph, and consider
recursions (7) and (8) that comprise the DQP-Lasso algorithm.
Then for any value of the penalty coefficient , the iterates

converge to the Lasso solution [cf. (2)] as , i.e.,

(9)

Formally, if the number of parameters is greater than
the length of the data set , a unique solution of (2) is
not guaranteed for a general design matrix . Proposi-
tion 2 remains valid however, if the right-hand side of (9)
is replaced by the set of minima; i.e.,

.
From (9), all asymptotic (as grows large) properties of cen-

tralized Lasso carry over to its distributed counterpart developed
here. Those include not only the bias, but also weak support con-
sistency as well as estimation consistency, which for the cen-
tralized Lasso have been studied in, e.g., [39] and [11]. Specif-
ically for the bias, one can for instance borrow the weighted
versions of the -norm in [39], with weights provided by the
(distributed) LS estimates in order to ensure asymptotic unbi-
asedness.

C. Coordinate Descent Distributed Lasso

A simplified version of the DQP-Lasso algorithm is devel-
oped in this section, which efficiently tackles the local mini-
mization (8) to update . Reduced complexity is particu-
larly desirable when the cost of the nodes is a restrictive con-
straint, since simpler (cheaper) processors can still accomplish
the estimation goals. Battery operated nodes can also benefit in
this case, because lower complexity and faster convergence rates
translate into longer battery lifetime. The rationale behind the
new algorithm hinges upon the fact that the solution of (8) does
not need to be super accurate, since it is just an intermediate step
in the consensus loop defined by the DQP-Lasso. This motivates

stopping earlier the inner iteration which solves (8), even after
a single minimization step, as detailed next.

In this direction consider running Algorithm 1 as it is given.
As previously discussed, many choices are available when it
comes to solving (8) iteratively. The coordinate descent algo-
rithm, albeit not the most efficient choice for general optimiza-
tion problems [4, p. 162], is well suited for the Lasso and related
models. Coordinate descent schemes capitalize on the separa-
bility of the -norm penalty across the entries of , and the
resulting simple soft-thresholding solution when is a scalar.
These algorithms also take advantage of the prior knowledge
about the sparsity of the estimators sought. Driven by the as-
sessments of its good performance, extensively corroborated via
numerical experiments in [13], a coordinate descent algorithm
is incorporated here in order to solve the Lasso-type of sub-
problem (8).

Let denote the inner iteration index for the coor-
dinate descent algorithm used to solve (8). For the minimization
at step of the (outer) consensus iteration, the sequence of iter-
ates are initialized as . At each step ,
the scalar coordinates of vector are updated cyclically,
by solving for

(10)

(11)

where stands for the column of the design matrix .
Vector corresponds to the partial residual error without
considering the contribution of the predictor . The useful-
ness of a coordinate descent approach stems from the fact that
the coordinate updates (10) amount to scalar Lasso-type opti-
mizations. Skipping details that can be found in, e.g., [13], the
solutions are thus expressible in the closed form

(12)

where is the soft-thresholding
operator and denotes the projection onto the
nonnegative reals. Separability of the nondifferentiable -norm
term in (8) is sufficient to guarantee the convergence of (12) to
the unique minimizer of (8), as [34]. Hence, the update

is well defined, and identical to
the one in (8).

As remarked earlier, carrying out the iteration (12) until con-
vergence is overly precise. In the relaxation pursued here, the
iteration is instead ended after a single step; i.e., when . In
this case, the index can be dropped and (12) simplifies to

(13)

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5267

where is given by (11), and . A novel algo-
rithm to solve the Lasso in a distributed fashion is obtained after
replacing (8) with the simple update rule (13). Per step of the co-
ordinate-wise cycle, a soft-thresholding operation is performed,
followed by a proportional shrinkage. The first operation is due
to the Lasso penalty, while the second one is due to the quadratic
terms in the augmented Lagrangian. The novel scheme is termed
distributed coordinate descent Lasso (DCD-Lasso) algorithm,
and is tabulated as Algorithm 2. Both the communication step
and the dual price vector updates [cf. (7)] are identical for the
DQP-Lasso and DCD-Lasso.

Algorithm 2: DCD-Lasso

All agents initialize to zero , and
locally run

for do

Transmit to neighbors in .

Update via (7).

for do

Update as in (13).

end for

end for

A convergence proof for DCD-Lasso will not be provided
here, however it is intuitive from the dynamics of the resulting
system. Indeed the recursion defined by (13) comprises a linear
update followed by a soft-thresholding operator. The linear part
can be combined with the dual price updates (7) and put in ma-
trix form. It can be seen that if the parameter is large enough
the eigenvalues of the transition matrix have modulus less than
one, which implies a contraction of the error.

The following proposition, to be proved in the Appendix, as-
serts that upon convergence, DCD-Lasso achieves optimality.

Proposition 3: Let be a connected graph and consider
the recursions (7) and (13) that comprise the DCD-Lasso al-
gorithm. Then,

(14)

and

(15)

In words, the local iterates reach consensus asymptotically,
and their common limit point corresponds to the solution of (2).
As discussed after Proposition 2, for the under-determined case

, the local estimates are guaranteed to consent to a
minimizer of (2) (from the set of possibly multiple minimizers).

