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ABSTRACT

Mean-square error (MSE) performance analysis is conducted for a
novel distributed least-mean square (D-LMS) algorithm, which is
based on consensus, in-network, adaptive estimation using wireless
sensor networks (WSNs). For sensor observations that are linearly
related to the time-invariant parameter of interest and independent
Gaussian data, exact closed-form expressions are derived for the
global and sensor-level MSE evolution and steady-state limiting val-
ues. Tracking performance is also investigated when the true param-
eter adheres to a random-walk model. Remarkably, for small step-
sizes the results accurately extend to the pragmatic setup whereby
sensors acquire temporally-correlated (non-)Gaussian data.

Index Terms— Wireless sensor networks, distributed estima-
tion, LMS algorithm, performance analysis.

1. INTRODUCTION

It has been recognized that sensors comprising WSNs deployed to
perform collaborative estimation tasks, should be empowered with
signal processing tools that enable estimation in constantly chang-
ing environments, without having available a complete statistical
description of the underlying processes of interest. Emergent WSN-
based applications include distributed localization, power spectrum
estimation, target tracking and have motivated the development of
distributed adaptive estimation schemes; for early work see e.g.,
[1] and references therein. Acknowledging such a challenge, a
consensus-based distributed (D-)LMS algorithm was developed in
[2] for in-network adaptive processing using WSNs with noisy links.

The present paper complements [2] by conducting a detailed
MSE performance analysis. For a time-invariant parameter and sen-
sor observations that are linearly related to it, we rely on the simpli-
fying (though generally unrealistic) white Gaussian setting assump-
tions [3, pg. 246], [4, pg. 110] to derive closed-form expressions for
the global and sensor-level MSE evolution and steady-state values.
Mean and MSE stability are also assessed. The importance of such
results is threefold: (i) an exact MSE characterization is provided
for D-LMS, a complex time-varying stochastic dynamical system;
(ii) similar existing results for the diffusion LMS [1] lay a common
ground for fair comparisons; and (iii) for small step-sizes the con-
clusions extend to temporally-correlated non-Gaussian data.

The second major contribution of this paper pertains to per-
formance analysis of tracking systems, which to the best of our
knowledge is novel in the distributed adaptive estimation literature.
Due to its simplicity and widespread use in the analysis of classical
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LMS [3, pg. 270], [4, pg. 121], we adopt a random-walk model
to describe the fluctuations of the time-varying parameter. Though
very simple and somehow contrived due to its increasing variance,
such model proves sufficient to provide valuable insight about the
tracking behavior of D-LMS.

Notation: Operators ⊗, ◦, (.)T , (.)†, λmax(.), tr(.), diag(.),
bdiag(.), E [.] will denote Kronecker product, Hadamard product,
transposition, matrix pseudo-inverse, spectral radius, matrix trace,
diagonal matrix, block diagonal matrix and expectation, respec-
tively. For both vector and matrices, ‖.‖ will stand for the 2−norm
and |.| for the cardinality of a set. The n × n identity matrix will be
represented by In, while 1n will denote the n × 1 vector of all ones
and bn,i will stand for the i-th vector in the canonical basis for R

n.

2. PROBLEM STATEMENT AND D-LMS ALGORITHM

Consider a WSN with sensors {1, . . . , J} := J . Only single-
hop communications are allowed, i.e., sensor j communicates only
with its neighbors in Nj ⊆ J . Assuming that inter-sensor links
are symmetric, the WSN is modeled as an undirected connected
graph with adjacency matrix E. Different from [1], the present net-
work model accounts explicitly for non-ideal sensor-to-sensor links,
through a zero-mean additive noise vector ηi

j(t) with covariance ma-

trix Rηj,i := E[ηi
j(t)η

i
j(t)

T ] corrupting signals received at sen-
sor j from sensor i at discrete-time instant t. The noise vectors

{ηi
j(t)}i∈Nj

j∈J are assumed temporally and spatially uncorrelated.

