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Abstract— Recursive least-squares (RLS) schemes are of
paramount importance for online estimation and tracking of
signals, especially when the state and/or data model are unknown.
Here, a distributed RLS-like algorithm is developed that can
operate in ad hoc wireless sensor networks (WSNs). The novel
algorithm is obtained by writing the weighted squared-error cost
associated with an RLS algorithm in a separable form and apply-
ing the alternating-direction method of multipliers to minimize it
in a distributed fashion. This distributed adaptive scheme can be
applied in general WSNs that are challenged by communication
noise and do not necessarily possess a Hamiltonian cycle. Rela-
tive to competing alternatives, the novel algorithm offers more
efficient communications. Numerical examples indicate that the
proposed scheme is resilient to communication noise, while it
performs efficient tracking of time-varying processes.

I. INTRODUCTION

With the advent of WSNs, distributed estimation and track-

ing of signals based on sensor observations has drawn a lot

of interest recently. This task becomes even more challenging

in ad hoc WSNs where power and bandwidth constraints mo-

tivate single-hop communications only between neighboring

sensors. With these constraints in mind batch least-squares

distributed estimation has been considered in [7], [10].

In many applications though sensors need to perform esti-

mation in a constantly changing environment without having

available any state and/or data models. This led to the develop-

ment of distributed adaptive estimation schemes. Specifically,

the distributed incremental (I-) RLS approach in [6] allows

the online incorporation of new information while performing

least-squares estimation; see also [5]. However, I-RLS is op-

erational as long as the WSN communication graph possesses

a Hamiltonian cycle [4]. Avoiding the need for such a cycle

and further exploiting all the available communication links

in a WSN the diffusion RLS scheme was proposed in [2].

The resultant algorithm however, requires the exchange of

regressors and observation data among neighboring sensors

at every time instant rendering the approach costly from

a communication perspective, as well as less robust in the

presence of communication noise.
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Different from [6], [2], here we derive a distributed RLS

adaptive algorithm which: i) can be applied to general WSNs

that are challenged by communication noise and do not nec-

essarily possess a Hamiltonian cycle; ii) efficiently tracks fast

time-varying processes; iii) can easily handle sensor failures;

and, iv) incurs communication cost which is linear with respect

to the dimensionality of the signal we wish to estimate, while

it exhibits higher convergence rates with respect to existing

approaches.
After stating the problem in Section II, we proceed to

reformulate the error cost associated with the exponentially

weighted least-squares estimator (EWLSE) as the optimal

solution of a separable constrained convex minimization prob-

lem (Section III). Then, the alternating-direction method of

multipliers is utilized in order to minimize the separable EW-

LS cost in a distributed fashion. This way local adaptive

recursions, that allow the online incorporation of sensor data,

are derived and constitute the distributed RLS algorithm

(Section III-A). After elaborating on the distributed operation

of the novel algorithm and providing some remarks, numerical

simulations in Section IV expose the tracking capabilities and

convergence properties of the distributed RLS scheme and

compare them with existing alternatives.

II. PROBLEM STATEMENT

Consider a WSN with J sensors, where single-hop com-

munications are allowed so that the j-th sensor communicates

only with nodes j′ in its neighborhood Nj ⊆ [1, J ] having

cardinality |Nj |. Sensor links are assumed to be symmetric,

and the WSN is modelled as an undirected graph whose

vertices are the sensors and its edges represent the available

links; see Fig. 1. Similar to [7], [10] and [2] we assume that

the communication graph is connected. The WSN is deployed

in order to estimate a p×1 parameter vector so. Every sensor,

say the j-th, at time instant t (t = 0, 1, 2, . . . denotes discrete

time) acquires a p × 1 regressor vector hj(t) and a scalar

observation xj(t) for j = 1, . . . , J . A pertinent approach in

this setup is to form the exponentially weighted least-squares

estimator (EW-LSE) given at time instant t as [3]

ŝewls(t) := arg min
s

∑t
τ=0

∑J
j=1 λt−τ‖xj(τ) − hT

j (τ)s‖2

+ λtsT Φos (1)

where λ ∈ (0, 1] implements forgetting factor and Φo is a

positive definite matrix used for regularization. Notice that (1)
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Fig. 1. An ad-hoc wireless sensor network.