IV. DISTRIBUTED LASSO

Based on the framework presented in Section III, it is pos-
sible to derive yet another improved variant to the DQP-Lasso
algorithm. This new solver circumvents the need of an iterative
procedure to tackle the per-agent optimizations (8), and in turn

yields local estimate updates in closed form. The key is to rec-
ognize that the Lasso coefficients are obtained via soft-thresh-
olding not only in the case of a single predictor, but also when
the design matrix is orthonormal [32]. Different from DCD-
Lasso, the algorithm developed in this section allows to update
all coordinates of in parallel, potentially leading to faster
convergence. Moreover, no relaxation is required to develop the
new algorithm that is an instance of the AD-MoM solver. As a
result, convergence of all local iterates towards the Lasso can be
established along the lines of Proposition 2.

Going back to the equivalent Lasso problem (5), consider
an additional group of auxiliary local variables , one
per agent. Through them, the goal is to split the cost in (5)
so that the squared error loss depends on the , while the

-norm penalty is a function of the variables . This way,
the optimizations w.r.t. will be shown to boil down to a
Lasso in the orthonormal design case, i.e., problem (1) where

. Solutions are hence given in closed form, im-
plementing soft-thresholding operations; see, e.g., [18, p. 69].
A related scheme was reported for centralized -norm regu-
larized problems in [17]. There, algorithms are developed for
image denoising and for compressive sampling-based recon-
structions arising in Magnetic Resonance Imaging (MRI), and
without connections to the provably convergent AD-MoM pur-
sued here. Upon introducing appropriate constraints
that guarantee the equivalence of the formulations, (5) can be
recast as

(16)

Associating additional Lagrange multipliers to
the new constraints present in (16), while redefining
the sets and

for notational conve-
nience, the augmented Lagrangian becomes

(17)

Exactly as in Section III, the constraints have not been
dualized. In order to tackle (16) in a distributed fashion, the
AD-MoM is utilized. As a result, the iterates are the
minimizers of the augmented Lagrangian w.r.t. . For the
sake of such minimization, the auxiliary variables in and La-
grange multipliers in are treated as fixed parameters, taking on

5268 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

their respective values at iteration . From the separable struc-
ture in , the pertinent minimization problem decouples into

sub-problems

(18)

that can be cast as the Lasso in the orthonormal design case. Due
to the variable splitting procedure that led to (16) and the block-
coordinate descent nature of the AD-MoM, the “undesirable”
coupling term is not present in (18). For these
reasons, it is possible to obtain in closed form as
detailed next [cf. (21)].

Deferring the detailed derivations to the Appendix, the
AD-MoM solver leads to the following recursions to be run
locally at every agent:

(19)

(20)

(21)

(22)

A slight abuse of notation has been introduced in (21),
where the vector-valued function
performs the coordinate-wise soft thresholding opera-
tion defined in Section III, i.e., its coordinate is
given by . Recursions
(19)–(22) comprise the novel D-Lasso algorithm, tabulated as
Algorithm 3.

Algorithm 3: D-Lasso

All agents initialize to zero
, and locally run

for do
Transmit to neighbors in .

Update via (19).

Update via (20).

Update using (21).

Update using (22).

end for

The algorithm entails the following steps. During iteration
, agent receives the local estimates and

plugs them into (19) to evaluate the dual price vector . The
new multiplier is then obtained using the locally available
vectors . Subsequently, vectors
are jointly used along with to obtain

via the soft thresholding/proportional shrinkage operation in
(21). Different from DCD-Lasso, all coordinates of can be
updated in parallel avoiding the need of a cycle. Finally, the up-
dated is obtained from (22), and requires the previ-
ously updated quantities along with the local response vector
and predictor matrix . The iteration is concluded
after agent broadcasts to its neighbors. A few re-
marks are now in order.

Remark 1 (Accounting for the Intercept): If the intercept
is not removed from (2), one can augment the local parameter

vectors as well as the matrices to form and
, respectively. Then, the D-Lasso algorithm carries over

if in (21) is replaced by , defined by
and , for .

Remark 2 (Communication Cost): In order to separate the
-norm loss from the -norm penalty in the Lasso, the con-

straint needs to be enforced per agent. As a con-
sequence, and in comparison to DQP-Lasso and DCD-Lasso,
an additional Lagrange multiplier recursion has to be run [cf.
(20)]. In doing so however, no additional communications are
required since only local variables are involved in the aforemen-
tioned constraint. For the three algorithms developed, only the

scalars in have to be broadcasted per iteration. When is
large, major savings can be attained by only exchanging the set
of nonzero entries. Further, the inter-agent communication cost
does not depend on the size of the local training sets.

Remark 3 (Efficient Local Computations and Load Bal-
ancing): Update (22) involves inversion of the matrix

, that may be computationally demanding for
sufficiently large . Fortunately, this operation can be carried
out off-line before running the algorithm. Other than that, the
updates comprising D-Lasso are extremely simple and solely
involve scaling/addition of (eventually sparse) -dimensional
vectors and a soft thresholding operation in (21). More impor-
tantly, the matrix inversion lemma can be invoked to obtain

.
The dimensions of the matrix to invert become , i.e., the
number of locally acquired data. For highly underdetermined

regression problems commonly arising, e.g., in
genomics, D-Lasso enjoys significant computational savings
through the aforementioned matrix inversion identity. One
also recognizes that the distributed operation parallelizes the
numerical computation across agents: if D-Lasso is simplified
to run centrally with all network-wide data at hand, then the
matrix to invert has dimension and increases
linearly with the network size . Beyond a networked scenario,
D-Lasso provides an attractive alternative for computational
load balancing in timely multi-processor architectures.