The WSN is deployed to estimate a signal vector s0(t) ∈ R
p×1

in a distributed fashion. Per time instant t = 0, 1, 2, . . . , each sensor
has available a regression vector hj(t) ∈ R

p×1 and a scalar obser-
vation xj(t), both assumed zero-mean without loss of generality. A
similar data setting was considered in [1]. The global LMS estimator
of interest can be written as [3, p. 62], [1], [2]

ŝ(t) = arg min
s

J∑
j=1

E
[
(xj(t) − hT

j (t)s)2
]
. (1)

Next we describe an application setup for distributed linear regres-
sion, which naturally gives rise to the aforementioned data setting.

2.1. Distributed Power Spectrum Estimation

Consider an ad hoc WSN deployed e.g., for collaborative habitat
monitoring, whereby sensors observe a narrowband source to deter-
mine its spectral peaks. Such information enables the WSN to dis-
close hidden periodicities due to a physical phenomenon controlled
by e.g., a natural heat source. Denote the source of interest by θ(t),
which can be modeled as an autoregressive (AR) process [5, pg. 106]

θ(t) = −
p∑

τ=1

ατθ(t − τ) + w(t) (2)
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where p is the order of the AR process, while {ατ} are the AR co-
efficients and w(t) denotes white noise. The source propagates to
sensor j via a multi-path channel modeled as an FIR filter Cj(z) =∑Lj−1

l=0 cj,lz
−l, of unknown order Lj and tap coefficients {cj,l}. In

the presence of additive sensing noise ε̄j(t) the observation at sen-

sor j is thus xj(t) =
∑Lj−1

l=0 cj,lθ(t − l) + ε̄j(t). Since xj(t) is an
ARMA process, it can be written as [5]

xj(t) = −
p∑

τ=1

ατxj(t − τ) +

m∑
τ ′=1

βτ ′ ξ̄j(t − τ ′), j ∈ J (3)

where the moving average (MA) coefficients {βτ ′} and the variance
of the white noise process ξ̄j(t) depend on {cj,l}, {ατ} and the vari-
ance of the noise terms w(t) and ε̄j(t). For the purpose of determin-
ing spectral peaks, the MA term in (3) can be treated as observation
noise, i.e., εj(t) :=

∑m
τ ′=1 βτ ′ ξ̄j(t − τ ′). This is important since

sensors do not have to know the source-sensor channel coefficients
as well as the noise variances. The spectral content of the source
can be estimated provided sensors estimate the coefficients {ατ}, so
let s0 := [α1 . . . αp]T . From (3) the regressor vectors are given as
hj(t) = [−xj(t − 1) . . . − xj(t − p)]T , directly from the sensor
data {xj(t)} without the need of training/estimation.

Remark 1 The source-sensor channels may introduce deep fades at
the frequencies occupied by the source. Thus, having each sensor
operating on its own may lead to faulty assessments. The necessary
spatial diversity to effect improved spectral estimates, can only be
achieved via sensor collaboration as in D-LMS described next.

2.2. The D-LMS Algorithm

To distribute the cost function in (1) two steps are needed: (i) re-
place the coupling variable s with auxiliary local variables {sj}J

j=1

that represent candidate estimates of s per sensor; and (ii) add the
constraints sj = s̄b, b ∈ B, j ∈ Nb where B ⊆ J is the bridge
sensor subset [2]. For future reference, let Bj := Nj ∩ B denote the
set of bridge neighbors of sensor j. In addition to sb, bridge sensor
b ∈ B also maintains the local vector s̄b utilized to impose consensus

among all {sj}J
j=1. Associating Lagrange multipliers {vb

j}b∈Bj

j∈J to
the aforementioned constraints, the resulting equivalent constrained
optimization is solved in a distributed fashion by resorting to the
alternating-direction method of multipliers [6, p. 253] and a stochas-
tic approximation iteration to handle the unavailability/variation of
statistical information. The resultant D-LMS algorithm comprises
the following simple recursions updated at all sensors j ∈ J and
b ∈ B

vb
j(t) = vb

j(t − 1) + c
(
sj(t) − (s̄b(t) + ηb

j(t))
)

(4)

sj(t + 1) = sj(t) + μ[2hj(t + 1)ej(t + 1) (5)

−
∑
b∈Bj

(
vb

j(t) + c
(
sj(t) − (s̄b(t) + ηb

j(t))
))

