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Abstract— We deal with online estimation and tracking of
(non)stationary signals using ad hoc wireless sensor networks
(WSNs). A fully distributed least-mean square (D-LMS) type of
algorithm is presented, which offers simplicity and flexibility
whilst solely requiring single-hop communications among sen-
sors. The algorithm entails the minimization of a pertinent
cost function by resorting to: (i) the alternating-direction
method of multipliers so as to gain the desired degree of
parallelization and, (ii) stochastic approximation ideas to cope
with the unavailability of statistical information. First-order
convergence analysis is provided whereas mean-square sense
(mss) convergence is corroborated via simulations, even in the
presence of additive reception noise.

I. INTRODUCTION

Driven by a wide span of foreseen applications, distributed

estimation of signals based on observations collected by spa-

tially dispersed sensors has attracted much attention recently.

Specifically, ad hoc WSNs based on power efficient single

hop communications raise several exciting challenges when

targeted for signal processing tasks. The lack of hierarchy

and purely decentralized nature of processing dictates that

local sensor estimates should eventually consent to the de-

sired quantity and exhaustively exploit the spatial dimension

to maximize performance. For prior works on estimation in

ad hoc WSNs, see e.g., [8] and references therein.

The incremental LMS algorithm in [7] became the first

exponent among the online adaptive decentralized estimation

schemes, which incorporate new available information in

real-time and can accommodate time variations in the signal

statistics. Although this approach requires limited amount of

communications, its inherent requirement of a Hamiltonian

cycle through which the estimate is circulated poses a serious

obstacle in practical deployments. In the eventuality of a

sensor failure, determination of a new cycle is a well-known

NP-complete problem in graph theory [6], and thus infeasible

for medium to large networks. Avoiding the need of such

a cycle and further exploiting the exchange of information

among neighbors to yield improved local estimates, the

diffusion LMS [5], [7] offers an improved alternative with
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increased communication cost and a somewhat heuristic

derivation.

Here we develop a consensus-based distributed LMS

algorithm for use in general ad hoc WSNs with noisy

links, whose simplicity is well-matched to the power

and communication resource scarcity characterizing these

networks. Our algorithm is derived from a well-posed

optimization problem defining the desired estimator

(Section II). Building on [8] we reformulate the original

problem into an equivalent constrained optimization, whose

solution can be computed in a distributed fashion using

the alternating-direction method of multipliers (Section

III-A). The final LMS-type recursions are motivated from

stochastic approximation techniques, while we illustrate the

intuition and flexibility of the resulting algorithm (Section

III-B). A first-order (convergence in the mean) analysis is

presented in Section IV while mss convergence and tracking

capabilities are corroborated with the aid of simulations

(Section V). We finally conclude this paper in Section VI.

Notation: Bold uppercase letters will denote matrices (ij-th

entry denoted by [.]ij) whereas bold lowercase letters denote

column vectors (i-th entry denoted by [.]i); ⊗, (.)T , diag(.),
bdiag(.), E [.] denote Kronecker product, transposition, di-

agonal matrix (arguments are scalar diagonal entries), block

diagonal matrix (arguments are matrix diagonal entries) and

expectation, respectively. For a vector, ‖.‖ corresponds to its

Euclidean norm and for a set |.| denotes its cardinality. The

n × n identity matrix is denoted by In.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an ad hoc WSN comprising J sensors, where

only single-hop communications are allowed, i.e., sensor j
can only communicate with the sensors in its neighborhood

Nj ⊆ [1, J ]. The communication links are assumed to be

symmetric, and the WSN is modelled as an undirected graph

whose vertices are the sensors and its edges represent the

available links. Global connectivity information is captured

by the symmetric adjacency matrix E ∈ R
J×J , where

[E]ij = 1 if i ∈ Nj and 0 otherwise. As in [8], the

communication graph is assumed to be connected; i.e., there

exists a (possibly) multi-hop communication path connecting

any two sensors. An example of such a network is shown on

Fig. 1.
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Fig. 1. An ad hoc WSN with 8 sensors.

