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ABSTRACT
We deal with consensus-based online estimation and tracking of
(non-) stationary signals using ad hoc wireless sensor networks
(WSNs). A distributed (D-) least-mean square (LMS) like algorithm
is developed, which offers simplicity and flexibility, while it solely
relies on single-hop communications among sensors. Starting from
a pertinent squared-error cost, we apply the alternating-direction
method of multipliers to minimize it in a distributed fashion; and
utilize stochastic approximation tools to eliminate the need for a
complete statistical characterization of the processes of interest.
By resorting to stochastic averaging and perturbed Lyapunov tech-
niques, we further establish that local estimates are exponentially
convergent to the true parameter of interest when observations are
noise free and linearly related to it. This convergence result is nec-
essary for bounding the estimation error in the presence of noise,
and holds not only when regressors are white across time but even
when they exhibit temporal correlations. Numerical tests confirm
the merits of the novel D-LMS algorithm and its stability analysis.

Index Terms— Distributed estimation, Distributed algorithms,
Adaptive signal processing

1. INTRODUCTION

As wireless sensor networks (WSNs) have become an emerging
technology, distributed and collaborative estimation and tracking
has drawn a lot of interest recently. Such tasks become more chal-
lenging under the severe communication constraints that sensors
have to operate with. Previous works have mainly addressed (i)
single-shot distributed estimation algorithms utilizing a snapshot of
data, and (ii) distributed model-based Kalman filtering and smooth-
ing. For related works on estimation using ad hoc WSNs, see e.g.,
[1] and references therein.

Here we deal with online estimation/tracking of (non-) station-
ary signals, incorporating new sensor data in real-time. Most im-
portantly, we account for the fact that in many applications the en-
vironment experiences time variations (due to e.g., a changing WSN
topology), and a complete statistical description of the underlying
processes may not be available at the sensors. With similar con-
cerns, distributed incremental strategies with embedded LMS-type
adaptive filters at the sensors were introduced in [2]. Although [2] is
attractive for its reduced communication burden, the requirement of
a predefined connectivity cycle in the network that is also non-robust
to sensor failures, poses an important limitation in large scale WSN
deployments. Avoiding the need for such a cycle and further ex-
ploiting the exchange of information among single-hop neighbors to
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yield improved local estimates, the diffusion LMS [3] offers an im-
proved alternative with increased communication cost and a some-
what heuristic derivation.

Recently, we developed a consensus-based distributed (D-)
LMS algorithm for use in general ad hoc WSNs with noisy links,
whose simplicity adheres to the power and communication resource
scarcity characterizing these networks [4]. The algorithm is derived
from a well-posed optimization problem defining the desired estima-
tor, which we solve building on the techniques introduced in [1]. The
main focus in [4] is on algorithmic aspects and the intuition behind
the fusion of network-wide information to enrich local sensor esti-
mates, as well as its inherent flexibility to trade-off communication
cost for robustness to sensor failures. With respect to convergence,
a first-order stability in the mean sense is reported under the widely
assumed (though many times unrealistic) independence setting [5,
Ch.5].

The main contribution of the present work is a stability result
under significantly broadened signal assumptions, mainly uniform
mixing of the regressor processes with mixing coefficients satisfy-
ing a summability condition. Drawing from stochastic averaging
and perturbed Lyapunov techniques in [5, Ch.9], we establish that
the local estimation errors associated with D-LMS are exponentially
convergent to zero with probability 1, when the observations obey a
noise-free linear model.