provides the EW-LSE ŝewls(t) for so, given the observations

and regressors {xj(τ),hj(τ)}J
j=1 within the time interval τ ∈

[0, t].
If the sensor observations x(t) := [x1(t), . . . , xJ(t)]T and

the regressor vectors in H(t) := [h1(t) . . .hJ (t)]T were

available at a central location, then ŝewls(t) could be obtained

using the RLS algorithm (centralized RLS) [3]. However,

both the observations in x(t) and the regressors in H(t) are

scattered across the WSN. One approach would be to have

each sensor transmit xj(t),hj(t) to a fusion center (FC) and

then directly apply RLS. This approach approach however

is not only communication costly, but also is prone to FC

failures. The goal of this paper is to minimize the cost in (1)

in a distributed fashion and derive local recursions that enable

each sensor to estimate so by exchanging messages with its

immediate (single-hop) neighbors only.

III. DISTRIBUTED RECURSIVE LEAST-SQUARES SCHEME

Our approach is to rewrite the minimization problem in (1)

in an equivalent form that is amenable to distributed imple-

mentation. Then, we utilize the alternating-direction method of

multipliers [1, pg. 253-261],[7], to split the original problem

in (1) into simpler subtasks that can be implemented in

parallel. Since summands in (1) are coupled through s it is

not straightforward to decompose this minimization problem.

To this end, we define the auxiliary variable sj to represent

the local estimate at sensor j, and consider the constrained

minimization problem

{ŝj(t)} := arg min
∑t

τ=0

∑J
j=1 λt−τ‖xj(τ) − hT

j (τ)sj‖2

+ J−1λt ∑J
j=1 sT

j Φosj (2)

s. to εjsj = εj s̄b, b ∈ B, j ∈ Nb

where B ⊆ [1, J ] is a subset of ‘bridge’ sensors maintaining

local vectors s̄b which are utilized to impose consensus among

local estimates sj across all sensors. If B ≡ [1, J ], then from

the connectivity of the WSN it follows that (1) and (2) are

equivalent in the sense that ŝj(t) = ŝewls(t). In fact we can

impose a milder requirement on B and ensure that (1) and (2)

are equivalent.

Specifically, the bridge sensor set is chosen to satisfy the

following conditions: (i) ∀ j ∈ [1, J ] there exists at least one

b ∈ B such that b ∈ Nj (the bridge neighbors of sensor

j will be denoted by Bj := Nj ∩ B); and, (ii) for j1 and

j2 ∈ Nj1 there exists b ∈ B such that b ∈ Nj1 ∩ Nj2 .

Selecting B in that way ensures that ŝj(t) = ŝewls(t) (details

in [8]). Further, such a bridge sensor set can be determined in

a distributed fashion using e.g., the scheme in [9]. A possible

selection for B (not unique) in the WSN given in Fig. 1, is

the set formed by the black nodes. In fact the bridge-sensor

set B trades-off communication cost for robustness to sensor

failures; i.e., increasing the number of bridge sensors improves

robustness to sensor failures but also increases the information

exchange between sensors. Regarding the positive constants

εj , they do not cause any effect whatsoever on the constraints

in (2). Actually, they are used to adjust the convergence

characteristics of the distributed (D-) RLS algorithm.

A. Algorithmic Construction

In this subsection, we will show how to solve (2) in a

distributed fashion using the alternating-direction method of

multipliers. Interestingly, this procedure will yield a distributed

adaptive estimation algorithm whereby recursive updates per

sensor allow estimation of so, or, even tracking of a time-

varying process so(t).
Let {vb

j}b∈Bj

j∈[1,J] denote the Lagrange multipliers associated

with the constraints sj = s̄b, and be updated at the j-th

sensor. Consider now the augmented Lagrangian function of

the minimization problem in (2) at time instant t + 1, namely

La(s, s̄b, v ; t + 1) =
t+1∑

τ=0

J∑

j=1

λt+1−τ‖xj(τ) − hT
j (τ)sj‖2

+ J−1λt+1 ∑J
j=1 sT

j Φosj +
∑

b∈B

∑

j∈Nb

(vb
j)

T εj(sj − s̄b)