Interestingly, a convergence result that parallels Proposition
2 for the DQP-Lasso can be established for the D-Lasso as
well. Similar to the former algorithm, the proof in the Appendix
amounts to checking that the qualification conditions for the
convergence of the AD-MoM [as per Proposition 4.2 in [5 , p.
257]] are satisfied by the optimization problem (16).

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5269

Proposition 4: Let be a connected graph and consider re-
cursions (19)–(22) that comprise the D-Lasso algorithm. Then,
for any value of the penalty coefficient , the iterates

converge to the Lasso solution [cf. (2)] as , i.e.,
.

V. DISTRIBUTED CROSS-VALIDATION

The algorithms introduced in Sections III and IV assume
knowledge of the -norm penalty parameter . This sec-
tion presents an algorithm to select , that performs CV in a
distributed fashion. Similar to the algorithms in the previous
sections, data are not flooded across the network, and only local
exchanges (within the neighborhood) are required.

To select the best parameter from a grid of candidate values
ordered as ,

-fold CV is utilized; see, e.g., [18]. For this purpose, the en-
tire data set collected by all the agents is split into parts

.
In the distributed scenario, agent divides its data in two

sub-vectors and , where the
intersection and exclusion operators and apply to the set of
vector coordinates. Then it sets aside the data in , and pro-

ceeds to fit a Lasso model based on . Agents collaborate

to run D-Lasso after substituting for and for

in (22), where is a sub-matrix of that retains the

rows corresponding to , and removes those corresponding

to . Vector is obtained after convergence, which
corresponds to the optimizer of (16) and therefore of (2). The
next step is performed locally and entails forming the predic-
tion error estimate , where is
defined in correspondence with .

This procedure is repeated for all using
“warm starts” as in [13], and the results are stored in the vector

of length . Observe that even if the per agent variables
in Algorithm 3 are initialized to zero, the derivations in the
Appendix show that this is not a strict requisite provided the
multipliers satisfy the conditions stated after (30). These condi-
tions are guaranteed at convergence, which allows using the lim-
iting values of and obtained for when starting
the iterations for , and so on. Simulations demonstrate that
convergence of Algorithm 3 with warm starts can be attained
after a few iterations.

Upon repeating this procedure for all and all
, each agent has available the error vectors .

The decision on which to use is based on the average of these
errors across nodes and bins , namely

Note that the inner average across bins can be performed locally
to yield . In principle, the average across
agents requires communication of the vectors . However, it
can be achieved via consensus algorithms for distributed sample
averaging in the same spirit of those in Sections III and IV; see,
e.g., [37] and [38].

Once the vector becomes
available to all agents, they can select the best by picking the
one corresponding to the minimum entry of , i.e.,

Note that the selected by this distributed procedure coin-
cides with its centralized counterpart, that would be obtained
by a standard CV scheme when applied to the entire data set.
The overall distributed (D)CV procedure is summarized as Al-
gorithm 4. An “one-standard error” rule [18, p. 244] can be used
with the DCV procedure since standard errors can be also ob-
tained via consensus averaging.

Algorithm 4: DCV
All agents initialize to zero

, and locally do

for do

Split the local data into and .

Correspondingly split into and .

for do

Obtain by running D-Lasso using

and warm starts.

Compute .

end for

end for

Compute
.

Obtain by running a consensus
averaging algorithm.

Select .

If for a particular fold , it holds that , i.e., all data
collected by the agent are contained in the fold, then the
agent can remove itself from the corresponding D-Lasso algo-
rithm runs. Upon receiving from one of its neighbors, it
can proceed to compute . A particular case of this is when
the data set is divided into folds, each one containing
the data available at agent . One agent is then set aside at a
time, which constitutes the simplified leave-one-agent-out CV
algorithm.

VI. NUMERICAL EXPERIMENTS

A. Study of Prostate Cancer on Real Data

The distributed algorithms for the Lasso are tested here on
a real data set corresponding to the prostate cancer study con-
ducted in [31]. As described in e.g., [32], there are eight factors
under consideration including log cancer volume (lcavol), log
prostate weight (lweight), age, log of the amount of benign pro-
static hyperplasia (lbph), seminal vesicle invasion (svi), log of
capsular penetration (lcp), Gleason score (gleason), and percent
of Gleason scores 4 or 5 (pgg45). These predictors are
measured in patients together with the response vari-
able, which is the log of the amount of prostate-specific antigen.

5270 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

These training data are used to fit a Lasso model after stan-
dardizing the predictors, where the nonzero entries in the vector
estimate suggest which factors are more relevant in the
generation of the antigen. Further details on the scientific back-
ground of the regression problem and the characteristics of the
data set are given in [18].