]

s̄b(t + 1) =
∑

j∈Nb

c−1vb
j(t) + sj(t + 1) + η̄j

b(t + 1)

|Nb| (6)

where μ > 0 is a constant step-size, c > 0 is a penalty coefficient
and ej(t) := xj(t) − hT

j (t)sj(t − 1) is the local a priori error.
The overall operation of the algorithm can be described as follows.
At time instant t, sensor j receives the (noise corrupted) consensus
variables s̄b(t) + ηb

j(t) from its bridge neighbors b ∈ Bj . Utilizing

(4), it is able to update its Lagrange multipliers
{
vb

j(t)
}

b∈Bj
which

are then used to compute sj(t + 1) via (5). Finally, sensor j trans-
mits the quantity c−1vb

j(t) + sj(t + 1) to all bridge sensors in its
neighborhood Bj . Consequently, each bridge sensor b ∈ B acquires
the vectors

{
c−1vb

j(t) + sj(t + 1) + η̄j
b(t + 1)

}
j∈Nb

whose aver-

age is computed using (6) to yield s̄b(t + 1), thus completing the
t-th iteration. For a detailed description of the algorithm’s commu-
nication and computational cost analyses as well as and comparisons
with the diffusion LMS [1], the reader is referred to [2].

3. ANALYSIS PRELIMINARIES

Our approach to performance analysis relies on a compact error-
form representation of D-LMS as a linear time-varying stochastic
difference-equation [2, Lemmata 2 and 3].

3.1. Error-form D-LMS

In this subsection, we start from the D-LMS recursions in (4)-
(6) and characterize the evolution of the local estimation errors
{y1,j(t) := sj(t) − s0(t)}J

j=1 and local sum of multipliers

{y2,j(t) :=
∑

b∈Bj
vb

j(t − 1)}J
j=1. A convenient global state

capturing the spatio-temporal dynamics of D-LMS can be defined as
y(t) := [yT

1 (t) yT
2 (t)]T = [yT

1,1(t) . . .yT
1,J(t)yT

2,1(t) . . .yT
2,J(t)]T .

Towards obtaining a first-order recursion for y(t), we require for all
j ∈ J :
(a1) Sensor observations obey xj(t) = hT

j (t)s0(t − 1) + εj(t),

where the zero-mean white noise {εj(t)} has variance σ2
εj

.
To concisely capture the effects of both observation and commu-
nication noise on the estimation errors across the WSN, define the
Jp × 1 noise vectors ε(t) := 2μ[hT

1 (t)ε1(t) . . .hT
J (t)εJ(t)]T and

η̄(t) := [η̄T
1 (t) . . . η̄T

J (t)]T ; where {η̄j(t)}j∈J are given by

η̄j(t) :=
∑
b∈Bj

∑
j′∈Nb

η̄j′
b (t)

|Nb| . (7)

and Rη̄ := E[η̄(t)η̄T (t)]. Introduce the p(
∑

b∈B |Nb|) × 1 vector

η(t) := [{(ηb1
j′ (t))

T }j′∈Nb1
. . . {(ηb|B|

j′ (t))T }j′∈Nb|B|
]T (8)

comprising the receiver noise of the bridge sensors’ transmissions to
their neighbors, and define Rη := E[η(t)ηT (t)]. Finally, consider
the Jp × Jp generalized “two-hop range” Laplacian matrix [2]

A := bdiag(|B1|Ip, . . . , |BJ |Ip) −
∑
b∈B

(eb ⊗ Ip)(eb ⊗ Ip)T

|Nb| (9)

where eb represents the b-th column of the adjacency matrix E.
Based on these definitions, it is possible to state the main result of
this section that will be instrumental in the subsequent analysis [7].