The WSN is deployed to estimate a signal vector s0 ∈
R

p×1. For every given time instant t (t denotes discrete time),

each sensor acquires a regressor vector hj(t) ∈ R
p×1 and a

scalar observation xj(t), both assumed zero-mean without

loss of generality. Furthermore, it is assumed that both

regressors and observations are independent across space

(sensors) whereas arbitrary time correlations are allowed. In-

troducing the global quantities x(t) := [x1(t), . . . , xJ (t)]
T ∈

R
J×1 and H(t) := [h1(t), . . . ,hJ(t)]

T ∈ R
J×p, the min-

imum mean-squared error (MMSE) estimation problem of

interest can be posed as

ŝ(t) = arg min
s

E
[
‖x(t) − H(t)s‖2

]

= arg min
s

J∑

j=1

E
[
(xj(t) − hT

j (t)s)2
]
. (1)

If x(t) and H(t) are jointly stationary, then (1) leads to

the well-known Wiener solution s0 = K−1
H KHx [9, p.15],

where KH = E
[
HT (t)H(t)

]
and KHx = E

[
HT (t)x(t)

]
.

If global (cross-) covariance matrices KH and KHx were

available, then a steepest-descent iterative algorithm with

sufficiently small step-size would converge to s0 while

avoiding the matrix inversion overhead. In many applications

of interest, this statistical information will not be available

and one could resort to the centralized (C-) LMS algorithm;

see e.g., [9, p.77]

ŝ(t) = ŝ(t − 1) + µHT (t) [x(t) − H(t)ŝ(t − 1)] . (2)

Considering a constant step-size µ in order to allow

for tracking of a possibly time-varying s0(t), the C-

LMS algorithm will yield stochastic iterates ŝ(t) that

will not converge to, but hover around s0. In fact, it

can be shown [9, Ch.5, Ch.9] that for appropriately

chosen step-sizes and observations obeying a linear

model, i.e., xj(t) = hj(t)s0 + ǫj(t) with hj(t)
independent of the white noise ǫj(t); recursion (2):

(i) provides asymptotically unbiased estimates, i.e.,

limt→∞ E [ŝ(t)] = s0, (ii) yields an asymptotic error

covariance matrix limt→∞ E
[
(ŝ(t) − s0)(ŝ(t) − s0)

T
]

with

bounded entries; and, (iii) yields an asymptotically inflated

MSE, i.e., limt→∞ E
[
‖x(t) − H(t)ŝ(t)‖2

]
= Jmin + α(µ),

where Jmin = E
[
‖x(t) − H(t)s0‖2

]
and α(µ) > 0 is the

so called excess mean-square error.

Remark 1: The C-LMS algorithm establishes a performance

benchmark among the LMS-type adaptation rules, as every

update encompasses all the information available in the

network. Although both the observations x(t) and regressor

columns in H(t) are actually disseminated across the

WSN, the C-LMS can be implemented in a fusion center

(FC) based topology. This, however, comes at the price

of isolating the network’s point of failure and increasing

the communication cost (thus diminishing sensor battery

lifetime).

For these reasons, the purpose of this paper is to derive a

fully distributed LMS algorithm using ad hoc WSNs whose

performance is comparable to its centralized counterpart (2).

In a nutshell, the described setup naturally suggests the

following characteristics that the algorithm should exhibit:

(i) local sensor estimates should eventually reach consensus,

even in the presence of receiver noise, in the sense that

they should all enjoy the previously mentioned asymptotic

properties of the C-LMS, (ii) processing at the sensor level

should be kept as simple as possible; and, (iii) information

should be exchanged between neighboring sensors only.

III. THE D-LMS ALGORITHM

In this section we introduce the D-LMS algorithm, first

going through the detailed process of algorithm construction

and describing its operation. We also reinterpret the resulting

recursions so as to draw conclusions on how local and

network-wide information is used in the learning process,

and understand the mechanisms employed to reach consen-

sus.

