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Abstract—Adaptive algorithms based on in-network processing
of distributed observations are well-motivated for online param-
eter estimation and tracking of (non)stationary signals using
ad hoc wireless sensor networks (WSNs). To this end, a fully
distributed least mean-square (D-LMS) algorithm is developed
in this paper, offering simplicity and flexibility while solely re-
quiring single-hop communications among sensors. The resultant
estimator minimizes a pertinent squared-error cost by resorting
to i) the alternating-direction method of multipliers so as to gain
the desired degree of parallelization and ii) a stochastic approx-
imation iteration to cope with the time-varying statistics of the
process under consideration. Information is efficiently perco-
lated across the WSN using a subset of “bridge” sensors, which
further tradeoff communication cost for robustness to sensor
failures. For a linear data model and under mild assumptions
aligned with those considered in the centralized LMS, stability
of the novel D-LMS algorithm is established to guarantee that
local sensor estimation error norms remain bounded most of the
time. Interestingly, this weak stochastic stability result extends
to the pragmatic setup where intersensor communications are
corrupted by additive noise. In the absence of observation and
communication noise, consensus is achieved almost surely as local
estimates are shown exponentially convergent to the parameter
of interest with probability one. Mean-square error performance
of D-LMS is also assessed. Numerical simulations: i) illustrate
that D-LMS outperforms existing alternatives that rely either on
information diffusion among neighboring sensors, or, local sensor
filtering; ii) highlight its tracking capabilities; and iii) corroborate
the stability and performance analysis results.

Index Terms—Distributed estimation, LMS algorithm, wireless
sensor networks (WSNs).

I. INTRODUCTION

D RIVEN by a wide span of foreseen applications, decen-
tralized estimation of signals based on observations ac-

quired by spatially distributed sensors has attracted much atten-
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tion recently. Deployment of ad hoc wireless sensor networks
(WSNs) based on single-hop communications is envisioned to
perform various adaptive signal processing tasks, including dis-
tributed noise cancellation, power spectrum estimation, local-
ization, field monitoring, and target tracking. Different from
WSN topologies that include a fusion center (FC), ad hoc ones
have to rely on in-network processing. The absence of a cen-
tral processing unit prompts local sensor estimates to eventually
consent to a common global estimate while fully exploiting spa-
tial correlations to maximize estimation performance.

Several noteworthy contributions have built up the field of
consensus-based distributed estimation. Achieving consensus
across agents was considered in vehicle coordination [5], as
well as in distributed sample-averaging of sensor observations
[12], [26]. A general distributed estimation framework was put
forth in [17] and [18]. In the aforementioned schemes, sen-
sors acquire data only once and then locally exchange messages
to reach consensus. Extensions for distributed tracking of the
sample-average of time-varying signals can be found in, e.g.,
[13] and [22]. Sequential in-time incorporation of sensor obser-
vations to enrich the estimation process was considered in [27],
in the context of linear least-squares parameter estimation. The
space–time diffusion algorithm of [27] requires knowledge of
the data model and costly exchanges of matrices among neigh-
bors, while the requirement for diminishing step-sizes renders it
incapable of tracking time-varying signals. Distributed Kalman
filtering approaches have been also reported [11], [17], but they
are applicable when the state and observation models are known.

In many applications, however, sensors need to perform es-
timation in a constantly changing environment without having
available a (statistical) model for the underlying processes of
interest. This motivates the development of distributed adaptive
estimation schemes. The first such approach introduced a
sequential scheme whereby LMS-type adaptive filtering per
sensor allows the network to account for time variations in the
signal statistics [8]. For more general estimators, a similar sto-
chastic incremental gradient descent algorithm was developed
in [15], which subsumes [8] as a special case. The incremental
LMS schemes in [8], [15] may outperform a centralized imple-
mentation of LMS in terms of convergence rate and steady-state
error, while entailing a relatively low communication overhead.
These features make them appealing, especially for small-size
WSNs. However, such schemes inherently require a Hamil-
tonian cycle through which signal estimates are sequentially
circulated from sensor to sensor. In the eventuality of a sensor
failure, determination of a new cycle is an NP-hard problem
[14], thus challenging the applicability of incremental schemes
in medium- to large-size WSNs. Avoiding the need of such
a cycle and increasing the degree of collaboration among
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neighbors, the so-termed diffusion LMS [9] offers an improved
alternative at the price of increasing communication cost.

The present paper develops a consensus-based distributed
(D-)LMS algorithm for in-network adaptive processing using ad
hoc WSNs with noisy links, which circumvents the requirement
of a cycle. Its simplicity matches well the scarcity of commu-
nication and computation resources characterizing WSNs. In
contrast with [9], the algorithm is derived from a well-posed
estimation criterion optimized using the alternating-direction
method of multipliers (AD-MoM) and stochastic approximation
techniques. Different from [8], [9], and [15], the novel D-LMS
scheme accounts for intersensor communication noise, in which
setup local estimation errors are shown to be stochastically
bounded. In the absence of noise, the local estimates obtained
via D-LMS converge exponentially fast to the true parameters.
These stability properties, also present in the classical LMS
algorithm (see, e.g., [20]), are established without invoking the
independence and Gaussianity conditions assumed in [8]–[10].
Stochastic averaging arguments are further utilized to approx-
imate the MSE associated with D-LMS. Moreover, D-LMS is
shown flexible to tradeoff communication cost for robustness
to sensor failures by imposing consensus only within a subset
of the available sensors. The optimization setup used here to
derive the distributed adaptive algorithm resembles the one in
[17] and [18]. However, as in [8], [9], and [15], D-LMS offers
novel and attractive features, including i) online incorporation
and processing of new data across sensors and ii) a distributed
adaptive estimation scheme for applications, where a statistical
model of variations is not available (this is needed in, e.g., [11]
and [17]).

In Section II, we introduce the WSN model and the optimiza-
tion problem defining the desired estimator. Building on [18],
we recast the original formulation into an equivalent constrained
optimization problem, whose solution becomes available in a
distributed fashion using the AD-MoM and stochastic approxi-
mation iterations leading to the novel D-LMS (Section III-A).
Next, we describe its operation and required communications,
and further elaborate on the intuition and flexibility of the
resulting algorithm (Section III-B), before demonstrating its
merits via numerical simulations in Section III-C. Turning our
attention to performance analysis, the challenging problems of
stochastic stability and asymptotic MSE characterization are
addressed in Sections IV-A and IV-B. Concluding remarks are
given in Section V.

Notation: Bold uppercase letters will denote matrices with
-th entry , whereas bold lowercase letters will stand for

column vectors ( th entry denoted by ); operators , ,
, , , , and will denote Kronecker

product, transposition, matrix pseudoinverse, spectral radius, di-
agonal matrix (arguments are scalar diagonal entries), block di-
agonal matrix (arguments are matrix diagonal entries), and ex-
pectation, respectively. For both vector and matrices, will
stand for the 2-norm and for the cardinality of a set or the
magnitude of a scalar. The identity matrix will be repre-
sented by , while will denote the vector of all ones.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an ad hoc WSN comprising sensors where
only single-hop communications are allowed, i.e., sensor

Fig. 1. Ad hoc wireless sensor network (WSN) with bridge sensors.

can only communicate with sensors in its neighborhood
, with the convention .