Lemma 1: Under (a1) and for t ≥ 0, the global state y(t) evolves
according to

y(t + 1) = bdiag(IJp, cA)z(t + 1) +

[
2μcIJp

−cIJp

]
η̄(t)

+

[
2μcPα

−cPα

]
η(t) (10)
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where the inner state z(t) := [zT
1 (t) zT

2 (t)]T is arbitrarily initial-
ized and updated according to

z(t + 1) = Φ(t + 1, μ)z(t) + Rα
h(t + 1)η̄(t − 1)

+ Rβ
h(t + 1)η(t − 1) + [εT (t + 1) 0T ]T

− [1T
J ⊗ (s0(t + 1) − s0(t))

T 0T ]T , (11)

and Φ(t, μ) consists of the blocks [Φ(t, μ)]11 = IJp −2μ(Rh(t)+
cA), [Φ(t, μ)]12 = −μcA and [Φ(t, μ)]21 = [Φ(t, μ)]22 = AA†,
with Rh(t) := bdiag

(
h1(t)h

T
1 (t), . . . ,hJ(t)hT

J (t)
)
. The matrices

Rα
h(t) and Rβ

h(t) are defined as

Rα
h(t) := [μcIJp − 4μ2c(Rh(t) + cA)T , 2μcIJp]T

Rβ
h(t) := [μc(3Pα − 2Pβ)T − 4μ2c((Rh(t) + cA)Pα)T ,

2μcPT
α + 2CT

R]T (12)

with CR chosen such that ACR = Pα − Pβ and the structure of
the time-invariant matrices Pα and Pβ is given in Appendix A.

3.2. Performance Metrics

When it comes to performance evaluation of adaptive filters, it is
customary to consider the so called mean-square error (MSE), ex-
cess mean-square error (EMSE) and mean-square deviation (MSD)
as figures of merit [3], [4]. In the present setup for distributed adap-
tive estimation, it is pertinent to address both global (network) and
local (per-sensor) performance [1]. The aforementioned local quan-
tities can be defined for all j ∈ J as

MSEj(t) := E[ej(t)
2],

EMSEj(t) := E[(hT
j (t)y1,j(t − 1))2],

MSDj(t) := E[‖y1,j(t)‖2],

whereas the global counterparts are defined as the respective aver-
ages across sensors, e.g., MSE(t) := J−1 ∑J

j=1 E[ej(t)
2] and so

on. Next, note that in virtue of (a1) it is possible to write ej(t) =
−hT

j (t)y1,j(t − 1) + εj(t) and also assume ∀ j ∈ J that:
(a2) {hj(t)} is white with covariance matrix Rhj 
 0; and

(a3) {hj(t)}, {εj(t)}, {ηb
j(t)} and {η̄j

b(t)} are independent.
Assumptions (a1)-(a3) comprise the widely adopted independence
setting, which is instrumental in rendering the subsequent perfor-
mance analysis tractable. Although (a2) can be grossly violated in,
e.g., FIR filtering of signals (regressors) with a shift structure as in
Section 2.1, for small step-sizes the upshot of the analysis does ex-
tend to correlated data (see also Remark 2).

Because y1,j(t−1) is independent of the zero-mean {hj(t), εj(t)},
from (a1)-(a3) ones finds that MSEj(t) = EMSEj(t) + σ2

εj
; hence,

it suffices to focus on the evaluation of EMSEj(t). Introducing the
j-th local error covariance matrix Ry1,j (t) := E[y1,j(t)y

T
1,j(t)],

then MSDj(t) = tr(Ry1,j (t)) and under (a1)-(a3) a simple ma-
nipulation yields EMSEj(t) = tr(RhjRy1,j (t − 1)). Next, de-

fine Ry(t) := E[y(t)y(t)T ] and note that the global error co-
variance matrix corresponds to its Jp × Jp upper left subma-
trix [Ry(t)]11. Further, its j-th p × p diagonal submatrix (j =
1, . . . , J) denoted by [Ry(t)]11,j is Ry1,j (t). It follows that with
Rh := E[Rh(t)] = bdiag(Rh1 , . . . ,RhJ ), the global perfor-
mance metrics are given by MSD(t) = J−1tr([Ry(t)]11) and
EMSE(t) = J−1tr(Rh[Ry(t − 1)]11), which motivates deriving a
closed-form expression for Ry(t).

4. STATIONARY CASE

Consider first a stationary setup by assuming that:
(a4) The true parameter is time-invariant, i.e., s0(t) = s0.
Under (a4) the last term in (11), due to parameter velocity, vanishes.

4.1. Mean Stability

From Lemma 1 it is straightforward to establish that D-LMS’ local
estimates are asymptotically unbiased, implying that consensus in
the mean-sense is achieved on s0 [7].