A. Algorithm Construction

Noting that the global variable s couples the summands

on the cost function in the right-hand side (rhs) of (1), we

introduce the set of auxiliary variables {sj}J

j=1 that represent

the local estimates at each of the sensors. To this end, we

consider the constrained minimization problem

{ŝj(t)}J

j=1 = arg min
sj

J∑

j=1

E
[
(xj(t) − hT

j (t)sj)
2
]

s. t. εjsj = εjsb, b ∈ B, j ∈ Nb, (3)

where B ⊆ [1, J ] is the bridge sensor subset introduced in

[8] which is defined by the following pair of conditions:

(i) ∀ j ∈ [1, J ] there exists at least one b ∈ B such that

b ∈ Nj (the bridge neighbors of sensor j will be denoted

by Bj := Nj ∩ B); and, (ii) ∀ b1 ∈ B there exists another

sensor b2 ∈ B such that the shortest path between b1 and b2

has at most two edges. Note that the set of all sensors [1, J ]
is a valid bridge sensor subset, but simple algorithms can

determine other possible choices with smaller cardinality (see

also Fig. 1 where B comprises the sensors in black). Useful in

our derivations is the non-symmetric bridge adjacency matrix

EB ∈ R
J×J , with [EB]ij = 1 if j ∈ Bi and 0 otherwise. The

additional set of consensus-enforcing variables {sb}b∈B are

maintained at each of the bridge sensors, whereas the WSN
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connectivity assumption plus the defining characteristics of B
provide necessary and sufficient conditions to assure that the

equality constraints in (3) imply sj = sj′ ∀ j, j′ ∈ [1, J ] [8,

Proposition 1]. This establishes the equivalence of (1) and

(3) in the sense that ŝj(t) = ŝ(t) ∀ j ∈ [1, J ]. Regarding

the positive constants εj , though they do not cause any

effect whatsoever on the constraints in (3), they will play

an important role in the convergence characteristics of the

D-LMS algorithm (see Remark 3).

In order to solve (3), we consider its augmented La-

grangian given by

La [s, s,v] =
J∑

j=1

E
[
(xj(t + 1) − hT

j (t + 1)sj)
2
]

+
∑

b∈B

∑

j∈Nb

εj

(
vb

j

)T
(sj − sb)

+
∑

b∈B

∑

j∈Nb

cjε
2
j

2
‖sj − sb‖2, (4)

where s := {sj}J

j=1, s := {sb}b∈B, v :=
{
vb

j

}b∈Bj

j∈[1,J]
comprises the Lagrange multiplier vectors, and cj > 0 are

penalty coefficients corresponding to the constraint εjsj =
εjsb ,∀ b ∈ B. We will now resort to the alternating-direction

method of Lagrange multipliers [1, p.253] to iteratively solve

(3), obtaining a set of simple recursions to update {s, s,v}
in a purely distributed fashion. Because the algorithm is

designed for online estimation applications, the recursions

will run in real-time and hence iteration indexes will coincide

with the time index t. First, the local recursions to update

the Lagrange multipliers are given by [1]

vb
j(t) = vb

j(t−1)+εjcj (sj(t) − sb(t)) , j ∈ [1, J ], b ∈ Bj

(5)

Secondly, the recursions for the local estimates sj are ob-

tained by minimizing (4) using block coordinate descent,

i.e., La[.] is minimized with regards to sj assuming all

other variables {sb(t)}b∈B,
{
vb

j(t)
}b∈Bj

j∈[1,J]
are fixed (see

e.g. [8, Appendix B]). Because (4) is convex, the first-

order necessary condition is also sufficient for optimality.

Computing the gradient with respect to sj and setting the

result equal to zero, yields the desired solution as the root

of

E[ − 2hj(t + 1)
(
xj(t + 1) − hT

j (t + 1)sj

)

+
∑

b∈Bj

εjv
b
j(t) +

∑

b∈Bj

ε2
jcj (sj − sb(t))] = 0

where we have moved the summations of the deter-

ministic quantities inside the expectation. In the absence

of the statistical information E [hj(t + 1)xj(t + 1)] and

E
[
hj(t + 1)hT

j (t + 1)
]
, the root cannot be computed in

closed form. Thus, motivated by stochastic approximation

techniques (e.g. the Robbins-Monro algorithm) [4, Ch.1] to

find the roots of an unknown function given noisy observa-

tions, the proposed recursion for j ∈ [1, J ] is

sj(t + 1) = sj(t) + µj [2hj(t + 1)ej(t + 1) − ε2
jcj |Bj |sj(t)