2. PROBLEM STATEMENT

Consider an ad hoc WSN comprising J sensors, where only single-
hop communications are allowed, i.e., sensor j can only communi-
cate with the sensors in its neighborhood Nj ⊆ {1, . . . , J} := J ,
where j ∈ Nj . The communication links are assumed to be symmet-
ric, and the WSN is modelled as an undirected graph whose vertices
are the sensors and its edges represent the available links. Global
connectivity information is summarized in the symmetric adjacency
matrix E ∈ R

J×J , where [E]ij = 1 if i ∈ Nj and 0 otherwise. As
in [1], we assume that:
(a1) The communication graph is connected, meaning that there
must exist a (possibly) multi-hop communication path connecting
any two sensors. We will allow for non-ideal inter-sensor links (e.g.,
quantization, or, reception noise), whereby in general, a zero-mean
additive noise vector denoted by ni

j(t) will corrupt an information
vector transmitted from sensor i to j at time instant t (t denotes dis-
crete time). An example of such a network is shown in Fig. 1.

The WSN is deployed to estimate a signal vector s0(t) ∈ R
p×1.

For any given time instant t, each sensor has available a regressor
vector hj(t) ∈ R

p×1 and a scalar observation xj(t), which are as-
sumed zero-mean without loss of generality. Further, we assume
that:
(a2) The regressor vectors hj(t) are wide sense stationary with co-
variance matrix K̄hj = E[hj(t)h

T
j (t)] > 0 for j = 1, . . . , J .

Upon defining the global quantities x(t) := [x1(t), . . . , xJ(t)]T ∈
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Fig. 1. An ad hoc WSN.

R
J×1 and H(t) := [h1(t), . . . ,hJ(t)]T ∈ R

J×p, the global least-
mean squares estimation problem of interest can be posed as

ŝ(t) = arg min
s

E
ˆ‖x(t) − H(t)s‖2˜

= arg min
s

JX
j=1

E
h
(xj(t) − hT

j (t)s)2
i
. (1)

Observe how the summands in the objective function are coupled
through the global decision variable s.

In the broad context of WSNs and targeting a low-complexity
solution to (1), one could resort to a centralized (C-) LMS type of
adaptation in a fusion center based topology. This, however, comes
at the price of isolating the network’s point of failure and increasing
the communication cost (thus diminishing sensor battery lifetime)
as the WSN scales. For these reasons, our goal is to develop and
analyze a fully distributed LMS algorithm for use in ad hoc WSNs.

3. THE D-LMS ALGORITHM

In this section we present the D-LMS algorithm, first going through
the process of algorithm construction and finally describing its oper-
ation. Our approach stems from three main building blocks: (i) re-
cast (1) into an equivalent form amenable to distributed implementa-
tion, (ii) resort to the alternating-direction method of multipliers, see
e.g., [1], so as to split the optimization problem into smaller subtasks
that can be locally executed at the sensors, and (iii) use stochastic ap-
proximation tools to obtain an adaptive LMS-type of algorithm that
can both handle the unavailability/variations of statistical informa-
tion, and also be robust to change.

To this end, let us introduce the set of auxiliary variables s :=
{sj}J

j=1 that represent the local estimates at each of the sensors, and
consider the convex constrained minimization problem

{ŝj(t)}J
j=1 = arg min

sj

JX
j=1

E
h
(xj(t) − hT

j (t)sj)
2
i

s. t. sj = sb, b ∈ B, j ∈ Nb (2)

where B ⊆ J is the bridge sensor subset introduced in [1]. The
following conditions define a valid set B: (i) ∀ j ∈ J there exists
at least one b ∈ B such that b ∈ Nj (the bridge neighbors of sen-
sor j will be denoted by Bj := Nj ∩ B); and, (ii) if j1 and j2 are
single-hop neighboring sensors, there must exist a bridge sensor b so
that b ∈ Nj1 ∩ Nj2 . A valid (not unique) bridge sensor assignment
is shown in Fig. 1, where B consists of the sensors in black. An
additional set of consensus-enforcing variables s := {sb}b∈B are
maintained at each of the bridge sensors. It should be appreciated
that the cost in (2) now has a decomposable structure whereas the
constraints involve variables of neighboring sensors only. Interest-
ingly, (a1) plus the defining characteristics of B provide necessary
and sufficient conditions to assure that the equality constraints in (2)

imply sj1 = sj2 ∀ j1, j2 ∈ J [1]. This establishes the equivalence
of (1) and (2) in the sense that ŝj(t) = ŝ(t) ∀ j ∈ J .