Proposition 1: Under (a1)-(a4), the D-LMS achieves consensus in
the mean-sense, i.e., limt→∞ E[y1,j(t)] = 0 ∀ j ∈ J provided the
step-size is chosen such that μ ∈ (0, μu) with

μu := 2min(λ−1
max(Rh + cA), λ−1

max(2Rh + (3c/2)A)). (13)

4.2. MSE Stability and Performance Evaluation

Turning to MSE stability and performance analysis, observe from
(10) that y1(t + 1) = z1(t + 1) + 2μc[η̄(t) + Pαη(t)]. Under
(a2)-(a3) z1(t+1) is independent of the zero-mean {η̄(t), η(t)}, so

[Ry(t)]11 = [Rz(t)]11 + 4(μc)2[Rη̄ + PαRηPT
α ], (14)

which readily prompts us to obtain Rz(t) = E[z(t)zT (t)]. Toward
this end, observe that for all j ∈ J there exist unitary matri-
ces Uj that we arrange in U = bdiag(U1, . . . ,UJ) such that

UjRhjU
T
j = Λj = diag(λj

1, . . . , λ
j
p) and also URhU

T =
bdiag(Λ1, . . . ,ΛJ). For our subsequent arguments it will prove
useful to introduce the (invertible) change of variables z̃(t) :=

Ŭz(t) with Ŭ := bdiag(U,U). Next, specialize (a2) by assuming:
(a5) {hj(t)} is white Gaussian with covariance matrix Rhj 
 0.
The Gaussianity assumption is instrumental in obtaining closed-
form expressions for the regressors’ fourth-order moments, which
arise in the evaluation of Rz̃(t + 1) [7].

Proposition 2: Under (a3)-(a5) and for t ≥ 0, the covariance ma-
trix of z̃(t) obeys the first-order matrix recursion

Rz̃(t + 1) = M(Rz̃(t), Φ̃(μ), [Rz̃(t)]11) + M(Rη̄ , R̃α
h , 4μ2Rη̄)

+ M(Rη , R̃β
h, 4μ2PαRηPT

α)

+ 4μ2bdiag(σ2
ε1Λ1, . . . , σ

2
εJ

ΛJ ,0) (15)

with Φ̃(μ) := ŬΦ(μ)ŬT , R̃i
h := ŬE[Ri

h(t)] for i = α, β, and

M(R,S,T) := SRST + 4μ2[bdiag((IJ ⊗ 1p×p) ◦ ΛTΛ,0)

+ bdiag(tr(Λ1[T]1)Λ1, . . . , tr(ΛJ [T]J)ΛJ ,0)] (16)

where [T]j stands for the j-th p × p diagonal sub-matrix of T.
Using (15), the transformation Rz(t) = ŬT Rz̃(t)Ŭ and (14)

enables the closed-form evaluation of the MSE(t), EMSE(t) and
MSD(t) for all t ≥ 0 by using the formulas in Section 3.2.

Remark 2 Stochastic averaging techniques [4, pg. 231] were ap-
plied in [2] to obtain an approximate global error covariance matrix
[Rȳ(t)]11 in the presence of temporally-correlated (non-) Gaussian
data. A trajectory locking result stated therein further establishes that
the approximation error vanishes as μ → 0. Interestingly, from the
closed-form expression derived for [Ry(t)]11 under (a3)-(a5) one
finds ‖[Ry(t)]11 − [Rȳ(t)]11‖ = O(μ2). By transitivity, the per-
formance results of this paper are expected to accurately extend to
general data settings, provided μ is sufficiently small.
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The next step is to reformulate the matrix recursion (15) into a
first-order vector recursion which is better suited for stability analy-
sis. Specifically, we can vectorize (15) to obtain vec[Rz̃(t + 1)] =

vec[M(Rz̃(t), Φ̃(μ), [Rz̃(t)]11)] + vec[Rν̃S
], where Rν̃S

stands
for the (noise-induced) last three terms in the right-hand side (r.h.s.)
of (15). Further simplification is possible by relying on properties of
the vec[.] operator, as asserted by the following lemma established
in [7].