+
∑

b∈B

∑

j∈Nb

cjε
2
j

2
‖sj − s̄b‖2

2 (3)

where s := {sj}J
j=1, s̄b := {sb}b∈B, v :=

{
vb

j

}b∈Bj

j∈[1,J]
, and

cj > 0 are penalty coefficients corresponding to the constraint

εjsj = εjsb ,∀ b ∈ B and j ∈ [1, J ].
We tackle (2) using the alternating-direction method of

multipliers [1], by: s1) minimizing the augmented Lagrangian

function using block coordinate descent; and, s2) updating the

Lagrange multipliers associated with the equality constraints

in (2). To this end, let k = 0, 1, . . . denote the iteration

index for the recursive algorithm to be constructed in order

to minimize (2). In order to apply the alternating-direction

method of multipliers suppose that during time iteration k the

multipliers vb
j(t + 1; k) and local estimates sj(t + 1; k) are

available at sensor j. Then, (s1) involves the following two

subtasks:

s1-a) After setting {vb
j = vb

j(t + 1; k)}b∈Bj

j∈[1,J] and {sb =
sb(t + 1; k)}b∈B in (3), minimize the augmented Lagrangian

in (3) with respect to sj and determine sj(t + 1; k + 1) for

j = 1, . . . , J .

s1-b) After setting vb
j = vb

j(t+1; k) and sj = sj(t+1; k+1)
in (3), minimize the augmented Lagrangian in (3) with respect
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to s̄b and determine s̄b(t + 1; k + 1) for b ∈ B.

Then, step (s2) involves updating the Lagrange multipliers

using a gradient ascent-like recursion.

Interestingly, after applying steps (s1)-(s2) we obtain a set of

recursions that involve communications only between single-

hop neighboring sensors. Thus, the recursions used to develop

the distributed (D-) RLS algorithm are summarized as

vb
j(t + 1; k) = vb

j(t + 1; k − 1)
+ εjcj(sj(t + 1; k) − s̄b(t + 1; k)) (4)

sj(t + 1; k + 1) = Φ−1
j (t + 1)ψj(t + 1) − εj

2
Φ−1

j (t + 1)

× (
∑

b∈Bj

vb
j(t + 1; k) − εjcj

∑

b∈Bj

s̄b(t + 1; k)) (5)

s̄b(t + 1; k + 1) =
∑

j∈Nb

1∑
β∈Nb

cβ
(ε−1

j vb
j(t + 1; k)

+ cjsj(t + 1; k + 1)), (6)

where b ∈ Bj in (4) and b ∈ B in (6), while

Φj(t + 1) :=
t+1∑

τ=0

λt+1−τhj(τ)hT
j (τ) + λt+1Φo +

ε2jcj |Bj |
2

Ip

ψj(t + 1) :=
t+1∑

τ=0

λt+1−τhj(τ)xj(τ) . (7)

Notice that ψj(t + 1) = λψj(t) + hj(t + 1)xj(t + 1), while

for λ = 1, matrix Φ−1
j (t + 1) can be obtained recursively

with a complexity of O(p2) from Φ−1
j (t) using the matrix

inversion lemma. Note that the first term in sj(t + 1), namely

Φj(t + 1)−1ψj(t + 1), is a regularized version of the local

EW-LS estimator at sensor j at time instant t + 1. The

regularization comes from the term
ε2jcj |Bj |

2 in Φj(t+1). The

second term in (5) is responsible for fusing information from

the neighborhood of sensor j, refining in that way the estimate

provided from Φ−1
j (t + 1)ψj(t + 1).

Recursions (4)-(6) constitute the D-RLS algorithm whereby

all the sensors j ∈ [1, J ] keep track of their local estimate

sj(t + 1; k) and the Lagrange multipliers vb
j(t + 1; k) for b ∈

Bj . The sensors that belong to subset B keep also track of

the consensus enforcing variables s̄b(t + 1; k). Note that at

each time instant t, the EW-LSE cost in (2) changes. The

recursions provided in (4)-(6) provide a way to minimize (2)

in a distributed fashion, and we have shown that (details in

[8])

Proposition 1: For arbitrarily initialized {vb
j(t+1; 0)}b∈Bj

j=[1,J],

sj(t+1; 0) and s̄b(t+1; 0), and as k → ∞ the local estimates
sj(t + 1; k) reach consensus; i.e.,

lim
k→∞

sj(t + 1; k) = ŝj(t + 1) = ŝewls(t + 1), for j ∈ [1, J ].