In order to solve (2), we consider its augmented Lagrangian
given by

La [s, s,v] =
JX

j=1

E
h
(xj(t + 1) − hT

j (t + 1)sj)
2
i

+
X
b∈B

X
j∈Nb

h
(vb

j)
T (sj − sb) +

cj

2
‖sj − sb‖2

i
(3)

where v :=
˘
vb

j

¯b∈Bj

j∈J comprises the Lagrange multiplier vectors,

and cj > 0 are penalty coefficients introduced to tradeoff steady-
state error for convergence speed. Application of the alternating-
direction method of multipliers yields a three-step iterative update
process which involves:

[S1] Updating multipliers v(t) = {vb
j(t)}b∈Bj

j∈J via dual iterations.

[S2] For fixed s(t) = {sb(t)}J
j=1 and v(t) after completing

S1, obtain s(t + 1) = {sj(t + 1)}J
j=1 as the minimizers of

La[s, s(t),v(t)]. In solving this convex and differentiable prob-
lem [cf. (3)], the first-order optimality condition yields an equation
of the form E[f(s,x(t + 1),H(t + 1))] = 0 (details in [4]). In
the absence of the (cross-) covariance information required to com-
pute s(t + 1), we propose an update recursion motivated by the
Robbins-Monro algorithm (see e.g., [6, Ch.1]) using the noisy gra-
dient f(s,x(t + 1),H(t + 1)).
[S3] Similarly, for fixed s(t + 1) and v(t), obtain s(t + 1) as the
minimizers of La [s(t + 1), s,v(t)].
Remarkably, due to the structure of La [s, s,v] each of the compu-
tational tasks in S2-S3 involves simpler minimization problems that
can be locally tackled at the corresponding sensor.

For all sensors j ∈ J , b ∈ Bj in (4) and b ∈ B in (6), the set of
recursions (4)-(6) are the result of S1-S3 and constitute the D-LMS
algorithm with non-ideal communication links

vb
j(t) = vb

j(t − 1) + cj

“
sj(t) − (sb(t) + nb

j(t))
”

(4)

sj(t + 1) = sj(t) + μj [2hj(t + 1)ej(t + 1) − cj |Bj |sj(t)

−
X
b∈Bj

“
vb

j(t) − cj(sb(t) + nb
j(t))

”
] (5)

sb(t + 1) =
X

j∈Nb

vb
j(t) + cj(sj(t + 1) + nj

b(t + 1))P
r∈Nb

cr
(6)

where in (5) μj > 0 is a constant step-size allowing to track time-
varying signals, and ej(t + 1) := xj(t + 1)− hj(t + 1)sj(t) is the
local a priory error. We also note that the D-LMS recursions can be
arbitrarily initialized.

The overall operation of the algorithm can be described as fol-
lows. At time instant t, sensor j receives the (noise corrupted) con-
sensus variables sb(t)+nb

j(t) from its bridge neighbors b ∈ Bj . Uti-

lizing (4), it is able to update its Lagrange multipliers
˘
vb

j(t)
¯

b∈Bj

which are then used to compute sj(t + 1) via (5). Finally, sensor j
transmits the quantity c−1

j vb
j(t) + sj(t + 1) to all bridge sensors in

its neighborhood Bj . Consequently, each sensor b ∈ B acquires the
vectors

˘
c−1

j vb
j(t) + sj(t + 1) + nj

b(t + 1)
¯

j∈Nb
whose weighted

average is computed using (6) to yield sb(t+1), thus completing the
t-th iteration. Communication cost is O(p) per iteration, and only
involves exchanges between neighboring sensors as required.
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4. STABILITY ANALYSIS OF D-LMS