Lemma 2: Under (a3)-(a5) and for t ≥ 0, the vectorized covari-
ance matrix of z̃(t) obeys the first-order vector recursion

vec[Rz̃(t + 1)] = Ψ̃(μ)vec[Rz̃(t)] + vec[Rν̃S
] (17)

where the (2Jp)2 × (2Jp)2 transition matrix Ψ̃(μ) is

Ψ̃(μ) := Φ̃(μ) ⊗ Φ̃(μ) + 4μ2[(bdiag(Λ,0) ⊗ bdiag(Λ,0))×

diag(vec[I2Jp ⊗ 1p×p]) +
J∑

j=1

vjv
T
j ] (18)

and vj := vec[bdiag(Λ ◦ [diag(bJ,j) ⊗ 1p×p],0)] ∀ j ∈ J .
An immediate consequence of Lemma 2 is that the D-LMS is MSE
stable if and only if |λmax(Ψ̃(μ))| < 1. Although deriving explicit
bounds on μ for stability appears intractable, the following proposi-
tion provides an important existence result [7].

Proposition 3: Under (a1), (a3)-(a5) D-LMS algorithm is MSE
stable provided that μ > 0 is chosen sufficiently small.

4.3. MSE Performance in Steady-State

Under the stability conditions on Proposition 2, the steady-state co-
variance matrix Rz̃(∞) := limt→∞ Rz̃(t) with bounded entries is
guaranteed to exist. Indeed, vec[Rz̃(∞)] can be obtained as fixed
point of (17) so that solving yields

vec[Rz̃(∞)] = (I(2Jp)2 − Ψ̃(μ))−1
vec[Rν̃S

]. (19)

Note that if D-LMS is MSE stable, i.e., Ψ̃(μ) is a stable matrix, from

Gershgorin’s circle Theorem (I(2Jp)2 − Ψ̃(μ))−1 is guaranteed to
exist. Exactly as before, all relevant local and global figures of merit
in steady-state can be evaluated provided [Ry(∞)]11 is available
(c.f. Section 3.2). For that purpose, reshape (19) to obtain Rz̃(∞),
undo the change of variables to get Rz(∞) and finally use (14).

5. TRACKING PERFORMANCE

Turning our attention to the nonstationary case and in conjunction
with (a1) and (a2) [or (a5)], consider now ∀ j ∈ J :
(a6) Random-walk model, i.e., s0(t) = s0(t − 1) + ζ(t), where
{ζ(t)} is zero-mean white with covariance matrix Rζ 
 0; and

(a7) {hj(t)}, {εj(t)}, {ζ(t)}, {ηb
j(t)}, {η̄j

b(t)} are independent.
A random-walk is the simplest stochastic model to describe the vari-
ations of s0(t). It could be arguably thought as not meaningful
due to its increasing variance, thus violating the physical constraint
E[x2

j (t)] < ∞ for infinite time horizons. However, it is well justi-
fied as the resulting analysis sheds sufficient light on the key aspects
of D-LMS when it comes to tracking.

Under (a6) and differently from the stationary case, the perturba-
tion due to parameter velocity in (11) is not null but instead becomes

−[1T
J ⊗ζT (t+1) 0]T . However, from (a6) it does vanish under ex-

pectation so that as in classical LMS [4], the mean-stability analysis
carries over, as asserted next.

Corollary 1: Under (a1)-(a2), (a6)-(a7) D-LMS achieves consensus
in the mean-sense, provided μ ∈ (0, μu) with μu as in (13).

5.1. MSE Stability and Performance Evaluation

The perturbation −[1T
J ⊗ζT (t+1) 0]T arising in the nonstationary

setting is independent of all other noise quantities in virtue of (a7)
and also of z(t) in (11) due to (a6)-(a7). Therefore, the tracking per-
formance evaluation of D-LMS under the random-walk model can
be carried out with minor efforts by extending the results in Section

4. Introducing the same change of variables z̃(t) := Ŭz(t), it is
possible to derive an exact closed-form recursion for Rz̃(t) [7].