Assuming that intersensor links are symmetric, the WSN is
modeled as an undirected graph whose vertices are the sensors
and its edges represent the available links. Global connectivity
information is captured by the symmetric adjacency matrix

, where if and other-
wise. This model includes the widely adopted planar random
geometric graph [4], where sensors are randomly
placed over the unity square, while connectivity of two nodes
is ensured so long as their Euclidean distance is less than a
pre-specified communication range . To ensure that the data
from an arbitrary sensor can eventually percolate through the
entire network, the following is assumed:

a1) The WSN graph is connected; i.e., there exists a (pos-
sibly) multihop communication path connecting any two
sensors.

Different from [8], [9], and [15], the present network model ac-
counts explicitly for nonideal sensor-to-sensor links, through
a zero-mean additive noise vector with covariance ma-
trix corrupting signals received at
sensor from sensor at discrete-time instant . The noise vec-
tors are assumed temporally and spatially uncor-
related. Because the results in this paper do not depend on the
noise pdf, this model incorporates, but is not limited to receiver
additive white Gaussian noise (AWGN). A sample ad hoc WSN
is depicted in Fig. 1.

The WSN is deployed to estimate a signal vector .
Per time instant , each sensor has available a re-
gression vector and acquires a scalar observa-
tion , both assumed zero mean without loss of generality.
A similar data setting was considered also in [8] and [9]. Intro-
ducing the global vector and
matrix , the global LMS es-
timator of interest can be written as [8], [16, p. 49], [21, p. 14]

(1)

For jointly stationary , solving (1) leads to the well-
known Wiener filter estimate , where

and ; see, e.g., [21, p. 15].
If and were known, then a steepest-descent iteration

with sufficiently small step-size would converge to while
avoiding the burden of inverting . In many linear regression
applications involving online processing of data, this covariance
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information may be either unavailable or time varying, and thus
impossible to update continuously. Targeting low complexity
implementations, one often resorts to the centralized (C-) LMS
algorithm; see, e.g., [21, p. 77]

(2)

which relies on and
to coarsely approximate the ensemble averages instantaneously.
Considering a constant step-size , in order to allow for tracking
of a possibly time-varying , the C-LMS algorithm yields
stochastic iterates that do not converge to, but hover around,
the desired signal of interest. Stability analysis of C-LMS has a
long history. General results can be found in [7], [16], and [20]
that also include surveys of prior art. One of the main results re-
ported in [20] is that for observations adhering to a linear model,
i.e., with assumed stationary ergodic
with finite fourth-order moments and , recursion (2)
with sufficiently small step-size provably i) yields an estima-
tion error whose norm remains most of the time within a finite
interval, i.e., even in
the presence of noise and ii) provides estimates that are almost
surely (a.s.) convergent to the true parameter at an exponen-
tial rate in the absence of observation noise. The stability notion
described in i) is referred to as weak stochastic stability, and es-
timation errors are said to be weakly stochastic bounded (WSB)
[20]. Note that in ii) a.s. convergence is with respect to the prob-
ability measure induced by the random regressors .

Remark 1 (Application to Distributed Linear Regres-
sion): An interesting application where the need for linear
regression arises is spectrum estimation. Specifically, suppose
sensors observe a narrowband source to determine its spectral
peaks, which can assist them disclose hidden periodicities due
to a physical phenomenon controlled by, e.g., a natural heat
source. The source of interest propagates through multipath
channels and is contaminated with additive noise when sensed
at the sensors. The unknown source-sensor channels may
introduce deep fades at the frequency band occupied by the
source. Thus, having each sensor operating on its own may lead
to faulty assessments. The available spatial diversity to effect
improved spectral estimates can only be achieved via sensor
collaboration.

Let denote the narrowband source of interest, which can
be modeled as an autoregressive (AR) process [23, p. 106]

(3)

where is the order of the AR process, while are the AR
coefficients and denotes white noise. The source propa-
gates to sensor via a channel modeled as an FIR filter

, of unknown order and tap coefficients
and is contaminated with additive sensing noise to yield
the observation

(4)

Since is an autoregressive moving average (ARMA)
process, it can be written as [23]

(5)

where the MA coefficients and the variance of the white
noise process depend on , and the variance of
the noise terms and . For the purpose of determining
spectral peaks, the MA term in (5) can be treated as observation
noise, i.e., . This is very important
since sensors do not have to know the source-sensor channel
coefficients as well as the noise variances. The spectral content
of the source can be estimated provided sensors estimate the
coefficients , so we let . From (5) the
regressor vectors are given as

, directly from the sensor data without the need of
training/estimation. Distributed spectrum estimation has been
considered also in [6] utilizing generalized projection schemes.
Assumptions in [6] include ideal any-to-any communications
and known source-sensor channels.

For different estimation/tracking applications suitable refor-
mulation may be needed in order to acquire linear regressors
based on the available information across sensors. For example,
in target tracking applications where sensors rely on power or
range measurements, the nonlinear data models must be lin-
earized before obtaining regressors as a function of sensor ob-
servations; see, e.g., [1, p. 137]. Another possibility is to obtain
the regression vectors from the physics of the problem, using
standard kinematic models with constant velocity or accelera-
tion that are well documented in the tracking literature; see, e.g.,
[1, Ch. 6].

Remark 2 (Motivation for In-Network Processing): Both
C-LMS and incremental LMS [8] provide comparable perfor-
mance benchmarks for distributed LMS-type adaptation rules,
as every update encompasses all the information available in
the network. Although both the observations and regressor
rows in are actually disseminated across the WSN, in the
broad context of sensor network processing one could envision
an implementation of the C-LMS using an FC-based topology.
This, however, comes at the price of isolating the network’s
point of failure and may challenge communications as the WSN
scales over a larger geographic area, since far away sensors will
require higher power to reach the FC, thus diminishing their bat-
tery lifetime.

In the context of Remarks 1 and 2, this paper aims to develop
and analyze in terms of stability and performance, a fully dis-
tributed (D-) LMS algorithm for in-network adaptive processing
using ad hoc WSNs. In a nutshell, the described setup naturally
suggests three characteristics that the algorithm should exhibit:
i) stability properties analogous to C-LMS, ii) processing at the
sensor level should be kept as simple as possible; and iii) com-
munications among sensors should be confined to single-hop
exchanges.

III. THE D-LMS ALGORITHM

In this section, we introduce the D-LMS algorithm, first going
through the algorithm construction and salient features of its
operation. The approach followed includes three main building
blocks: i) recast (1) into an equivalent form amenable to dis-
tributed implementation, ii) split the optimization problem into
smaller and simpler subtasks executed locally at each sensor,
and iii) invoke a stochastic approximation iteration to obtain
an adaptive LMS-type of algorithm that can both handle the
unavailability/variation of statistical information, and also re-
main robust to signal variations. We further interpret the re-
sulting D-LMS recursions to gain insights on how local and net-
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work-wide information are combined in the learning process,
and build intuition on the mechanisms employed to reach con-
sensus among sensors on the adaptive estimate.