Thus, the D-RLS recursions are able to determine the EW-

LS estimator at each time instant t as long as the number of

‘consensus’ recursions k goes to infinity. For a time-invariant

setup applying many consensus iterations, i.e. k 
 1 would

not be a problem, though this is not the case when the WSN

has to track a time-varying process so(t). Thus, in order

to make D-RLS appropriate for time-critical applications we

can apply one ‘consensus’ iteration per time instant t (in

[8] we also consider and analyze D-RLS versions with more

‘consensus’ iterations). In that case t = k and the recursions

in (4)-(6) can be simplified to (proof in [8])

vb
j(t) = vb

j(t − 1) + εjcj(sj(t) − s̄b(t)) (8)

sj(t + 1) = Φ−1
j (t + 1)ψj(t + 1)

− εj

2
Φ−1

j (t + 1)(
∑

b∈Bj

vb
j(t) − εjcj

∑

b∈Bj

s̄b(t)) (9)

s̄b(t + 1) =
∑

j∈Nb

1∑
β∈Nb

cβ
(ε−1

j vb
j(t) + cjsj(t + 1)). (10)

During time instant t + 1 sensor j receives the consensus

variable s̄b(t) from its bridge neighbors within Bj , and updates

its Lagrange multipliers {vb
j(t)}b∈Bj using (8), which are used

next to compute sj(t + 1) through (9). After completing this

iteration step, sensor j transmits to each of its bridge neighbors

b ∈ Bj the vector ε−1
j vb

j(t) + cjsj(t + 1). Subsequently, each

sensor b ∈ B receives the vectors ε−1
j vb

j(t)+ cjsj(t+1) from

all its neighbors j ∈ Nb and proceeds to compute s̄b(t + 1)
using (10). This completes the (t + 1)-st iteration and all the

sensors in B proceed to transmit s̄b(t+1) to all their neighbors

j ∈ Nb starting the (t + 2)−nd iteration. The algorithm is

tabulated as Algorithm 1.

Note that D-RLS allows the online incorporation of new

observation data at each time instant via ψj(t+1) and Φj(t+
1) in (9). In that way D-RLS has the potential to efficiently

track time-varying processes. This will also be confirmed by

the simulations of Section IV. On the other hand, the I-RLS

in [6] allows each sensor to process new data only after J
time slots from the time instant it acquired them. Thus, the

operation of I-RLS is limited to applications with slow varying

parameters or fast sensor communications. Further, operation

of the I-RLS requires determination of a Hamiltonian cycle

of the WSN which is an NP-complete problem [4]. In case

of sensor failures redetermining a Hamiltonian cycle might be

extremely difficult if not impossible. Also connectivity of the

WSN is not sufficient to guarantee existence of a Hamiltonian

cycle.

The communication cost for D-RLS is O(p) per iteration,

while the one for I-RLS is O(p2). A low communication cost

I-RLS is also proposed in [6] with a communication cost of

O(p) per iteration, though the tracking challenges related to

I-RLS still remain. The communication cost associated with

diffusion RLS in [2] is also O(p). However, we should point

out that sensors not only have to exchange their local estimates

with all their single-hop neighbors, but also exchange their

regressor vectors and observation data. Recall that in D-

RLS each sensor j does not have to transmit its regressors

and observations, while it exchanges information only with a

subset of its neighborhood Nj , namely the bridge neighbors

in Bj , where |Bj | < |Nj |. This implies that D-RLS incurs

smaller communication cost than [2]. Further, as will be seen
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Algorithm 1 D-RLS (t = k)

Initialize {sj(0)}J
j=1, {s̄b(0)}b∈B and {vb

j(0)}b∈Bj

j∈[1,J] at any

value.

for t = 0, 1,. . . do
Every bridge sensor b ∈ B: transmits s̄b(t) to its neigh-

bors in Nb

All j ∈ [1, J ]: update vb
j(t) using (8).

All j ∈ [1, J ]: update sj(t + 1) using (9).