Proposition 4: Under (a5)-(a7) and for t ≥ 0, the covariance ma-
trix of z̃(t) obeys the first-order matrix recursion

Rz̃(t + 1) = M(Rz̃(t), Φ̃(μ), [Rz̃(t)]11) (20)

+ M(Rη̄ , R̃α
h , 4μ2Rη̄) + M(Rη , R̃β

h, 4μ2PαRηPT
α)

+ 4μ2bdiag(σ2
ε1Λ1, . . . , σ

2
εJ

ΛJ ,0) + Ŭbdiag(1J×J ⊗ Rζ ,0)ŬT

and the equivalent first-order vector recursion after vectorization

vec[Rz̃(t + 1)] = Ψ̃(μ)vec[Rz̃(t)] + vec[Rν̃NS
] (21)

where Rν̃NS
stands for the last four terms in the r.h.s. of (20) and

Ψ̃(μ) is defined in (18).
By inspecting (21) one realizes that the only difference with (17)
stems from the constant forcing vector. Consequently, MSE stability
conditions remain the same as in the stationary case.

Corollary 2: Under (a1), and (a5)-(a7) the D-LMS algorithm is
MSE stable provided that μ > 0 is chosen sufficiently small.

The steady-state tracking performance of D-LMS can be evalu-
ated by repeating the steps described in Section 4.3, after replacing
Rν̃S

with Rν̃NS
on the r.h.s. of (19).

5.2. Step-size Optimization

While MSE stability ensures, e.g., a bounded EMSE(∞); satisfac-
tory tracking of s0(t) ultimately requires the error to be small. This
will depend on μ and the speed of parameter variation roughly dic-
tated by tr(1J×J ⊗ Rζ). Interestingly, whenever tr(1J×J ⊗ Rζ)
is comparable to tr(RνS ) there exists an optimal μ� minimizing
EMSE(∞). This should not be surprising since excessive adapta-
tion leads to the same MSE inflation as in the absence of parameter
variation, while if μ is too small the tracking ability may be lost and
once again an MSE penalty is expected. Recall that

EMSE(∞) =
1

J

J∑
j=1

tr(ΛjRz̃1,j (∞)) =
1

J

J∑
j=1

vT
j vec[Rz̃(∞))]

=
1

J

J∑
j=1

vT
j (I(2Jp)2 − Ψ̃(μ))−1

vec[Rν̃NS
]. (22)

where in obtaining the second equality we used tr(RT S) =
vec[R]T vec[S] and the {vj} were defined in Lemma 2. Now,

Rν̃NS
= Rν̃S

+ Ŭbdiag(1J×J ⊗Rζ ,0)ŬT , where the aggregate

noise covariance is Rν̃S
= O(μ2) [cf. (20),(12)] and the second

summand is O(1). Roughly, (I(2Jp)2−Ψ̃(μ))−1 = O(μ−1) so that
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Fig. 1. Global performance evaluation for the stationary case.

one finds from (22) that EMSE(∞) = O(μ−1) for small μ, whereas
EMSE(∞) = O(μ) for moderate- to large values of the step-size
approaching the stability bound. If e.g., tr(1J×J ⊗Rζ)  tr(RνS )

then Rν̃NS
≈ Ŭbdiag(1J×J ⊗ Rζ ,0)ŬT in the whole range of

stable step-sizes so that EMSE(∞) will not attain a minimum.

Unfortunately, deriving an explicit formula for μ� is a formidable
task. If needed however, 1−D minimization can be carried out nu-
merically using, e.g., Newton’s method, as the derivatives of the
EMSE(∞) cost are readily computable in closed form.

6. NUMERICAL TESTS

With J = 20 sensors, a WSN is generated as a planar random geo-
metric graph with communication range r = 0.6. For the examples
with noisy links receiver AWGN with variance σ2

η = 10−3 is added.
A linear model [cf. (a1)] is adopted for the sensor data, with obser-
vation WGN of spatial variance profile σ2

εj
= 10−3αj , with i.i.d.