For the purpose of illustration, the samples are di-
vided into groups, and the data in each group are admin-
istrated by an agent. The local training data sets are such that

for and . Inter-agent communica-
tions take place according to the following adjacency matrix

For example, agent 1 communicates with agents 4 and 5 (by
convention it also “communicates” with itself).

By running the DCD-Lasso algorithm and using “warm
starts”, the path of Lasso solutions is computed at 100 dif-
ferent values of the regularization parameter . The values
are evenly spaced on a logarithmic scale in the interval

, where is the minimum value
such that [13]. The penalty coefficient is set to

, since several experiments suggested that this value leads
to fastest convergence. Indeed, it turns out that affects the
convergence rate of the AD-MoM-based algorithms. However,
a formal convergence rate analysis to further justify this choice
is challenging, and goes beyond the scope of this paper. After
40 iterations the updates converge to the centralized solution
of (1) within a relative error of . The path of so-
lutions obtained by a representative agent is depicted
in Fig. 1 (top), where each coefficient ,
obtained after convergence, is shown as a function of . As

decreases, so does the amount of shrinkage, and more vari-
ables enter the model. The piecewise-linear coefficient profile
appears as piecewise-nonlinear because a logarithmic scale is
used in the abscissa. The dashed vertical line in Fig. 1 (top)
shows the model for , that is selected using
the leave-one-agent-out (7-fold) CV strategy; see also
Section V and the details of the CV procedure in the en-
suing tests. The numerical experiment is repeated for D-Lasso
which achieves faster convergence, attaining the same result
as DCD-Lasso within a relative error of after 23
iterations on average. The corresponding plot is hence omitted
for brevity.

To further corroborate the convergence of DCD-Lasso and
D-Lasso to , both algorithms are run again for .
The suggested all-zero initialization is tested against the alter-
native whereby local estimates are randomly initialized. DCD-
Lasso and D-Lasso are also compared with the distributed sub-
gradient methods in [28] and [22], for which equal neighbor
combining weights [22], zero initial conditions, and a dimin-
ishing stepsize are adopted. On a per itera-
tion basis, the global error metric

is evaluated for all schemes. The glmnet package for

Fig. 1. Prostate cancer data: (top) DCD-Lasso path of solutions as a function
of �. The dashed vertical line shows the model for � � ����, that is selected
using the leave-one-agent-out CV strategy; (bottom) evolution of the global
error ���� for DCD-Lasso, D-Lasso and the distributed subgradient (DSG)
methods in [28] and [22] �� � � �. DCD-Lasso and D-Lasso converge
much faster to ���� , especially when the initial conditions are null.

Matlab was utilized to obtain [14], and the resulting er-
rors are depicted in Fig. 1 (bottom) as functions of the iteration
index . The decreasing trend of confirms that all local
estimates converge to , as stated in Propositions 3 and
4. Also, results in Fig. 1 (bottom) confirm that D-Lasso pro-
vides a faster alternative when an off-line matrix inversion is af-
fordable. All-zero initial vectors significantly speed up the algo-
rithms. It is important to remark that additional numerical tests
have evidenced that the convergence of DCD-Lasso requires a
sufficiently large value of , while D-Lasso converges for any

as per Proposition 4. With regards to the subgradient
methods, the speed of convergence is extremely slow since a
descent along a subgradient direction is not effective in setting
to zero entries of the local estimates. The (most favorable) min-
imum -norm subgradient [30] was utilized for the simulations.
Nonetheless, the schemes in [22], [28] can tackle general non-
smooth but separable convex problems.

As a final illustration to highlight the consensus property of
the algorithms, Fig. 2 shows the evolution of the coefficients

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5271

Fig. 2. Prostate cancer data: evolution of the per agent estimates ������ � � �
�� � � � � �, for � � � : (top) D-Lasso updates; (bottom) DCD-Lasso updates.
Consensus is attained after a few iterations.

estimated by each agent as the iteration index grows. For each
one of the 8 predictors, 7 different curves are shown,
one per agent. As established in Propositions 3 and 4 all local
estimates reach a common limiting value after a transient period.

B. Sparsity-Aware Spectrum Cartography

In order to evaluate DQP-Lasso, DCD-Lasso, and D-Lasso
in the context of the spectrum sensing task described in
Section II-A, a numerical example will be considered here.
Specifically, the spectrum generated by a set of 5 sources is
simulated, where each source’s PSD corresponds to one
of 8 non-overlapping rectangular pulses of 10
MHz over a total bandwidth of 80 MHz. The active transmitters
are shown in Fig. 3 (top) as red squares. Samples of the PSD
field at 8 frequencies are acquired by 50 CRs,
corresponding to smoothed periodogram estimates at the fre-
quencies of interest. The CRs collaborate to locate the sources
on a rectangular grid of 121 candidate positions in an
area of 4 Km [represented by gray squares in Fig. 3 (top)].
The sensing radios are deployed uniformly at random in the

Fig. 3. Spectrum sensing data: (top) network setup for the distributed spec-
trum sensing task. Transmitters (red squares) are placed on 5 of the possible
� � ��� candidate grid locations (grey squares) over an area of � 	
 ;
� � �� agents (blue circles) are randomly deployed and two agents can com-
municate if their Euclidian distance is less than 460 m. The resulting connected
communication graph is depicted in magenta; (bottom) path of solutions for the
transmit-powers revealed by D-Lasso.