−
∑

b∈Bj

(
εjv

b
j(t) − ε2

jcjsb(t)
)
], (6)

where µj is a constant step-size and ej(t + 1) := xj(t +
1) − hj(t + 1)T sj(t) is the local prior error. The up-

date equations for the consensus imposing variables sb

are obtained similarly to (6), minimizing (4) with fixed
{
sj(t + 1),vb

j(t)
}b∈Bj

j∈[1,J]
and noting that the expectation

term is a constant with respect to sb. This yields for b ∈ B

sb(t + 1) =
∑

j∈Nb

εjv
b
j(t) + ε2

jcjsj(t + 1)
∑

r∈Nb
ε2
rcr

. (7)

Recursions (5)-(7) constitute the D-LMS algorithm, where

initial conditions can be arbitrary. At time instant t, sensor

j receives the consensus variables sb(t) from its bridge

neighbors b ∈ Bj . With this information and using (5), it is

able to update its Lagrange multipliers
{
vb

j(t)
}

b∈Bj
which

are then used to compute sj(t + 1) via (6). Then sensor j
transmits the vector εjv

b
j(t) + ε2

jcjsj(t + 1) to all bridge

sensors in its neighborhood Bj . Consequently, each sensor

b ∈ B receives the vectors
{
εjv

b
j(t) + ε2

jcjsj(t + 1)
}

j∈Nb

whose weighted average is computed using (7) to yield

sb(t + 1) completing the t−th iteration. Communication

cost is O(p) per iteration. Further, observe that in order to

compute the weights in (7), bridge sensor b should acquire
{
ε2

jcj

}

j∈Nb
only from its neighbors during the start-up phase

of the WSN.

Having described the required single-hop exchanges of

information among sensors, it can be readily appreciated how

recursions (5)-(7) need to be modified in order to account for

links corrupted in the presence of additive communication

noise (e.g., quantization, or, reception noise). For all sensors

j ∈ [1, J ], b ∈ Bj in (8) and b ∈ B in (10), the D-LMS

algorithm in the noisy setup becomes

vb
j(t) = vb

j(t − 1) + εjcj

(
sj(t) − (sb(t) + nb

j(t))
)
, (8)

sj(t + 1) = sj(t) + µj [2hj(t + 1)ej(t + 1) − ε2
jcj |Bj |sj(t)

−
∑

b∈Bj

(
εjv

b
j(t) − ε2

jcj(sb(t) + nb
j(t))

)
], (9)

sb(t + 1) =
∑

j∈Nb

εjv
b
j(t) + ε2

jcjsj(t + 1) + n
j
b(t + 1)

∑

r∈Nb
ε2

rcr

(10)

where ni
j(t) denotes a zero-mean additive noise vector

corrupting a variable transmitted from sensor i to sensor j,

at time instant t.

Remark 2: The bridge sensor set provides the flexibility

to trade-off communication cost for robustness to sensor

failures. In the sample network of Fig. 1, on a per iteration

basis D-LMS requires approximately half the number of

inter-sensor variable exchanges than diffusion LMS [5].

If on the other hand B ≡ [1, J ], the situation is reversed.

Regarding recovery from sensor failures, D-LMS requires
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each sensor to adjust its local recursions (8)-(10) to the

modified neighborhood structure.

B. Further Insights

Even though recursions (5)-(7) clearly suggest simplicity

as an asset of the proposed algorithm, they may somehow

obscure the essential mechanisms operating on the available

information to yield the estimates sj . Here we derive a set

of equivalent recursions that turn out to be insightful about

these issues.

For arbitrary j ∈ [1, J ] and b ∈ Bj , consider the La-

grange multiplier update recursion (5) with initial condition

vb
j(−1) = 0. Repeated substitutions of the resulting iterates

into the rhs of (5) leads to

vb
j(t) =

t∑

n=0

εjcj [sj(n) − sb(n)] . (11)

Using (11) to eliminate vb
j(t) from (7) we obtain for all

b ∈ B and t ≥ 0

sb(t) =
∑

j∈Nb

ε2
jcjsj(t)

∑

r∈Nb
ε2

rcr

. (12)

Equation (12) establishes that the consensus variables sb(t)
are simply obtained as a weighted average of the local

estimates gathered from sensor b’s neighborhood.

To this end, consider the vector quantity qj(t) := sj(t)−
|Bj |−1

∑

b∈Bj
sb(t) which represents the instantaneous con-

sensus error at sensor j, as measured with respect to the con-

sensus reference given by the average |Bj |−1
∑

b∈Bj
sb(t).