To distribute the cost function in (1), we replace the global
variable which couples the per-sensor summands with auxil-
iary local variables that represent candidate estimates
of per sensor. In conjunction with these local variables, con-
sider the convex constrained minimization problem

(6)

where is the bridge sensor set introduced in [18], and
the additional set of consensus-enforcing variables are
maintained at each of the bridge sensors comprising . Re-
garding the positive constants , though they do not cause any
effect whatsoever on the constraints in (6), they will play an im-
portant role in the performance of the D-LMS algorithm (see
Remark 6). Two simple conditions define a valid set : i) for
every sensor there exists at least one bridge sensor
such that (the bridge neighbors of sensor will be de-
noted by ); and ii) for every two bridge sensors

and there exists a path connecting them which is devoid
of edges that link two nonbridge sensors. Multiple sensor as-
signments will qualify as valid bridge subsets for a given WSN.
For instance, the set of all sensors is a valid one with max-
imum cardinality; see also Fig. 1, where sensors in black de-
pict . An upper bound on the number of bridge neighbors per
sensor is provided by the maximum connectivity degree in the
WSN, namely . Note that typically is
much smaller than the total number of sensors . From a prac-
tical viewpoint, can be determined and maintained in a dis-
tributed fashion using, e.g., the simple and efficient polynomial
time algorithm in [25].

The WSN connectivity assumption a1) along with the
defining characteristics of provide necessary and sufficient
conditions to assure that the equality constraints in (6) imply

[18, Proposition 1]. This establishes the
equivalence between (1) and (6) in the sense that their optimal
solutions coincide; i.e., . Two important
structural properties of (6) should be appreciated, as they will
be instrumental in the development of a distributed algorithm to
compute : i) the separable structure of the objective
function; and ii) the constraints which involve variables of
neighboring sensors only.

A. Algorithm Construction

In order to solve (6), we associate Lagrange multipliers
with the corresponding equality constraints and

consider the quadratically augmented Lagrangian function
given by

(7)

where , , and
are coefficients penalizing the violation of the constraints

, . The Lagrange multipliers are
maintained at sensor . We will now resort to the AD-MoM [2,
p. 253] to iteratively minimize (7) through a set of simple recur-
sions that update in a fully distributed fashion. Because
the D-LMS algorithm is designed for online estimation, the re-
cursions will run in real-time and hence the iteration index will
coincide with the time index .

The first step consists of locally updating the Lagrange mul-
tipliers via dual gradient ascent iterations, as it is customary in
the various methods of multipliers [2, Ch. 3]. The pertinent re-
cursions are

(8)

The second step involves recursions of the local estimates ob-
tained by minimizing (7) using block coordinate descent, i.e.,

is minimized with regards to assuming all other
variables , and from
(8) are fixed. The separable structure of (6) is inherited by the
augmented Lagrangian, and therefore

decouples into simpler minimization subproblems

(9)

Since the cost in (9) is convex and differentiable, the first-order
necessary condition is also sufficient for optimality. Computing
the gradient with respect to and setting the result equal to
zero, yields

(10)

Thus, the local estimate update can be obtained as
the root of an equation of the form

, where stands for the function in-
side the expectation in (10). In lieu of local (cross-) covari-
ance information, namely and

, the root of is not
computable in closed form since the function is unknown.
Hence, motivated by stochastic approximation techniques (such
as the Robbins–Monro algorithm [7, Ch. 1]), which find the root
of an unknown function given a time-series of noisy ob-
servations , the proposed
recursion for all is

(11)

where is a constant step-size and
is the local a priori error.
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Fig. 2. D-LMS communications over noisy links.

The final step entails updating the consensus-imposing vari-
ables kept at the bridge sensors. The corresponding recur-
sions are obtained by minimizing (7) with

and fixed. The separability of the
Lagrangian is crucial again as the general problem

separates into convex and differentiable equivalent subprob-
lems

(12)

It should be noted that the expectation term in (7) has been dis-
carded in the process of obtaining (12), since it is not dependent
on and thus inconsequential for the minimization. Applying
the first-order optimality condition explicitly yields

(13)

for . Recursions (8), (11), and (13) constitute the D-LMS
algorithm, which can be arbitrarily initialized. At the beginning
of the th iteration, sensor receives the consensus variables

from its bridge neighbors . With this informa-
tion and using (8), it is able to update its Lagrange multipliers

which are then jointly used along with the newly
acquired local data to compute
via (11). Then sensor transmits the vector

to all bridge sensors in its neighborhood . Subse-
quently, each sensor receives the vectors

and scales them with in order to find the weighted
average in (13) and obtain , thus completing the th it-
eration. Further, observe that in order to compute the weights in
(13), bridge sensor should acquire only from its
neighbors during the startup phase of the WSN.

Communications take place among single-hop neighboring
sensors only, at a resulting cost that scales linearly in , the di-
mensionality of . Incorporating also the effects of additive
communication noise, Fig. 2 depicts the vector exchanges re-
quired by D-LMS on a per iteration basis, and explicitly shows
the additional tasks performed by the sensors in . The modified
D-LMS recursions accounting for the noise corrupted variables
exchanged among sensors are summarized below, and tabulated

as Algorithm 1. For all sensors and , the D-LMS
algorithm in the noisy setup becomes

(14)

(15)

(16)

D-LMS entails more recursions per sensor when compared
to diffusion LMS in [9]. However, since is typically much
smaller than the increase in computational complexity is rel-
atively low. On the other hand, this additional cost and intro-
duced hierarchy among sensors pays off with improved conver-
gence rates as will become apparent in the numerical examples
of Section III-C.

Algorithm 1: D-LMS

Arbitrarily initialize �����������, ����������� , and
�
�
�����

���

���
.

for � � �� �� � � � do

Bridge sensors � � �: transmit ������ to neighbors in ��.

All � � � : update �
�
���� ���

using (14).

All � � � : update ���� � �� using (15).

All � � � : transmit ������
��

�
�
����� ������� to each � � �� .

Bridge sensors � � �: compute ������ �� using (16).

end for

Remark 3 (Comparison With [17] and [18]): In contrast
to the D-MLE, D-BLUE, and D-LMMSE schemes in [17] and
[18], it is apparent that D-LMS in (14)–(16) allows online in-
corporation and processing of sensor data. It is an adaptive es-
timation/tracking algorithm, whereas the distributed estimation
schemes in [17] and [18] operate in batch mode. Further, note
that in D-LMS the requirement for statistical information is by-
passed in the stochastic approximation step where the process
statistics are learnt “on-the-fly.” This is not the case in [17] and
[18] where all proposed schemes are applicable as long as data
models are available across sensors.