area of interest; see Fig. 3 (top) where the CRs are denoted
by blue circles. Fig. 3 (top) also shows the communication
links which connect neighboring agents separated by less than
460 m. The data are generated according to (3), where the
gain is modeled as six-coefficients Rayleigh distributed
channel with mean depending on the distance between the
source and the CR . Specifically, this gain is selected
as . This corresponds
to a standard multipath wireless fading channel model, in
the presence of rich scattering and without line of sight in
the -to- link. The mean attenuation follows an inverse
polynomial path loss law, which captures the dissipation of
power due to free-space propagation and other type of signal
obstructions, giving rise to diffraction and/or absorption effects.
All in all, this setup results in a linear regression problem with

400 data samples and 968
parameters, where only five of them are nonzero.

The three algorithms are run using “warm starts” to obtain
the path of solutions for a range of decreasing values of

5272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

Fig. 4. Spectrum sensing data: (top) CV for the selection of the � -norm
penalty parameter �; (bottom) estimated PSD map by the 37th agent; the five
active sources are localized.

between 500 and . The results of the three schemes
converge to the same solution; the path is shown for D-Lasso
in Fig. 3 (bottom). Five coefficients emerge at and be-
come dominant at , revealing the positions and
frequency bands of the sources present; see also the estimated
PSD map in Fig. 4 (bottom). As , the solution tends to the
LS estimate, which introduces spurious components in all can-
didate locations.

The dashed vertical line in Fig. 3 (bottom) represents the
data-driven optimal selection of , which is obtained
using the CV technique described in Section V. To obtain

, the measurements acquired by the 50 CRs
are divided in 5 folds of 10 CRs that cooperate to
compute the estimated prediction errors and their stan-
dard errors. Then the optimal is selected as the largest

yielding within one standard
error of . Fig. 4 (top) shows the result
of this procedure, where the continuous line represents the
estimated prediction errors, and the vertical bars represent their
standard errors. The dashed vertical line represents the obtained
value of .

Finally, Fig. 4 (bottom) depicts the PSD map estimated by
a representative CR, which is obtained by plugging into (3)
its D-Lasso solution for . The figure depicts
the power level across the 4 Km area under considera-
tion, aggregated across frequency, with higher decibel levels
corresponding to “warm” colors, and lower decibel levels
corresponding to “cold” colors. It corroborates that the use of
sparsity-aware techniques is effective in separating the most
significative coefficients, thus revealing the position of the
emitting sources. Because of consensus, after convergence all
CRs agree on the same PSD map estimates (one per frequency).
After the sensing task is concluded, the network of CRs en-
ters an operational mode in which the PSD map becomes an
instrumental aid. Specifically, a CR transmitter uses this infor-
mation to assess the interference level at its intended receiver,
even if the spectrum occupancy at the remote location of the
receiver differs from the local interference at the transmitter.
Thus, knowing the PSD at any location enables remote CRs
to reuse idle bands dynamically. It also enables CRs to adapt
their transmit-power so as to minimally interfere with legacy
systems.

VII. DISCUSSION

Distributed Lasso algorithms are developed in this paper, that
are suitable for sparse linear regression tasks when the training
data sets are distributed across collaborating agents. These tools
can be applied to field estimation and source localization, as
illustrated in the context of cooperative spectrum sensing.

The novel distributed Lasso estimators are implemented
via consensus-based in-network processing, whereby agents
iteratively refine their local estimates by exchanging low-over-
head messages within the neighborhood. Thanks to these
inter-agent communications, the training data efficiently per-
colate throughout the entire network. As a result, the agents’
local estimates asymptotically consent on [cf. (2)],
the (global) Lasso estimate obtained if all local training data
sets were centrally available. The Lasso is reformulated into
an equivalent constrained form, whose structure lends itself
naturally to distributed implementation via the AD-MoM. Cap-
italizing on this favorable structure, three algorithmic variants
of the distributed Lasso are developed with complementary
features. The first one sets the framework for distributed im-
plementation; hence, it is also important from a conceptual
perspective. The so-termed QP-Lasso algorithm is applicable
when the agents have sufficient computational power to solve
a QP per iteration. This however, may be infeasible in dis-
tributed estimation applications using WSNs. Second, the
DCD-Lasso algorithm relies on cyclic coordinate descent to
reduce complexity, but requires careful selection of a step-size
parameter to attain convergence. Finally, D-Lasso is developed
after separating the -norm penalty from the quadratic term
in the Lasso cost, through additional auxiliary optimization
variables and suitable constraints. Computational savings
become possible by taking advantage of Lasso’s closed-form
solution in the orthonormal design case. Apart from an off-line
matrix inversion, the resulting per agent D-Lasso updates
are extremely simple; solely involving linear combinations
of vectors and soft thresholding operations. Convergence of
the D-Lasso algorithm is also established for all values of the
step-size, and local estimates provably consent on . An

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5273

attractive feature common to all three algorithms is that agents
only exchange sparse messages within the neighborhood, and
the communication cost is independent of the size of the local
training sets.