Setting the penalty coefficients as cj = γj/|Bj | (with γj = 1
in what follows to simplify notation), using (11) to eliminate

the Lagrange multipliers from (6) and rearranging terms

yields

(a)

sj(t + 1) =
︷ ︸︸ ︷

sj(t) + µj2hj(t + 1)e(t + 1)
(b) (c)

−
︷ ︸︸ ︷

µjε
2
jqj(t) −

︷ ︸︸ ︷

µjε
2
j

t∑

n=0

qj(n) .

(13)

The pair (12)-(13) is equivalent to the D-LMS under ideal

links, when zero initial conditions are chosen for the La-

grange multipliers. Also note that the new recursions are

not suitable for implementation in real-time as the compu-

tation of (c) in (13) requires storing the whole history of

qj(t). Nonetheless, they shed further light onto the signal

processing taking place at each sensor, which turns out to be

remarkably intuitive as we discuss next.

As expressed in (13), the recursion suggests that the local

estimate sj(t + 1) is obtained as the superposition of three

terms: (a) a purely local LMS update based on the new

information {hj(t + 1), xj(t + 1)} available at sensor j; (b)

an update based on a proportional correction due to the

instantaneous consensus error qj(t); and, (c) a correction due

to the accumulated consensus error (discrete-time integral).

A term like (a) is pleasing as well as expected, whereas the

 

Local LMS 
Algorithm 

Sensor j 

PI Regulator 
To 

Consensus Loop 

Fig. 2. D-LMS processing at the sensor level.

rest should explain the mechanisms employed to incorporate

the extra information gathered throughout the whole WSN.

In fact, (b) and (c) show that a proportional-integral (PI)

discrete-time controller [2, p.605] is used to drive the local

estimate sj(t) to consensus, as dictated by the computed

set-point |Bj |−1
∑

b∈Bj
sb(t) (see Fig. 2). It is exclusively

throughout this reference, that all the information obtained

from the network is introduced in the update of sj .

Examination of (12) shows that for every time slot, the

information range of the D-LMS has a radius of two hops;

as neighbors of b ∈ Bj may be up to two hops away from

sensor j. This should be contrasted with the diffusion LMS

[5], whose instantaneous information range spans only the

single-hop neighborhood.

Remark 3: The constant εj is only affecting the proportional

and integral gains of the consensus regulator [cf. (13)].

For εj = 1 these gains boil down to µj , a generally small

constant that will attenuate the influence that the information

embedded in (b) and (c) has on the estimate sj(t + 1).
The presence of εj is thus intuitively justified so as to

compensate for this effect, gaining an additional degree of

freedom to attain potentially higher convergence rates.

IV. MEAN ANALYSIS

Here we focus on the D-LMS algorithm analysis, by estab-

lishing its convergence in the mean under the independence

setting. This setting is characterized by the following signal

assumptions for all j ∈ [1, J ]:

(As1) hj(t) is a zero-mean white random vector

with positive definite covariance matrix Khj
=

E[hj(t)hj(t)
T ], whose spectral radius will be de-

noted by λmax
j .

(As2) Observations obey the linear model xj(t) =
hj(t)

T s0 + ǫj(t), where ǫj(t) is a zero-mean white

noise.

(As3) hj(t) and ǫj(t) are statistically independent.

Defining mj(t) := E [sj(t) − s0], we will derive sufficient

conditions under which the global averaged error vector

m(t) :=
[
m1(t)

T , . . . ,mJ (t)T
]T ∈ R

Jp×1 satisfies

limt→∞ m(t) = 0. As established in the following Lemma,

m(t) is the solution of a second-order homogenous vector

difference equation with specific initial conditions.
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Lemma 1: Under assumptions (As1)-(As3), consider the D-

LMS algorithm (8)-(10) initialized with {sj(0) = 0}j∈[1,J],

{vb
j(−1) = 0}b∈Bj

j∈[1,J], {sb(0) = 0}b∈B. Then for t ≥ 1,

m(t+1) is given by the second order recursion m(t+1) =

Am(t) + Bm(t − 1) with m(0) = −
[
sT
0 , . . . , sT

0

]T
and

m(1) =
[
sT
0 (µ12Kh1

− Ip) , . . . , sT
0 (µJ2KhJ

− Ip)
]T

,

where

A := bdiag
(
2(1 − µ1ε

2
1c1|B1|)Ip − µ12Kh1

, . . . ,

2(1 − µJε2
JcJ |BJ |)Ip − µJ2KhJ

)
+ 2W (14)