A widely adopted strategy in stability analysis of adaptive algo-
rithms [5, Sec. 9.5] is to assume a linear observation model
xj(t) = hT

j (t)s0 + εj(t) per sensor and first neglect the obser-
vation noise. The results obtained from such an analysis should not
be viewed as limited, since they can be used to ensure boundedness
(in probability) of the D-LMS estimation error in the presence of
observation and communication noise. Thus, in the sequel it is as-
sumed that:
(a3) Sensor observations xj(t) obey the model xj(t) = hT

j (t)s0.
For simplicity in exposition we also select equal penalty coefficients
c1 = . . . = cJ = c and stepsizes μ1 = . . . = μJ = μ.
Under (a2) and two more assumptions on the regressor vectors,
(to be specified later), we will establish that sj(t) → s0 with
probability 1 as t → ∞. In order to facilitate the stability
analysis of D-LMS we utilize (4)-(6) and apply simple alge-
braic manipulations to obtain recursions for the local estima-
tion errors y1,j(t) := sj(t) − s0 and the local sum of mul-
tipliers y2,j(t) :=

P
b∈Bj

vb
j(t) for j ∈ J . Then, all the

y1,j(t) and y2,j(t) vectors are stacked to form the supervectors
y1(t) := [yT

1,1(t) . . .yT
1,J(t)]T and y2(t) := [yT

2,1(t) . . .yT
2,J(t)]T

respectively, and y(t) := [yT
1 (t) yT

2 (t)]T . With ⊗ denoting
Kronecker product, it turns out that D-LMS is equivalent to the
following first-order linear updating rule (details in [7])

y(t) = Ψ(t, μ)y(t − 1) (7)

where for t > 0 the 2Jp × 2Jp transition matrix Ψ(t, μ) consists
of four Jp × Jp matrix blocks given by [Ψ(t, μ)]11 = IJp×Jp −
2μKh(t) − 2μcA, [Ψ(t, μ)]12 = −μIJp×Jp, [Ψ(t, μ)]21 = cA
and [Ψ(t, μ)]22 = IJp×Jp, with

Kh(t) := bdiag(h1(t)h
T
1 (t), . . . ,hJ(t)hT

J (t)), (8)

A := bdiag(|B1|Ip×p, . . . , |BJ |Ip×p)

−
X
b∈B

1

|Nb| (eb ⊗ Ip×p)(eb ⊗ Ip×p)T , (9)

and eb representing the b-th column of the adjacency matrix E while
Ip×p denoting the p × p identity matrix. For t = 0 the transi-
tion matrix in (7) takes the block-diagonal (bdiag) form Ψ(0, μ) =
bdiag(IJp×Jp, cA). Exploiting the structure of Ψ(t, μ), recursion
(7) can be rewritten as

y(t) = bdiag(IJp×Jp, cA)z(t) (10)

where the state vector z(t) evolves as

z(t) = Φ(t, μ)z(t − 1) (11)

while the transition matrix Φ(t, μ) consists of the submatrices
[Φ(t, μ)]11 = IJp×Jp − 2μKh(t) − 2μcA, [Φ(t, μ)]12 = −μcA
and [Φ(t, μ)]21 = [Φ(t, μ)]22 = AA†, where † denotes pseudoin-
verse.