The framework and techniques introduced here to develop
distributed algorithms for the Lasso are readily applicable to re-
lated tools as well. These include the adaptive Lasso which guar-
antees consistency of estimation and variable selection [39]; the
nonnegative garrote which served as a precursor of the Lasso
[6]; the elastic net for correlated variables [40]; and the smooth-
ness-encouraging fused Lasso [33].

APPENDIX

A. Proof of (7) and (8)

Recall the augmented Lagrangian function in (6), and for no-
tational convenience define . The AD-MoM en-
tails three steps per iteration of the algorithm:

[S1] Local estimate updates:

(23)

[S2] Auxiliary variable updates:

(24)

[S3] Lagrange multiplier updates:

(25)

(26)

The goal is to show that [S1]–[S3] can be simplified to (7)
and (8). Focusing first on [S2], from the decomposable struc-
ture of the augmented Lagrangian [cf.(6)] (24) decouples into

quadratic sub-problems

(27)

which admit the closed-form solutions

(28)

Note that in formulating (27), was eliminated using the con-

straint . Using (28) to eliminate and
from (25) and (26) respectively, a simple induction argu-

ment establishes that if the initial Lagrange multipliers obey
, then for all

where and . The set of multipliers has
been shown redundant, and (28) readily simplifies to

(29)

It then follows that for all , an identity
that will be used later on. By plugging (29) in (25), the multiplier
update becomes

(30)

If , then the structure of (30) reveals that

for all , where and .
The minimization (23) in [S1] also decouples in sim-

pler sub-problems, namely [see the equation at the bottom
of the page], where in deriving the second equality we used
that i) which follows from the identities

and established ear-

lier; ii) the definition ; and iii) the

identity which allows to merge the identical

quadratic penalty terms and eliminate both and
using (29). This establishes (8). Finally, note that upon scaling
by two the recursions (30) and summing them over ,
(7) follows.

B. Proof of Proposition 2

From the result in Corollary 1, it suffices to show that the
iterates generated by (8) converge to in (5). To this
end, observe that (5) can be written as [5, eq. 4.77, p. 255]

with the definitions

5274 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

where

and likewise for . The integer valued

functions are such that is the
index of the neighbor of agent . The linear constraint ma-
trix is , where (denotes Kronecker product)

...

...
...

and is the vector in the canonical basis for . Using
these definitions, it is straightforward to check that and
are convex functions, and are nonempty polyhedral sets,
and is invertible (because is full column rank). By
virtue of [5, Proposition 4.2, p. 256], for every value of
the iterates generated by (23) in [S1] converge to the optimal
solution of problem (5). Because (23)
simplifies to (8), the same is true for the iterates generated by
Algorithm 1.

C. Proof of Proposition 3

Let and . From
(7), we have . This system of

equations implies that the supervector be-
longs to the nullspace of , the Laplacian of the network graph

. This guarantees, under the assumption that the network is
connected, that , i.e., the consensus re-
sult in (14) holds. Hence, it is possible to proceed and define

.
The rest of the proof involves defining two vectors and ,

which together with satisfy the Karush-Kuhn-Tucker (KKT)
conditions of optimality [4] for problem (2). In this direction,
consider the matrix and its decomposition in its strict
lower triangular, strict upper triangular, and diagonal parts, ,

, and , respectively. Consider as well the auxiliary vec-
tors . In the
limit as , (13) can be written in matrix-vector form
as . Proceed by defining,

. The strict positivity of the diag-
onal elements of together with the input-output relationship
of the soft thresholding operator yield

such that
(31)

Given (31), it is possible to define the vectors
and

and show that they satisfy the following properties:

i) (coordinatewise); ii) , if ;
iii) , if ; iv) ; and
v) . Properties i)–iii)
follow after adding up the result in (31) w.r.t. .
Property iv) is readily checked from the definitions of and .
In order to show v), observe first that by plugging into one
obtains after canceling
and rearranging terms. Summing up the last equations w.r.t.

yields

(32)

where the identity results from the definition

of , and the symmetry properties

of that were established after (30). To prove that (32)
and the equation in property v) are equivalent, confirm first the
identity from the definition of ,

, and . Also, from the definition of and it follows that
.

The proof is concluded by noticing that properties i)–v)
are indeed the KKT conditions for the following optimization
problem

that is equivalent to problem (2).

D. Proof of (19)–(22)

Recall the augmented Lagrangian function in (17), and let
for notational simplicity. When used to solve

(16), the three steps in AD-MoM are given by:
[S1] Local estimate updates:

(33)

[S2] Auxiliary variable updates:

(34)

[S3] Multiplier updates:

(35)

(36)

(37)

Clearly, (35) coincides with (20) so the work left amounts to
establishing (19), (21) and (22).