B := −bdiag
(
(1 − µ1ε

2
1c1|B1|)Ip − µ12Kh1

, . . . ,

(1 − µJε2
JcJ |BJ |)Ip − µJ2KhJ

)
− W (15)

and

W := [diag(µ1ε
2
1c1, . . . , µJε2

JcJ) · EB ·
diag((

∑

r∈N1

ε2
rcr)

−1, . . . , (
∑

r∈NJ

ε2
rcr)

−1) ·

E · diag(ε2
1c1, . . . , ε

2
JcJ)] ⊗ Ip

Proof: Turning the D-LMS recursions (8)-(10) into an error

form by subtracting s0 from sj(t), and noting that by virtue

of (As2) we can write ej(t+1) = ǫj(t+1)−h
T
j (t+1)(sj(t)−

s0), we proceed to take expectations using all (As1)-(As3)

and the zero-mean property of the noise vectors to obtain

vb
j(t) = vb

j(t − 1) + εjcj (mj(t) − sb(t)) , b ∈ Bj

(16)

mj(t + 1) = mj(t) + µj [−2Khj
mj(t) − ε2

jcj |Bj |mj(t)

−
∑

b∈Bj

(
εjv

b
j(t) − ε2

jcjsb(t)
)
] (17)

sb(t + 1) =
∑

j∈Nb

εjv
b
j(t) + ε2

jcjmj(t + 1)
∑

r∈Nb
ε2

rcr

, (18)

where
{
vb

j

}b∈Bj

j∈[1,J]
, {sb}b∈B stand for the averaged Lagrange

multipliers and consensus variables respectively, and the

initial conditions are {mj(0) = −s0}j∈[1,J], {vb
j(−1) =

0}b∈Bj

j∈[1,J], {sb(0) = 0}b∈B. Recursions (16),(18) have the

same form as (5),(7) and therefore expressions (11)-(12) are

still valid for the averaged variables. Using them both to

eliminate the averaged multipliers and consensus variables

from (17), and arguing by induction after subtracting the

resulting recursion for mj(t) from the one for mj(t + 1)
allows to conclude that for all j ∈ [1, J ], the second order

recursion

mj(t + 1) = [2(1 − µjε
2
jcj |Bj |)Ip − µj2Khj

]mj(t)

−[(1 − µjε
2
jcj |Bj |)Ip − µj2Khj

]mj(t − 1)

+
∑

b∈Bj

µjε
2
jcj

∑

r∈Nb
ε2
rcr

∑

i∈Nb

ε2
i ci2mi(t)

−
∑

b∈Bj

µjε
2
jcj

∑

r∈Nb
ε2
rcr

∑

i∈Nb

ε2
i cimi(t − 1),

(19)

initialized with {mj(0) = −s0}j∈[1,J], {mj(1) =
(µj2Khj

− Ip)s0}j∈[1,J], is equivalent for t ≥ 1 to

the averaged system (16)-(18). Concatenating the local

variables to form m(t), the set of recursions (19) for

j = 1, . . . , J can be readily written in compact form as

m(t + 1) = Am(t) + Bm(t − 1) with A, B and W

as defined in the statement of the Lemma, and with the

required initial conditions. This completes the proof of

Lemma 1. ¤

Observe how the structure of matrices A and B [cf. (14)-

(15)] shows that the local averaged error mj(t+1) not only

depends upon its past values mj(t), mj(t − 1) through the

block diagonal terms, but also upon the past values mi(t),
mi(t − 1) of the sensors i ∈ Nb, with b ∈ Bj . This

last network-wide coupling comes through the matrix W,

which introduces network interactions through the adjacency

matrices E and EB.