Remark 4 (Versatility Through the Use of Bridge Sen-
sors): The bridge sensor set provides flexibility to trade-off
communication cost for robustness to sensor failures. In D-LMS
each sensor transmits scalars whereas in diffusion LMS
each sensor transmits scalars. However, note that in D-LMS
the nonbridge sensors have to communicate (transmit and re-
ceive) with approximately half of their neighbors, namely those
in . This follows since the two conditions defining the set
are satisfied when . Intuitively, this holds because if a
sensor is designated to serve as a bridge then its neighbors do not
have to be in , whereas if a sensor does not have bridge neigh-
bors then it turns itself into one; see also the numerical tests in
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[25]. With reference to Fig. 2, a nonbridge sensor has to re-
main active over time slots in order to send and receive in-
formation from . Among these slots, are required to
transmit to its bridge neighbors, while
the remaining to receive from them. Bridge sensor
remains active over time slots, as any other sensor,
plus additional time slots: one to transmit to its neigh-
bors in , and the rest to receive from
them. Assuming equal battery capacities across sensors, bridge
sensors are expected to fail first. In diffusion LMS, each sensor
has to be active over time slots among which one slot is
spent for transmission and the rest for listening. Now, consider
the WSN in Fig. 1 where bridge sensors are disconnected. Thus,

and the communication cost of a bridge sensor is also
. Because typically , when diffusion LMS is

applied to the same WSN the total number of required active
time slots will be larger (31 versus 26 in this example). Thus,
utilization of bridge sensors offers the potential of increasing
the life expectancy of the network.1

Regarding recovery from sensor failures, D-LMS remains
operational so long as each sensor adjusts its local recursions
(14)–(16) to the modified neighborhood structure, and the
overall network graph remains connected. In a possible bridge
sensor failure, it might be the case that some sensors need
to be promoted to using the algorithm in, e.g., [25]. Thus,
the network as an autonomous entity is capable of adapting
to changes in the topology. The steps of the simple recovery
process are given in [17, Remark 2].

Remark 5 (Consensus and Communication Protocols):
Similar to all consensus-based schemes, D-LMS requires an
underlying communication protocol that controls information
exchanges among sensors. One feasible choice (not necessarily
the most efficient) could be a time division multiple-access
(TDMA) system, where each sensor is allocated a time slot
during which it can transmit data to its neighbors that operate
in reception mode. Consider a TDMA system with time
slots. During the first slots each bridge sensor transmits
to all its neighbors its consensus variable required in
(14) and (15). Each of the scalars in can be trans-
mitted using, e.g., multicarrier modulation. Then, during the

th time slot only sensor is active and broadcasts
to each of its bridge neighbors.

Recalling that , sensor could either use different
frequency bands to transmit information to each of its bridge
neighbors, or, could devote th fraction of the time slot
for each of its bridge neighbors. Such a scheme requires
i) unique sensor indexing established prior to the WSN deploy-
ment and ii) global synchronization across the WSN, for which
there are available algorithms in the existing literature, e.g., see
[24].

B. Consensus Controller Interpretation

Even though recursions (14)–(16) clearly suggest simplicity
as an asset of the proposed algorithm, they may somehow ob-
scure the essential mechanisms operating on the available infor-
mation to yield the estimates . Here we derive a set of equiv-
alent recursions which turn out to be insightful about these is-

1We reiterate, however, that the results in this paper carry over even when
every sensor acts also as bridge sensor, i.e., � � � .

sues, despite being less appropriate for online implementation
than (14)–(16).

For arbitrary and , consider the noise-free
Lagrange multiplier update recursion (8) with initial condition

. By recognizing as the output of an accumu-
lator system whose input is the sequence of
scaled constraint violations, the zero initial condition yields the
equivalent nonrecursive form [cf. (8)]

(17)

Arguing by induction as in [18, Lemma 3], the consensus vari-
ables for all and can be expressed as [cf. (13)]

(18)

Equation (18) establishes that the consensus variables are
simply obtained as a weighted average of the local estimates
gathered from sensor ’s neighborhood.

Consider now the vector
, which represents the instantaneous

consensus error at sensor , as measured with respect to the
consensus reference given by the average .
Setting the penalty coefficients as and using (17)
to eliminate the Lagrange multipliers from (11) yields

(19)

Equations (18) and (19) are equivalent to D-LMS under ideal
links, when . As they stand, the new recursions are
not suitable for real-time implementation because the sum term
in (19) requires storing the entire history of . Nonetheless,
they shed light into the signal processing taking place at each
sensor, which turns out to be remarkably intuitive as discussed
next.

The right-hand side (rhs) of (19) readily suggests that the
local estimate is obtained as the superposition of
three terms: a) the sum rep-
resents a local LMS adaptation based on the new information

available at sensor ; b) an update based
on a proportional correction due to the instantaneous
consensus error ; and c) a correction sum due to the ac-
cumulated consensus error (discrete-time integral). A term like
a) is expected, whereas the rest should explain the mechanisms
employed to incorporate the extra information gathered from
the whole WSN. In fact, b) and c) show that a proportional-in-
tegral (PI) discrete-time controller, see, e.g., [3, p. 605], is used
to drive the local estimate to consensus, as dictated by the
computed time-varying set-point ; see also
Fig. 3. It is exclusively throughout this reference that global
information is percolated to improve the local estimate .

The first closed-loop system interpretation for consensus
schemes was given in [5]. Let

and eliminate using (18). This
leads to the global representation with
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Fig. 3. D-LMS sensor processing to obtain local estamates � .

, ,
and the generalized “two-hop range” Laplacian is given by

(20)

where represents the th column of the adjacency matrix
. Indeed, under a1) shares fundamental properties with

an undirected graph Laplacian, i.e., it is symmetric positive
semidefinite and its null space is the consensus subspace
(vectors with equal entries). The network-wide feedback

[cf. (19) and Fig. 3] links D-LMS with the standard
Laplacian-based consensus protocol studied in e.g., [5] and
[12], whereas the difference stems from the use of bridge
sensors. This may not be surprising if one recalls that the
Laplacian-based protocol for undirected graphs can be derived
using an iterative procedure minimizing a suitable disagree-
ment potential [12, eq. (5)]. The latter strongly resembles the
quadratic term augmenting the Lagrangian in (7). The extended
two-hop information range enjoyed by D-LMS should be
also contrasted with diffusion LMS [9], which only spans the
single-hop neighborhood. Though, as clarified in Remark 4 a
small price is paid in terms of the amount of data needed to be
transmitted from each sensor.

Remark 6 (Consensus Loop Tuning): The constant is
only affecting the PI gains of the consensus regulator [cf. (19)].
For these gains boil down to , a generally small con-
stant attenuating the influence that the information embedded in
b) and c) has on the estimate . The presence of is thus
intuitively justified as a compensator for this effect, gaining an
additional degree of freedom to attain potentially faster conver-
gence and/or better estimation performance. Indeed, our sim-
ulation results in [10] corroborate considerable improvements
when selecting . For a given step-size and contrasting
with , the steady-state estimation error is markedly re-
duced at a modest price slightly decreasing the convergence
rate of the MSE cost in (1). On the other hand, if the D-LMS
step-size is increased to the point that there is no gain in es-
timation error, then the MSE reaches steady-state much faster
without a noticeable misadjustment. Based on a suitable per-
formance criterion, a problem falling outside the scope of this
paper, it would be interesting to optimally design the coef-
ficients; see [26] for a related weight optimization approach in
the context of consensus averaging problems.