Careful inspection of (10) reveals that the local estimation errors
in y1(t) converge to zero as t → ∞ as long as z1(t) converges to
zero. Thus, in order to ensure that limt→∞ y1(t) = 0 it suffices to
analyze stability of the linear time-varying stochastic system in (11).
To this end, we will rely on stochastic averaging and Lyapunov per-
turbation tools (see e.g., [5, Sect. 9.5]). First, consider an ‘average’
(in the stochastic sense) version of the system in (11) written as

z̄(t) = Φ̄(μ)z̄(t − 1), (12)

where Φ̄(μ) := E[Φ(t, μ)], while expectation is taken with respect
to the regressors {hj(t)}J

j=1. Note that the average system in (12)
is linear time-invariant (LTI), and its transition matrix Φ̄(μ) differs
from Φ(t, μ) only in the upper left Jp × Jp matrix block. This
block is written as [Φ̄(μ)]11 = IJp×Jp − 2μK̄h − 2μcA, where
K̄h := E[Kh(t)] = bdiag(K̄h1 , . . . , K̄hJ ). Due to the LTI struc-
ture of (12), its exponential stability to 0 boils down to satisfying
|λmax( ¯Φ(μ))| < 1, where λmax(·) denotes spectral radius. Using the
eigen-decomposition of Φ̄(μ), the latter inequality yields bounds for
μ. Specifically, letting

μu := 2 min

„
λ−1

max(Kh + cA), λ−1
max(2Kh +

3c

2
A)

«
,

we have established that [7]:
Lemma 1: If μ ∈ (0, μu) and λmax(Kh) < ∞, then 0 is an ex-

ponentially stable equilibrium point for the average system in (12);
i.e., |λmax(Φ̄(μ))| < 1 and for a finite constant α > 0 it holds that

‖z̄(t)‖ ≤ αλt
max(Φ̄(μ))‖z(0)‖, ∀ z(0) ∈ R2Jp×1. (13)

It is worth mentioning that the step-size bound μu is affected both
by the regressors’ covariance structure (as in the classical LMS) and
also by the topology of the WSN through the matrix A. Lemma 1
proves essential in showing that the D-LMS estimation error y1(t)
in (7) is exponentially convergent to 0. For that matter, we adopt the
following assumptions:
(a4) Regressors hj(t) obey a uniform mixing condition with mixing

coefficients φj,s ≥ 0 for which
P∞

s=0 φ
1/2
j,s < ∞. In detail, if

Ht1,t2
j is the σ-algebra (history) generated by {hj(τ)}t2

τ=t1
, then

for any events H1 ∈ H0,t
j and H2 ∈ Ht+s,∞

j it holds that

|Pr(H2|H1) − Pr(H2)| ≤ φj,s, with lim
s→∞

φj,s = 0. (14)

(a5) The limit limt→∞ t−1 Pt
τ=0 ‖hj(τ)‖2

2 exists and is finite.

Notice that (a4)-(a5) are quite general. In simple terms, these
conditions impose the requirement that regressors hj(t) and hj(t +
τ) should become uncorrelated as τ → ∞. Thus, the stochastic
process generating the regressors should have a decreasing tempo-
ral autocorrelation. This requirement is satisfied by many practical
processes of interest, e.g., ARMA and is much more general than
assuming that hj(t) are white [3].

Next, the fact that the average system (12) is exponentially stable
ensures existence of a Lyapunov function V (z) for (12). In order to
show that the estimation error associated with D-LMS goes to zero
(exponential stability at zero), under (a1)-(a5), a candidate perturbed
Lyapunov function (e.g., see [5, Sec. 9.5]) is formed for the system
in (11) as

V (t, z) = V (z) + μṼ (t, z)

where Ṽ (t, z) is the stochastic perturbation term designed to ensure
that V (t, z) is indeed a Lyapunov function for (11) when μ is suffi-
ciently small (details in [7]). Interestingly, it can be shown that there
exists μo ∈ (0, μu) such that [7]:

Proposition 1: Under (a1)-(a5) and if μ ∈ (0, μo), then the D-
LMS algorithm in (7) provides local estimates that are exponentially
convergent to s0 with probability one (w.p. 1); i.e., for j = 1, . . . , J

‖y1,j(t)‖ = ‖sj(t) − s0‖ → αλt(μ), w.p.1 as t → ∞ (15)

where α > 0 is a finite constant and λ(μ) < 1.
Proposition 1 establishes almost sure convergence of D-LMS to the