Focusing first on [S2], observe that (17) is separable across
the collection of variables and that comprise

. The minimization w.r.t. the latter group is identical to (27);
hence, the solutions are given by (28). If the initial Lagrange
multipliers obey , then exactly as before

and for all , where

and . As a result, the updates for sim-

plify to (29) and the nonredundant multipliers are given

MATEOS et al.: DISTRIBUTED SPARSE LINEAR REGRESSION 5275

(38)

by (30). The remaining minimization (34) w.r.t. decouples
into quadratic sub-problems [cf. (17)], i.e.,

which admit the closed-form solutions in (22).
Towards obtaining the updates for the local variables in ,

the optimization (33) in [S1] can be split into sub-problems
as well [see (38), shown at the top of the page], where to ar-
rive at the second equality, we used: i) (29) to eliminate
and which are identical for all ; and ii) the afore-
mentioned Lagrange multiplier identities

to deduce that

(39)

Also note that upon scaling by two the recursions (30) and sum-
ming them over , (19) follows. Back to establishing
(21), use a simple complete of squares argument to recast (38)
as

(40)

where . Interestingly, (40) amounts to
a Lasso for the orthonormal design special case, which admits
the closed-form solution in the right-hand side of (21).

E. Proof of Proposition 4

Exactly as in the proof of Proposition 2, observe that (16) can
be written as

with the same definitions used therein except for the modifica-
tions and

The linear constraint matrix in this case is adapted to
, in order to accommodate the additional

constraints , present in (16). Because and
are clearly convex functions and is still invertible, the

arguments used in the proof of Proposition 2 lead to the desired
result.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wire-
less sensor networks: a survey,” Comput. Netw., vol. 38, pp. 393–422,
Mar. 2002.

[2] S. Barbarossa, G. Scutari, and T. Battisti, “Cooperative sensing for
cognitive radio using decentralized projection algorithms,” in Proc.
Workshop Signal Processing Advances in Wireless Communications,
Perugia, Italy, Jun. 2009, pp. 116–120.

[3] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for
cognitive radio networks by exploiting sparsity,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1847–1862, Mar. 2010.

[4] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, 2nd ed. Belmont, MA: Athena Scientific,
1999.

[6] L. Breiman, “Better subset regression using the nonnegative garrote,”
Technometrics, vol. 37, pp. 373–384, Nov. 1995.

[7] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, pp. 33–61, 1998.

[8] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools
for privacy preserving distributed data mining,” ACM SIGKDD Explo-
rations, vol. 4, pp. 28–34, 2002.

[9] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Mar. 2010 [On-
line]. Available: http://arxiv.org/abs/1003.5309

[10] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani, “Least angle
regression,” Ann. Stat., vol. 32, pp. 407–499, 2004.

[11] J. Fan and R. Li, “Variable selection via nonconcave penalized like-
lihood and its oracle properties,” J. Amer. Stat. Assoc., vol. 96, pp.
1348–1360, 2001.

[12] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” J. Mach. Learn. Res., vol. 11, pp.
1663–1707, May 2010.

[13] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani, “Pathwise coor-
dinate optimization,” Ann. Appl. Stat., vol. 1, pp. 302–332, 2007.

[14] J. Friedman, T. Hastie, and R. Tibshirani, “Regularized paths for gen-
eralized linear models via coordinate descent,” J. Stat. Softw., vol. 33,
2010.

[15] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite-element approximations,”
Comput. Math. Appl., vol. 2, pp. 17–40, 1976.

5276 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 10, OCTOBER 2010

[16] R. Glowinski and A. Marrocco, “Sur l’approximation, paréléments
finis d’orde un, et la résolution par pénalisation-dualité d’une classe
de problèmes de Dirichlet non-linéaires,” (in French) Rev. Francaise
d’Aut. Inf. Rech. Oper., vol. 2, pp. 41–76, 1975.

[17] T. Goldstein and S. Osher, “The split bregman method for L1 regular-
ized problems,” SIAM J. Imag. Sci., vol. 2, pp. 323–343, 2009.

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. New York: Springer, 2009.

[19] X. Hong, C. Wang, H. Chen, and Y. Zhang, “Secondary spectrum ac-
cess networks,” IEEE Veh. Technol. Mag., vol. 4, no. 2, pp. 36–43,
2009.

[20] A. Jadbabaie and S. Morse, “Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules,” IEEE Trans. Autom,
Control, vol. 48, no. 6, pp. 988–1001, 2003.

[21] A. Nedic and D. P. Bertsekas, “Incremental subgradient methods for
nondifferentiable optimization,” SIAM J. Optim., vol. 12, pp. 109–138,
Jan. 2001.

[22] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–61, Jan. 2009.

[23] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, pp.
215–233, Jan. 2007.

[24] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training
algorithm for distributed learning,” IEEE Trans. Inf. Theory, vol. 55,
no. 4, pp. 1856–1871, Apr. 2009.

[25] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798–808, 2005.

[26] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized con-
sensus computation in networked systems with erasure links,” in Proc.
Workshop Signal Processing Advances in Wireless Communications,
New York, Jun. 2005, pp. 1088–1092.

[27] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Stochastic incremental
gradient descent for estimation in sensor networks,” in Proc. 41st
Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA,
2007, pp. 582–586.

[28] S. S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic sub-
gradient projection algorithms for convex optimization,” Nov. 2008
[Online]. Available: http://arxiv.org/abs/0811.2595

[29] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy links—Part I: Distributed estimation of deterministic
signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, Jan.
2008.

[30] M. Schmidt, G. Fung, and R. Rosales, “Fast optimization methods
for L1 regularization: A comparative study and two new approaches,”
in Proc. Euro. Conf. Machine Learning, Warsaw, Poland, 2007, pp.
286–297.