C. Numerical Examples

Here, we test the novel D-LMS algorithm, and compare
its global MSE performance with i) diffusion LMS using
Metropolis weights [9]; ii) local (L-) LMS whereby each sensor
runs an independent LMS filter using its local information only
(no communications); iii) centralized incremental LMS [8];
and iv) C-LMS [cf. (2)]. The WSN is simulated as a
graph, and for the examples with noisy links receiver AWGN
with variance is added. The signal vector
has dimensionality , and for all the regressors

have entries that evolve
according to .
We choose , the (uniformly
distributed) are i.i.d. in space, and the driving white noise

has a spatial variance profile
given by with and i.i.d. A
linear model is adopted with observa-
tion WGN of spatial variance profile , with
i.i.d. . For all four algorithms the step-size
is set to , and in particular for D-LMS

.
Fig. 4 (top) compares the normalized MSE evolution

(learning curve) obtained as for the dis-
tributed schemes, where the expectation is approximated by
averaging 50 Monte Carlo realizations. Both incremental LMS
and C-LMS provide a comparable performance benchmark
while L-LMS stands on the other extreme. For both distributed
approaches in the (communication) noise-free setting, the resul-
tant misadjustment is negligible thus matching the performance
(in this sense) of its centralized counterparts. Furthermore,
D-LMS outperforms diffusion LMS whereas its MSE remains
bounded even when channel links are corrupted by reception
noise, with an inflated steady-state MSE level, as expected.

To gauge local performance, we evaluate the figures of
merit which are customary in the adaptive literature [8], [9]:
i) MSE , ii) excess-MSE (EMSE) ,
and iii) mean-square deviation (MSD) . For
the previous setup, the steady-state values of these metrics are
depicted in Fig. 4 (bottom). Good performance for D-LMS
is apparent from the MSE curve which comes very close to
the local noise levels; observe also the small EMSE. Sensor
collaboration, despite the diverse noise statistical profile across
the WSN, smoothens network-wide EMSE/MSD values. In
comparison with diffusion LMS, D-LMS exhibits a slight edge
on MSD while EMSE levels are comparable.

Under the same WSN setup, we illustrate the capabilities of
D-LMS when it comes to tracking a time-varying signal vector

. The large amplitude slowly time-varying process model
is simulated, with

and . Fig. 5 (top) depicts the fifth and
third entries of the true time-varying parameter , and the re-
spective estimates from sensors 38 and 70 that closely follow the
true variations. Both sensors and parameter entries were chosen
uniformly at random, in the interest of showing the representa-
tive behavior across the WSN. In addition, we also plot the es-
timates obtained when the WSN model ac-
counts for communication noise with . Larger es-
timate fluctuations are a direct manifestation of the increased
MSE.
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Fig. 4. (top) Normalized global MSE (learning curve). (bottom) Local perfor-
mance figures of merit: MSE, EMSE, and MSD.

Next, we examine the D-LMS performance in the spectrum
estimation application described earlier in Remark 1 for the
aforementioned WSN setting. The AR source has order
and coefficients . The source
signal propagates via multipath channels of order
and arrives at the sensors where it gets contaminated with
sensing noise having variance [cf. (4)]. The channels
corresponding to sensors 3, 7, 15, 27, 37, 57, 67 are set so that
they have a null at the frequency where the AR source has a
peak, namely at . Fig. 5 (bottom) depicts the actual
power spectral density of the source as well as the estimated
ones at sensor 15 using L-LMS and D-LMS under ideal and
noisy intersensor links. The step-size is , while

. Clearly, even in the presence of communication
noise D-LMS exploits the spatial diversity available and allows
all sensors to estimate accurately the actual spectral peak,
whereas L-LMS leads the problematic sensors, e.g., sensor 15
in Fig. 5 (bottom), to misleading estimates. The latter corrobo-
rates the ability of D-LMS to percolate information across the
WSN.

IV. STABILITY AND PERFORMANCE ANALYSIS

An attractive feature of D-LMS is that it can be applied to
a wide class of signals. Indeed, D-LMS requires no assumption

Fig. 5. (top) Tracking with D-LMS. (bottom) Spectral estimation with D-LMS.

on the statistics of . When it comes to stability
and performance evaluation however, a meaningful “ground-
truth” model should be adopted to carry out the analysis and
enable fair comparison among competing alternatives. Toward
this end, we adopt the standard data model, commonly used
throughout the adaptive signal processing literature, e.g., [8],
[9], [20], and [21, Ch. 5,9]:

a2) The sensor observations adhere to the linear model

(21)

where the white noise is zero-mean with variance .
In order to facilitate stability analysis, an important pre-

liminary step is to express D-LMS as a linear time-varying
(LTV) stochastic difference-equation. Specifically, starting
from (14)–(16) and applying simple algebraic manipulations
we will obtain recursions for the local estimation errors

and the local sum of multipliers
. For simplicity in exposi-

tion, set , for any ,
and . Such a selection of is well motivated,
since it gives more emphasis to the information gathered from
the neighborhood [cf. (19)]. This is desirable in WSN-based
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applications including the one described in Remark 1, where
sensor collaboration is essential to efficiently estimate the pa-
rameters of interest. Further, stack vectors

to form the supervectors

and , respectively; and let

. The Lagrange multipliers
are initialized so that

(22)

Equation (22) is easy to satisfy since sensors can initialize ar-
bitrarily their multipliers, e.g., through zero initial conditions
whereby sensor sets with .

The next step is to rewrite the consensus variable recursion
in (16) in a way that will allow us later on to derive a first-order
recursion for . Specifically, we prove in Appendix A the
following lemma.

Lemma 1: If the Lagrange multipliers are initialized
as in (22), then the consensus variables can be expressed
for as

(23)

with , and .
Using Lemma 1, as well as the multiplier update rule in (14)

we wish to derive first-order recursions for
and . To this end, let us define the
noise vectors

(24)

that depend on the reception noise at the bridge neighbors. Fur-
ther, consider two more noise vectors

(25)

Based on definitions (24) and (25), it is shown in Appendix B
that:

Lemma 2: Under a2) and with selected to

satisfy (22), local state vectors obey the recursions

(26)

(27)

Aiming at a first-order recursion for , consider concate-
nating the noise terms in (24) and (25) for to form
the supervectors , and , respectively; and
also define the global observation noise vector

(28)

Upon stacking and from Lemma 2, for
, in , it is shown in Appendix C that the

D-LMS recursions (14)–(16) can be compactly written in matrix
form as

(29)

where for the transition matrix consists
of four matrix blocks given by

, ,
and , with

while the structure of
is given in (20).

The linear dynamical system described by (29) is indeed
time-varying since as well as are time de-
pendent. It is also random due to the noise terms as well
as the regression vectors . In order to satisfy the ini-
tialization requirement in (22), should be set to

, where is

the th block of the decomposition
and can be chosen arbitrarily. Hence, using

(30)
and setting en-
sures that (22) holds true, while is placed for normal-
ization.