In order to study the convergence of the second-order

recursion, we consider the equivalent first-order system ob-

tained by state concatenation

m̃(t + 1) :=

[
m(t + 1)

m(t)

]

= Φm̃(t), (20)

Φ :=

[
A B

IJp 0

]

∈ R
2Jp×2Jp

and initial condition m̃(1) = [m(1)T ,m(0)T ]T as defined

in Lemma 1. The convergence of (20) will be intimately

related to the eigenstructure of Φ, leading us to the first-

order characterization of the D-LMS algorithm that follows.

Proposition 1: Under assumptions (As1)-(As3), the

D-LMS algorithm (8)-(10) whose positive step-sizes

{µj}j∈[1,J] and relevant parameters are chosen such that

µj(ε
2
jcj |Bj | + 2λmax

j ) < 1, achieves consensus in the mean

sense i.e.,

lim
t→∞

E [sj(t) − s0] = lim
t→∞

mj(t) = 0, ∀ j ∈ [1, J ]. (21)

Proof: The desired result is a consequence of Φ’s

eigenstructure properties stated in the following Lemma,

which can be proved by mimicking the steps in [8, Lemma

6].

Lemma 2: If µj(ε
2
jcj |Bj | + 2λmax

j ) < 1 for j = 1, . . . , J ,

the eigenvalues {λΦ,i}2Jp

i=1 of Φ and the corresponding right

and left eigenvectors uΦ,i and vΦ,i satisfy the following

properties:

(a) Exactly p eigenvalues are equal to 1, while the rest

satisfy |λΦ,i| < 1.

(b) vΦ,i =
[
(v1

Φ,i)
T , (v2

Φ,i)
T
]T

is a left eigenvector

associated with the eigenvalue 1 if and only if the

following equations hold:

(v1
Φ,i)

T (IJp − A) = (v2
Φ,i)

T (22)

(v1
Φ,i)

T B = (v2
Φ,i)

T . (23)
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From (20) it follows that m̃(t + 1) = Φtm̃(1), and rely-

ing on the eigendecomposition of Φ we can write Φt =
∑2Jp

i=1 λt
Φ,iuΦ,iv

T
Φ,i. Applying the results from Lemma 2 (a)

we obtain

lim
t→∞

m̃(t + 1) =




∑

i|λΦ,i=1

uΦ,iv
T
Φ,i



 m̃(1)

=
∑

i|λΦ,i=1

uΦ,i

(
(v1

Φ,i)
T m(1) + (v2

Φ,i)
T m(0)

)
.

(24)

The definitions of m(0), m(1), A and B in Lemma 1 in

conjunction with the conditions (22)-(23) immediately lead

to the conclusion that the rhs of (24) is equal to 0. ¤

It is important to appreciate that Proposition 1 provides

conditions for the selection of the D-LMS parameters

{µj , εj , cj}j∈[1,J]; guaranteeing stability in the mean and

solely requiring the knowledge of local information, i.e.,

λmax
j and the bridge neighborhood size |Bj |. On the other

hand, the first-order analysis pursued in [5] for the diffusion

LMS under the same signal assumptions yields a condition

for stability which involves global network information.

That condition (which is in the spirit of spectral radius of

Φ smaller than 1), implicitly defines the required step-sizes

while a comparison with µj(ε
2
jcj |Bj | + 2λmax

j ) < 1
reinforces the simplicity of our proposed approach, now

from a design stage perspective.

V. SIMULATIONS

At this point, we will test the novel D-LMS so as to

illustrate its convergence characteristics and establish com-

parisons with the diffusion LMS with Metropolis weights

in [5], [7], the C-LMS and the purely local (L-) LMS with

no communication among sensors. We consider an ad hoc

WSN with J = 30 sensors. The regressor vectors hj(t) are

chosen with i.i.d. N (0, 1) entries (λmax
j = 1), whereas for

the observations a linear Gaussian model x(t) = H(t)s0 +
ǫ(t) [3] is adopted with σ2

ǫj
= 10−4. The signal vector

dimensionality is p = 4.

We first compare the MSE performance of the algorithms,

which as a byproduct validates Proposition 1 (convergence

in the mean is necessary for mean-square convergence [9]).

The same step-size µ = 0.01 was chosen in all cases, and

in particular for the D-LMS cj = 1/|Bj | and εj = 1/
√

2µ
for j = 1, . . . , J . Receiver noise of variance σ2

n = 10−4

was considered to test the D-LMS under non-ideal links.