[31] T. Stamey, J. Kabalin, I. Johnstone, F. Freiha, E. Redwine, and N. Yang,
“Prostate specific antigen in the diagnosis and treatment of adenocarci-
noma of prostate ii radical prostatectomy treated patients,” J. Urology,
vol. 16, pp. 1076–1083, 1989.

[32] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Roy. Stat. Soc. B, vol. 58, pp. 267–288, 1996.

[33] R. Tibshirani, M. Saunders, R. Rosset, J. Zhu, and K. Knight, “Sparsity
and smoothness via the fused lasso,” J. Roy. Stat. Soc. B, vol. 67, pp.
91–108, 2005.

[34] P. Tseng, “Convergence of block coordinate descent method for
nondifferentiable maximization,” J. Optim. Theory Appl., vol. 109, pp.
473–492, 2001.

[35] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse recon-
struction by separable approximation,” IEEE Trans. Signal Process.,
vol. 57, no. 7, pp. 2479–2493, Jul. 2009.

[36] T. Wu and K. Lange, “Coordinate descent algorithms for lasso penal-
ized regression,” Ann. Appl. Stat., vol. 2, pp. 224–244, 2008.

[37] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, pp. 65–78, Sep. 2004.

[38] H. Zhu, G. B. Giannakis, and A. Cano, “Distributed in-network
channel decoding,” IEEE Trans. Signal Process., vol. 57, no. 10, pp.
3970–3983, Oct. 2009.

[39] H. Zou, “The adaptive lasso and its oracle properties,” J. Amer. Stat.
Assoc., vol. 101, pp. 1418–1429, 2006.

[40] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. Roy. Stat. Soc. B, vol. 67, pp. 301–320, 2005.

Gonzalo Mateos (S’07) received the B.Sc. degree
in electrical engineering from Universidad de la
República Oriental del Uruguay, Montevideo,
Uruguay, in 2005 and the M.Sc. degree in electrical
and computer engineering from the University of
Minnesota, Minneapolis, in 2009. Since August
2006, he has been working towards the Ph.D. degree
as a Research Assistant with the Department of
Electrical and Computer Engineering, University of
Minnesota.

Since 2003, he has been a Research and Teaching
Assistant with the Department of Electrical Engineering, Universidad de la
República Oriental del Uruguay. From 2004 to 2006, he worked as a Systems
Engineer at Asea Brown Boveri (ABB), Uruguay. His research interests lie
in the areas of communication theory, signal processing and networking.
His current research focuses on distributed signal processing, sparse linear
regression and social networks.

Juan Andrés Bazerque (S’06) received the B.Sc. de-
gree in electrical engineering from Universidad de la
República (UdelaR), Montevideo, Uruguay, in 2003
and the M.Sc. degree in electrical engineering from
the University of Minnesota (UofM), Minneapolis,
in August 2009. He is currently working towards the
Ph.D. degree at UofM.

From 2003 to 2006, he worked as a Telecom-
munications Engineer at Uniotel S.A., Uruguay,
developing applications for Voice over IP. From
2000 to 2006, he was a Teaching Assistant with

the Department of Mathematics and Statistics, and with the Department of
Electrical Engineering (UdelaR). Since August 2006, he has been a Research
Assistant at UofM. His broad research interests lie in the general areas of net-
working, communications, and signal processing. His current research focuses
on decentralized algorithms for in-network processing, cooperative wireless
communications, cognitive radios, compressive sampling, and sparsity-aware
statistical models.

Mr. Bazerque is the recipient of the UofM’s Distinguished Master’s Thesis
Award 2009–2010 and corecipient of the Best Student Paper Award at the
Second International Conference on Cognitive Radio Oriented Wireless
Networks and Communication 2007.

Georgios B. Giannakis (F’97) received the Diploma
degree in electrical engineering from the National
Technical University of Athens, Greece, in 1981
and the M.Sc. degree in electrical engineering, the
M.Sc. degree in mathematics, and the Ph.D. degree
in electrical engineering from the University of
Southern California (USC) in 1983, 1986, and 1986,
respectively.

Since 1999, he has been a Professor with the Uni-
versity of Minnesota, where he now holds an ADC
Chair in Wireless Telecommunications in the Elec-

tric and Computer Engineering Department and serves as Director of the Dig-
ital Technology Center. His general interests span the areas of communications,
networking and statistical signal processing subjects on which he has published
more than 300 journal papers, 500 conference papers, two edited books, and
two research monographs. Current research focuses on compressive sensing,
cognitive radios, network coding, cross-layer designs, mobile ad hoc networks,
wireless sensor, and social networks.

Dr. Giannakis is the (co-)inventor of 20 patents issued, and the (co)recipient of
seven paper awards from the IEEE Signal Processing (SP) and Communications
Societies, including the G. Marconi Prize Paper Award in Wireless Communi-
cations. He also received Technical Achievement Awards from the SP Society
(2000), from EURASIP (2005), a Young Faculty Teaching Award, and the G.
W. Taylor Award for Distinguished Research from the University of Minnesota.
He is a Fellow of EURASIP, and has served the IEEE in a number of posts, in-
cluding that of Distinguished Lecturer for the IEEE SP Society.