αj ∼ U [0, 1] (uniform distribution). For the different test cases and
p = 4, the signal vector will either be s0 = 1p as in (a4), or ad-
here to the random-walk model in (a6) with Rζ = 10−6Ip. The
regressors hj(t) = [hj(t) . . . hj(t − p + 1)]T have entries which
evolve according to hj(t) = (1 − ρ)βjhj(t − 1) +

√
ρνj(t) for all

j ∈ J . We choose ρ = 7 × 10−1, the βj ∼ U [0, 1] are i.i.d. in

space, and the driving white noise νj(t) ∼ U [−√
3σνj ,

√
3σνj ] has

a spatial variance profile given by σ2
νj

= 10−1γj with γj ∼ U [0, 1]
and i.i.d.. Thus, data is temporally-correlated and non-Gaussian.

With μ = 5 × 10−2 and c = 1, Fig. 1 depicts the global D-
LMS performance through the evolution of the MSE(t) (learning
curve) and MSD(t) figures of merit. Even though the data does not
adhere to (a3)-(a5), the empirical curves (obtained via sample aver-
aging 100 runs of D-LMS, i.e., recursions (4)-(6)) closely follow the
theoretical trajectories predicted by Proposition 2. The steady-state
limiting values in Section 4.3 are also extremely accurate. As sug-
gested by intuition and corroborated by (14)-(15), the performance
penalty due to non-ideal links is also apparent. Theoretical curves
for the diffusion LMS [1, eqs. (73)-(74)] with Metropolis weights
are also included. While in this case diffusion LMS has a slight edge
on steady-state performance, note that it comes at the price of a much
slower convergence rate. Similar overall conclusions can be drawn
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Fig. 2. Local performance evaluation for the stationary case.
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Fig. 3. (top) Global performance evaluation for the nonstationary
case; (bottom) Steady-state EMSE and MSD values versus μ.

from Fig. 2, which shows the local performance of two randomly
selected sensors.

With regards to D-LMS tracking performance, Fig. 3 (top) il-
lustrates the global EMSE(t) evolution when μ = 5 × 10−2 and
c = 1. Once more, it is remarkable how well the theoretical findings
in Section 5.1 agree with the true behavior for all t ≥ 0. The bottom
plots in Fig. 3 corroborate the conclusions in Section 5.2, by show-
ing the theoretically predicted dependence on μ of the steady-state
global quantities EMSE(∞) and MSD(∞), for both the stationary
and nonstationary setups described earlier. While the trend is sim-
ilar for moderate- to large step-sizes, for small μ the MSE penalty
in the tracking setup due to lack of adaptation becomes dominant,
and is increasingly severe as μ → 0. The existence of μ� is also
highlighted by Fig. 3.

7. CONCLUDING REMARKS

A detailed MSE performance analysis was conducted for D-LMS,
both in the absence of parameter variation and when the parameter
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fluctuations adhere to a random-walk model. By deriving an ex-
act matrix recursion for the global error covariance under the white
Gaussian setting, the network and per-sensor performance figures
of merit became available for any t, and in particular as t → ∞.
The tracking analysis led to the conclusion that – differently from
the time-invariant case whereby one should decrease μ to reduce the
steady-state error – for a time-varying parameter there exists an op-
timal μ�, since a vanishing step-size renders D-LMS incapable of
adapting to the variations. Numerical simulations corroborated the
theoretical findings of this paper carry over to more pragmatic se-
tups, including temporally-correlated (non-) Gaussian sensor data1.

A. STRUCTURE OF MATRICES Pα AND Pβ

From [2, Appendix D] Pα := [p1 . . .pJ ]T and Pβ := [p′
1 . . .p′

J ]T ,
where the p(

∑
b∈B |Nb|) × p submatrices pj , p′

j are given by

pj := [(pj,1)
T . . . (pj,|B|)

T ]T and p′
j := [(p′

j,1)
T . . . (p′

j,|B|)
T ]T ,

with pj,r,pj′,r defined for r = 1, . . . , |B| as

pT
j,r :=

{
bT
|Nbr |,r(j) ⊗ Ip if j ∈ Nbr

0p×|Nbr |p if j /∈ Nbr

,

(p′
j,r)

T :=

{ |Nbr |−111×|Nbr | ⊗ Ip if j ∈ Nbr

0p×|Nbr |p if j /∈ Nbr

.

Note that r(j) ∈ {1, . . . , |Nbr |} denotes the order in which ηbr
j (t)

appears in {ηbr
j′ (t)}j′∈Nbr

[cf. (8)].
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