The global MSE evolution (learning curve) computed as

J−1
∑J

j=1 E
[
‖x(t) − H(t)sj(t)‖2

]
for the distributed se-

tups is shown on Fig. 3 (a), where the averaging is taken

over 50 realizations of the experiment. As expected, the dis-

tributed approaches lie in between C-LMS and L-LMS and in

all noise-free cases the resulting misadjustment is negligible.

Regarding D-LMS: (i) it shows a higher convergence rate

than the difussion LMS; and, (ii) is also convergent in the

presence of receiver noise.

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

10
1

10
2

Time t

L
e

a
rn

in
g

 C
u

rv
e

J
min

 

C−LMS

D−LMS
D−LMS w/ noisy links

L−LMS

Diffusion LMS

(a)

0 50 100 150 200 250 300 350 400 450 500
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Time t

T
im

e
 v

a
ry

in
g

 p
a

ra
m

a
te

r 
a

n
d

 D
−

L
M

S
 e

s
ti
m

a
te

[s
21

(t)]
2

[s
0
(t)]

2

(b)

Fig. 3. (a) Learning curve comparisons; (b) Tracking with D-LMS.

We also elaborate on the flexibility and increased per-

formance gained by the appropriate selection of εj , as

mentioned under Remark 3. First we compare the previous

setup with the case where εj = 1 and the attenuating effects

of µj in the consensus loop gains are not compensated [cf.

(13)]. Even though we observe a slight improvement in

the learning curve shown in Fig. 4 (a), the major gain is

manifested as a reduction of the normalized estimation error

J−1
∑J

j=1 E
[
‖sj(t) − s0‖2

]
in Fig. 4 (b). Alternatively, we

adjust the step-size to the value µ = 0.022 so that there is no

appreciable difference in the estimation error, and observe

that the compensated D-LMS shows a much faster MSE

transient response (see Fig. 4).

Finally, we illustrate the tracking capabilities of the D-

LMS, with s0(t) given by the large-amplitude slow-speed

model s0(t) = (1 − ρ)s0(t − 1) +
√

ρν(t) [9, p.127], where

ρ = 0.01 and ν(t) is zero-mean white Gaussian with variance

0.02. Fig. 3 (b) depicts the second entry of the true time-

varying parameter [s0(t)]2, and the corresponding estimate

from sensor 21 that closely follows the true variations.

ThA4.1

573



0 50 100 150 200 250 300 350 400 450 500
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Time t

L
e
a
rn

in
g
 C

u
rv

e

µ
j
=0.022, 

ε
j
=(2µ

j
)
−1/2

 

µ
j
=0.01, 

ε
j
=(2µ

j
)
−1/2

 

µ
j
=0.01, 

ε
j
=1

(a)

0 100 200 300 400 500 600
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Time t

N
o
rm

a
liz

e
d
 E

s
ti
m

a
ti
o
n
 E

rr
o
r

µ
j
=0.01, 

ε
j
=1

µ
j
=0.01, 

ε
j
=(2µ

j
)
−1/2

 

µ
j
=0.022, 

ε
j
=(2µ

j
)
−1/2

 

(b)

Fig. 4. Algorithm tuning with εj : (a) Learning curve; (b) Normalized
estimation error.

VI. CONCLUDING REMARKS

We developed a distributed LMS algorithm for operation

in ad hoc WSNs, where inter-sensor links can be affected

by additive noise. The simple sensor processor structure

includes a local-LMS adaptation superimposed to the output

of a PI regulator, which drives the local estimate to con-

sensus as dictated by a network-wide information enriched

reference. The consensus loop, if appropriately tuned, was

shown to yield substantial performance gains. A condition

for sensor step-size selection, based on local information and

guaranteed convergence in the mean, is the main result of

the first-order analysis conducted under the independence

setting. Numerical examples corroborate that the D-LMS

outperforms comparable online estimation schemes proposed

in the literature, and is capable of tracking time-varying

processes.

Stability and performance analysis of the D-LMS al-

gorithm will be pursued for general settings using the

stochastic averaging techniques in [9, Part III]. Furthermore,

our algorithm construction approach can also be applied to

the exponentially weighted least-squares cost, leading to a

distributed recursive least-squares (D-RLS) algorithm.1
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