The LTV system in (29) is not yet ready for stability analysis
since does not have all its eigenvalues inside
the unit circle. Towards reformulating (29), consider the

supervector

(31)

comprising the receiver noise of the bridge sensors’ transmis-
sions to their neighbors; i.e., the first vectors in cor-
respond to the reception noise at the neighbors of bridge sensor

and so on. Using , the noise supervectors and
can be written as and , where
the structure of the time-invariant matrices and can be
found in Appendix D, which establishes Lemma 3.
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Lemma 3: The LTV system in (29) can be equivalently
written as

(32)

where the state is arbitrarily initialized

as ; updated according to

(33)

and the transition matrix consists of the subma-
trices ,

and . Ma-
trices and are defined as

(34)

(35)

with chosen such that .

A. Stability Analysis

This subsection deals with stability analysis of D-LMS based
on the equivalent LTV system derived in Lemma 3. Specifi-
cally, it will be shown that under mild conditions the error norm

remains most of the time in a finite interval, i.e., errors
are weakly stochastic bounded (WSB) [20]. This WSB stability
guarantees that for any there exists a such that

uniformly in . As a consequence, it
will be shown that in the absence of observation and intersensor
communication noise the local estimation errors in D-LMS con-
verge exponentially fast to zero with probability one. Therefore,
consensus is achieved a.s., as all local sensor estimates agree on
the true parameter . This establishes a strong connection with
the known behavior of C-LMS [20], further validating the im-
portance of D-LMS in a distributed setting.

The first step in proving that is bounded in probability
is to show that the same holds for . This will be estab-
lished under the following assumptions:

a3) The regressor vectors are strictly sta-
tionary with , and

. Regressors are
ergodic and satisfy (a.s.)

(36)

a4) Communication and observation noise vector norms
are bounded in the mean, i.e.,

(37)

and

Under assumption a4), typically met in practice, the estimation
error does not grow unbounded.

Necessary for proving boundedness of in (33) is to show
that the norm of converges to zero
as , a.s.. To this end, let denote the minimum
positive eigenvalue of . Specifically, it is established in
Appendix E that:

Lemma 4: If a3) holds true, is selected such that
and the step-size , with

where

(38)
is chosen to guarantee that the eigenvalues of are
less than one, then with

(39)

In words, (39) establishes that will converge
to zero exponentially fast with probability one. This property is
necessary to prove later on that satisfies the WSB prop-
erty, which in turn will lead us to the ultimate goal of estab-
lishing stochastic boundedness of . Thus, using Lemma
4, we prove in Appendix F the following result.

Lemma 5: Under a3)–a4), and if
with , then satisfies the WSB property, i.e.,

�� (40)

Careful inspection of (32), and exploitation of Lemmas 4 and
5, along with a4), reveals that is also WSB. As a result, it is
possible to prove the following main result (see Appendix G).

Proposition 1: Under a2)–a4), and if
with , then is WSB; i.e.,

�� (41)

Proposition 1 asserts there is no probability mass of , al-
lowing local estimation errors escape to
infinity. This is very important since even in the presence of ob-
servation and communication noise the local estimation errors
remain bounded. Interestingly, in the absence of noise the local
estimates provided by D-LMS converge exponentially fast
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to with probability one. Thus, D-LMS exhibits behavior sim-
ilar to its centralized counterpart when it comes to stationary
ergodic signals [20]. Actually, it follows readily from Lemma 5
that (cf. [19, Proof of Lemma 3]):

Corollary 1: If and with
, a2) and a3) hold true, while and
for and , then there exists , a random

variable and such that

(42)

Corollary 1 demonstrates that the WSN achieves consensus
in the sense that local estimation errors con-
verge to zero exponentially fast on a per realization basis. Inter-
estingly, resembles the stability bound for C-LMS, namely

[21, Ch. 9]. The main difference here is that this
bound is also affected by the topology of the WSN, via , due
to the distributed nature of the algorithm and the information
exchanges among sensors.

B. Performance Analysis

In this subsection, the estimation performance of D-LMS is
analyzed by approximating the error covariance matrix. Since
the recursion (32) involved in D-LMS is time-varying, a closed-
form expression for the error covariance matrix is difficult, if not
impossible, to obtain. Specifically, the estimation MSE associ-
ated with the D-LMS recursions in (32)–(33) evolves according
to

(43)

where denotes the trace of the upper left
submatrix of the covariance matrix that evolves
according to

(44)

The first expectation in the rhs of (44) is impossible to split
because the regressors are temporally correlated. Thus, under
a3)–a4) it appears impossible to evaluate . One
possible alternative is to consider an appropriate time-invariant
“average” system approximating the LTV system in (32) and
recursively evaluate its corresponding error covariance matrix.
Then, using stochastic averaging arguments, see, e.g., [21, Ch.
9], the estimation error associated with the “average”
system can be shown convergent in probability to as the
step-size approaches zero. This approach allows approxi-
mating the estimation MSE of D-LMS with that of the average
system

(45)

(46)

where , and
. Note that the average system in (45) is not

constructed by taking expectations on both sides of (32)–(33).
Instead, it is formed starting from the primary system and re-
placing the time-varying transition matrix , and the ma-
trices , with their time-invariant counter-
parts , and , respectively. This average system plays
a key role in the stochastic averaging approach of [21, Ch. 9].

Next, we see how the local estimation errors in are
statistically related with the average state vector . Recall
that both and depend on . Actually, it is shown in
Appendix H that:

Proposition 2: If and a2)–a4) are satisfied,
while the joint moments of are bounded, then given
finite and for any and arbitrarily small, it
holds that

�� (47)

Proposition 2 shows that the probability of the estimation
error being close to approaches unity with vanishing
step-sizes, so long as the D-LMS and its “average” version are
initialized with the same local estimates and multipliers, i.e.,

. This type of result is referred to as trajectory
locking, because the trajectory of the primary system hovers
around and locks to the trajectory of its average counterpart. The
time horizon for which the two systems remain “locked” goes
to infinity as . These locking results are applicable even
when regressors exhibit temporal correlations.

Now, observe that the “average” D-LMS algorithm in (45)
has a time-invariant transition matrix. As a result, the “average”
estimation error covariance can be
found in closed form. Specifically, we prove in Appendix I that

(48)

where is the upper left submatrix of

(49)

while

(50)

with and ; see also
Appendix I for the structure of and .

Based on Proposition 2, the covariance matrix in (48) can
be viewed as an approximation to .
Then, the global normalized estimation error of D-LMS at time
instant can be approximated as

(51)
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while local approximate MSE performance across sensors can
be acquired from the corresponding diagonal entries of .
Proposition 2 implies that this approximation improves as

. Intuitively, this happens because a vanishing step-size
suppresses temporal correlations present in the regressors thus
making D-LMS behave as the “average system” in (45). In the
interest of tractability, the “average system” does not take into
account temporal correlations. Thus, for a small step-size the
MSE corresponding to the “average” system in (45) can be
used to approximate efficiently the one associated with D-LMS,
which will be corroborated via simulations.