3291



0 500 1000 1500 2000 2500 3000 3500
10−4

10−3

10−2

10−1

Time t

Le
ar

ni
ng

 C
ur

ve

C−LMS

Diffusion−LMS

D−LMS

D−LMS w/ Noisy Links 

Fig. 2. Learning curve comparisons.

true parameter s0, across all sensors, for general temporally corre-
lated regressors. This result goes beyond convergence in the mean
sense [3, 4] and subsequently can be used to ensure that the estima-
tion error associated with D-LMS is bounded in probability when: i)
sensor data xj(t) contain observation noise; and ii) sensor commu-
nications are affected by additive noise (details in [7]).

5. SIMULATION RESULTS

Here we test the performance of D-LMS when the regressor vectors
exhibit temporal correlation, comparing it with the diffusion LMS
using Metropolis weights [3] and the C-LMS, which at every itera-
tion uses all the available data in the network. We consider an ad hoc
WSN with J = 15 sensors, obtained as a random geometric graph
in [0, 1] × [0, 1] with communication range r = 0.4. The signal
vector s0 has dimensionality p = 2, and for all j = 1, . . . , J the
regressor vectors hj(t) = [hj(t), hj(t − 1)]T have entries which
evolve according to the large amplitude slowly time-varying process
hj(t) = (1 − ρ)αjhj(t − 1) +

√
ρνj(t). We have ρ = 10−2, the

αj ∼ U [0, 1] (uniformly distributed) are i.i.d. and the driving white
noise νj(t) ∼ N (0, σ2

νj
) (Gaussian) has a spatial variance profile

given by σ2
νj

= 10−4βj with the βj ∼ U [0, 1] and i.i.d. A linear

Gaussian model x(t) = H(t)s0 + ε(t) is adopted for the observa-
tions with σ2

εj
= 10−4. For all three algorithms we select μ = 10−2,

and in particular for D-LMS cj = |Bj |−1 for j = 1, . . . , J . Finally,
when testing D-LMS under noisy links we consider receiver AWGN
with variance σ2

n = 10−4.

In Fig. 2 we compare the global mean-square error (MSE)
evolution (learning curve) computed as J−1 PJ

j=1 E[‖x(t) −
H(t)sj(t)‖2] for the distributed approaches, where the average
is taken over 60 realizations. As expected, C-LMS yields a perfor-
mance benchmark while in all the (communication) noise-free cases,
the resulting misadjustment is negligible. Furthermore, D-LMS out-
performs the diffusion LMS and has a bounded MSE corroborating
the stability result established in Proposition 1 which is necessary
for convergence in the presence of observation noise [5, Sec. 9.6].
Further, the MSE remains bounded even when channel links are
corrupted by reception noise, with increased steady-state MSE level
as expected.

6. CONCLUSIONS

We have presented and analyzed the stability of a consensus-based
distributed LMS algorithm suitable for operation in ad hoc WSNs.
By resorting to the versatile stochastic averaging and perturbed Lya-
punov analysis tools, we were able to establish that the D-LMS local
estimates are almost surely exponentially convergent to the true pa-
rameters assuming a noise-free linear observation model, necessary
for having estimation error boundedness in the presence of noise.
These techniques are based on establishing a connection between the
stability properties of the time-varying stochastic dynamical system
of interest, with those of its (simpler) LTI averaged pair.

Numerical examples, involving correlated data, corroborated
that the D-LMS outperforms existing online estimation schemes
with comparable complexity. The algorithm is stable even in the
presence of communication noise [7], whereas the steady-state MSE
exhibits increased misadjustment as expected.

A D-RLS algorithm can also be obtained by directly applying
the proposed approach to the exponentially weighted least-squares
minimization problem. Interesting research directions emerge as
we are naturally motivated to quantify analytically the convergence
rate/estimation performance versus complexity tradeoff between
these algorithms1.
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