Remark 7 (Comparison With Existing Results): The
stochastic stability results presented in Section IV-A allow for
(non-) Gaussian distributed and spatio-temporally correlated
regressors. As for C-LMS, WSB has been established under
conditions similar to those in [20]. Communication noise has
not been considered earlier, and stochastic boundedness of
D-LMS is a consequence of the inherent noise robustness of
the method of multipliers; see also [18] for related claims in
single-shot nonadaptive distributed estimation. Mean and MSE
convergence results for diffusion LMS [9] were established
under the widely assumed white Gaussian setting [21, Ch. 5];
similar mean-stability results were reported for D-LMS in [10].
A comparison between the stability results here and those in
[9] is not possible since they are different in nature. Regarding
performance analysis, steady-state closed-form expressions
of the relevant figures of merit have been derived for both
incremental and diffusion LMS [8], [9]; when regressors are
Gaussian and independent in space and time by relying on an
energy conservation framework [16]. This should be contrasted
with the alternative approach delineated in Section IV-B, that
utilizes stochastic averaging arguments to approximate the
MSE associated with D-LMS. This approximation becomes
increasingly accurate for a vanishing step-size, since the re-
gressor’s temporal correlations are suppressed making D-LMS
behave as in a white data setting.

C. Numerical Example

Here again, we test a WSN generated as a graph
yielding . With and , observa-
tions obey the linear model (21), where regressors are

with evolving according to
an AR(1) process as in Section III-C. We choose ,
the are i.i.d. in space and the uniformly dis-
tributed white driving noise has a spatial variance profile given
by with and i.i.d.. First, we corrob-
orate the result in Corollary 1, by running D-LMS with

, for all in a noise-free setup and
computing the sample paths of the normalized estimation error

. Results are depicted in Fig. 6 (top) for
different step-sizes related to the upper bound .
When , the error norm converges to zero exponen-
tially fast with a decay rate increasing with . As per Corol-
lary 1, convergence cannot be claimed for step-sizes larger than

, though simulations indicate that the stability region may be
larger than . Next, we validate the approximation (51) by
plotting the empirically estimated MSE achieved by D-LMS in
(32) (averaged over 50 Monte Carlo runs) and comparing it with
the MSE achieved by the average system [cf. rhs of (51)] in a

setting. Space-time i.i.d. observation noise

Fig. 6. (top) Normalized estimation error for D-LMS in the absence of noise;
(bottom) Empirical normalized estimation MSE for D-LMS and theoretical ap-
proximation (51) for the “average” D-LMS.

is now added as well as receiver AWGN of vari-
ance Fig. 6 (bottom) confirms that the theoretical
MSE obtained from the “average” D-LMS in (45) approximates
well the primary MSE in (32), especially as becomes smaller.
Note that D-LMS is derived using the AD-MoM. Convergence
in MoM is not necessarily monotonic and the same holds for
the true and approximated “average” behavior of D-LMS, as de-
picted in Fig. 6 (bottom).

V. CONCLUDING REMARKS

We developed a distributed LMS-type of adaptive algo-
rithm for WSN based tracking applications, where intersensor
communications are constrained to single-hop neighboring
sensors and are challenged by the effects of additive receiver
noise. Starting from a well-posed convex optimization problem
defining the desired estimator, we reformulated it into an
equivalent constrained form whose structure lends itself natu-
rally to decentralized implementation. We capitalized on this
favorable structure by resorting to the alternating-direction
method of multipliers, while using stochastic approximation
tools in the process we finally arrived at simple recursions.
The resulting in-network processing per sensor was interpreted
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as a local-LMS adaptation rule superimposed to the output
of a tunable PI regulator, which drives the local estimate to
consensus as dictated by a network-wide information enriched
reference. Numerical examples illustrated that D-LMS outper-
forms comparable adaptive schemes, and has the potential of
tracking nonstationary processes.

The challenging problem of algorithm stability in a stochastic
sense has been also addressed. The distributed stability results
obtained are closely related to those available for the central-
ized setting. For observations adhering to a linear model, sta-
tionary ergodic regressors, and a fixed step-size below a positive
threshold, we established that D-LMS incurs local estimation
errors satisfying the WSB property even in the presence of ad-
ditive intersensor communication noise. In the absence of noise,
D-LMS estimates were shown a.s. exponentially convergent to
the true parameter of interest. With regards to performance anal-
ysis, we established a stochastic trajectory locking result which
shows that for small step-sizes, the D-LMS estimation error tra-
jectories closely follow the ones of its time-invariant “averaged”
system mate. An “averaged” system estimation error covariance
matrix was obtained in closed form, that provided a means of
accurately approximating the actual D-LMS estimation MSE as
corroborated by numerical simulations.2

APPENDIX

A. Proof of Lemma 1

Recall that in the presence of noise, bridge variables obey [cf.
(16)]

(52)

Substituting (14) into (52), while adding and subtracting
, yields

(53)

Equations (22) and (52) imply that the first sum in (53) equals
for . Thus, (23) follows.

B. Proof of Lemma 2

Summing (14) over , we can write as

2The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S. Govern-
ment.

(54)

where the last equality follows after splitting the sum in the
first equality into four individual terms and invoking Lemma
1. Adding and subtracting from the rhs of (54),
yields (27) readily.

To prove (26), recall that the local estimate is updated
as [cf. (15)]

(55)

Upon i) using , ii) substituting
from a2) into (55), iii) subtracting from both sides of

(55), and iv) replacing and from (23) and (27),
respectively, we arrive at

where the last equality follows after adding and subtracting
from the quantity inside the square brackets in the rhs of

the first equality.

C. Proof of (29)

Consider first the noise vectors in (29). Stacking the channel
noise terms from (26) and (27) and scaling with and

, respectively, yields the first noise term in (29). Like-
wise, stacking the noise terms in (26) for

yields the second noise term in (29) corresponding
to the observation noise. Note that (27) contains no observation
noise, which explains the zero vector at the lower part of the
second noise term in (29).
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The second term within the square brackets in (26) explains
why . To specify the
structure of , notice that

(56)

The supervector formed by concatenating the first term within
the square brackets in (26), for can be written as

(57)

Stack the first term in (26) for and add the resulting
supervector to the one in (57), to obtain

from which we can readily deduce that is equal to
the matrix multiplying . Also, it follows immediately from
the first term in (27) that . Further, note that
the second term within the square brackets in (27) has the same
structure as the second term in (26). Thus, after i) stacking the
first and second terms within the square brackets in (27), scaling
them with and subtracting them and ii) using (56) and
(57), we obtain .

D. Proof of Lemma 3

We will argue by induction. For we have from
(33) that , where

; and after substituting
into (32), we find

(58)

Note that

for ; and . Thus, the
rhs of (58) is equal to the rhs of (29) for .

Suppose next that (32) and (33) hold true for and .
The same will be shown for and . To this end,
replace with the rhs of (32) evaluated at time instant , into
(29) to obtain

(59)

(60)

(61)

where and are defined as ,
; and the submatrices

and are given by ,

with , defined for

as

if
if ,

if
if

and denotes the vector having all entries
equal to zero except the th entry which is unity. Note that

denotes the order in which appears

in

Coming back to prove that is updated according
to Lemma 3, observe that the noise term in (59) can be easily
written as . Then,
after algebraic manipulations the noise terms in (60) can be
expressed as , where the

matrix is

given by

The remaining step is to show that
. If the latter holds, then i)

we group the noise terms in (59), (60) and the second term in
(61), ii) take out as a common factor,
and iii) conclude that is given by (32), while
is provided by (33).

To show that ,
it suffices to prove that there exists matrix such that

. To this end, it can be shown that (details omitted due to

space limitations)

, where , . Since
is symmetric, we have . As

, it follows that

, which further implies that we
can find such that .

E. Proof of Lemma 4

We will specify first the step-size values for which
has its eigenvalues inside the unit circle.

Lemma 6: If is selected such that and
, where is defined in (38), then all the eigenvalues

of lie inside the unit circle, i.e., for
.
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Proof: Following steps similar to those in [18, App. H], we
express the eigenvalues as roots of a second-order polynomial to
determine bounds on that ensure . Further, the
spectral radius of , can be expressed as

, where , are constants
with .

Using Lemma 6, we can apply the results in
[21, Sec. C6, p. 321] to infer that for there
exists a finite constant , such that

(62)

where and denote the upper and lower
block matrices of obtained by keeping the upper or
lower rows of , respectively.

In order to upper bound in (39) we will es-
tablish a recursive inequality for and then apply
the discrete Bellman–Gronwall lemma [21, p. 315]. To this end,
rewrite as , where

. Then

(63)

(64)

where . Next, let and
denote the upper and lower block matrices of

, respectively. Taking norm on both sides of (64) leads to
the recursive inequality

(65)

(66)

where the second inequality is obtained after using (62). Then,
multiplying both sides of (65) with , and applying the
discrete Bellman–Gronwall lemma, leads to the following non-
recursive inequality:

(67)

Raising both sides of (67) to the power of and applying
the arithmetic-mean geometric-mean inequality for the product
term we arrive at

(68)

where .

Note at this point that , while
from a3) the strong law of large numbers implies that

exists
a.s., and is bounded. The latter limits when combined with (68)
give

(69)

a.s. Now, given that we can always find a
such that and for all

. Thus, for with we
ensure that (69) is satisfied, while .

Next, we show that for matrix
also satisfies an inequality of the form given in (69). Given that

it follows from (69) that there exists and
positive, a.s. finite random variable such that

(70)

Recall that for matrix is stable (cf. Lemma 6);
thus, similar to (62) we have , where

is a positive constant.
Focusing on the lower part and taking norms in

(64) we obtain

(71)

where
. Next, we provide bounds for the terms in (71) and

examine how they behave as . To this end, let
, and use (70) to upper bound the third

term in (71) as

(72)

(73)

The quantity inside the square brackets in (73) converges a.s. to
. Further, a.s. and

since . Given these properties, it follows
readily that converges to zero a.s. as .
The second term in (71) can be rewritten as

(74)

where is the quantity within the square brackets. Next, it
suffices to show that is finite a.s. Since we have
to show that each of the summands within is finite a.s. Ob-
serve first that for . Also, since

[cf. a3)], it follows that a.s.
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Next, notice that and recall
that [cf. a3)] which further implies that

a.s. Thus, a.s. and consequently
a.s., for . Using the previous

bounds we can upper bound the rhs in (71). Then, raising this
upper bound and the left-hand side of (71) to the power of
we have

Since a.s., while the sample average within the
square brackets converges to a.s., it follows readily
that the quantity multiplying converges to one as

. Thus,
a.s., while for all . Combining
the latter result with the one in (69), we deduce that

, and conse-
quently ,
a.s.

F. Proof of Lemma 5

The proof follows readily from the result in [20, Sec. VI,
(A13)]. Specifically, a3) implies that i) is stationary and
ergodic; ii) it holds that [cf. a3)–a4)]

since , and

; and iii) Lemma 4 shows that
. Conditions i)–iii) guarantee that

is weakly stochastically bounded [20, Sec. VI].

G. Proof of Proposition 1

Taking norms on both sides of (32) yields

(75)

For brevity, let denote the sum of the last two terms in (75).
Now recall that if , are random variables and ,
then ; hence

(76)

Another property needed in the remainder of the proof is that
if , are positive random variables, then

. Applying this property to the
rhs of (76) yields

Markov’s inequality can now be used to obtain the upper bound
. Boundedness of ,

, and , since along

with a4) imply that . Thus

(77)

But from Lemma 5 we have that

for any . Hence, letting on both sides of (77)
we find that is WSB; i.e.,

H. Proof of Proposition 2

Since , it
suffices to show that

To this end, subtract from and recursively
substitute to obtain

(78)

where is the upper left submatrix
contained in . Now, let , ,

denote the norm of each of the last three summands in
(78), and . Since , it holds
that ,
from which it follows that

(79)
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where will be selected appropriately later on.
Thus, it suffices to prove that the two terms in (79) converge

to zero as . Toward this objective, the first term in (79)
can be upper bounded as

(80)

In order to show that the rhs in (80) goes to zero, re-
call from (62) that , where

, with and finite
positive constant. Note that a3) ensures that there exists finite

such that a.s. Then,

setting and for , it follows from (68) that

(81)

where . We now contend that
as

. Indeed, can be bounded as [cf. (45)–(46)]

(82)

where

(83)

Next, recall that with
and . Upon con-

sidering the expected norms of the noise terms in (83) and
using a4), we arrive after tedious but straightforward manipu-
lations at

(84)

Using the result in (84) in conjunction with (81) leads to

(85)

Applying once more Markov’s inequality for
yields

(86)

Using similar arguments we can bound the
second and third probability terms in (80). Since

and ,

use of (81) to bound , as well as
Markov’s inequality (as in ) implies that

,
for . Combining these limits with the one in (86)
establishes that

(87)

Consider next, the second probability term in (79). The three
summands in (78) comprising contain a fi-
nite number of terms, namely . Hence, Markov’s inequality
yields .
Boundedness of the regressor moments further ensures that the
expectation in the rhs of the last inequality converges to zero as

. We have already shown that the supremum of the two
probability terms in (79) goes to zero as over the time in-
terval ; thus, the supremum of the left-hand side
in (79) also goes to zero for vanishing .

I. Proof of (48)

The covariance in (48) follows readily from (46) after re-
calling that . Similarly, it is possible to find the
covariance matrix of in (49) using the recursive formula for

in (45) and setting
. Thus, we can readily obtain . Next, focus

on the structure of and . From the definition in (24) it
follows that consists of submatrices of the form

if and

if and

where denotes the covariance

of the channel noise at bridge sensor when receiving from
sensor . In the same way it follows from (31) that is a block
diagonal matrix with diagonal blocks of size .
Each of these blocks is set equal to of the corresponding
channel noise vector . Note also that .
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