All j ∈ [1, J ]: transmit ε−1
j vb

j(t) + cjsj(t + 1) to each

b ∈ Bj

Bridge sensors b ∈ B: compute s̄b(t + 1) through (10).

end for

in Section IV D-RLS exhibits robustness in the presence

of reception (communication) noise, whereas the distributed

scheme in [2] may not provide accurate local estimates.

Remark 1: In case of a bridge sensor failure, D-RLS incurs

performance loss, but remains operational after the neighbors

of the failed bridge sensor modify their local recursions ac-

cordingly. Specifically, if bridge sensor b′ ∈ B fails, then some

of the nodes in Nb′ can be converted to bridges as needed, in

order for the new bridge sensor set, call it B′, to satisfy the

properties of B. This conversion can be accommodated using

the algorithm in [9]. Then, all sensors in Nb′ can modify their

local recursions (8)-(10) by adding the corresponding terms

associated with the new bridges in Nb′ , and removing the ones

corresponding to b′.

IV. NUMERICAL EXAMPLES

Next, we test the convergence properties of the D-RLS

algorithm in an ad hoc WSN and perform some comparisons

with the schemes in [2] and [6]. The WSN comprises J = 30
sensors. We adopt a linear data model of the form xj(t) =
hj(t)so + nj(t), with p = 4, σ2

nj
= 10−4and with the

entries of hj(t) uniformly distributed in [−0.5, 0.5] for j =
1, . . . , J . We set λ = 1, εjcj = 8 and ε2jcj = 0.05 for all

j = 1, . . . , 30. Fig. 2 (a) depicts the normalized mean-square

error El(t) = J−1
∑J

j=1 Ê[(xj(t) − hT
j (t)sj(t))2] (learning

curve) versus time index t, whereas Fig. 2 (b) shows the

normalized estimation error Ee(t) = J−1
∑J

j=1 Ê[‖sj(t) −
so‖2], with Ê[·] indicating mean approximation using Monte

Carlo simulations. We plot the learning curves and estimation

error for D-RLS, diffusion RLS in [2] and the centralized RLS

assuming i) ideal links; and ii) reception noise at all sensors.

Clearly, the centralized RLS, where all the information is

assumed available at a central location, benchmarks both D-

RLS and diffusion RLS. Next, note that the learning curve

corresponding to D-RLS converges to the observation noise

variance σ2
nj

= 10−4 much faster than the one corresponding

to the diffusion RLS. Note also that the learning curve of D-

RLS is very close to the centralized RLS when sensor links

are ideal. Also, Figs. 2 (a)-(b) depict that in the presence of

communication noise, diffusion RLS clearly cannot provide an

accurate estimate of so, whereas D-RLS still is able to estimate

so with some penalty though with a higher estimation error

than the one achieved under ideal sensor links.

Fig. 3 depicts the tracking capability of D-RLS, assuming

that so(t) obeys a first-order AR process; i.e., so(t) =
0.9so(t− 1) + v(t), where v(t) is zero-mean white Gaussian

with variance 0.1. We plot the local estimate [s2(t)]1 (first

entry of s2(t)) for both D-RLS and I-RLS, where λ = 0.5,

along with [so(t)]1. Recall that in I-RLS each sensor produces

an estimate once per J = 30 time slots. Clearly, the D-RLS

outperforms the I-RLS in terms of tracking.
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Fig. 2. (a) Normalized mean-square error El(t) vs. time index t; (b)
Normalized estimation error Ee(t) vs. time index t.

V. CONCLUSIONS

We developed a distributed RLS algorithm for estimating

and tracking signals using observation data collected online

by sensors deployed in an ad hoc manner. Our approach

involves reformulating in a separable constrained form the

exponentially weighted squared-error cost whose minimization

leads to the standard RLS algorithm, and then minimizing
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the new cost in a distributed fashion across sensors via the

alternating-direction method of multipliers. The novel D-RLS

algorithm can be applied to general WSNs and performs

efficient estimation and tracking even in the presence of

communication noise. Numerical examples demonstrate the

convergence and tracking advantages of D-RLS over existing

alternatives.

Currently, we are pursuing stability and performance analy-

sis of the D-RLS algorithm for general setups using stochastic

averaging techniques. The goal is to show that the local

estimates sj(t) in D-RLS enjoy mean-square sense consistency

whenever the same holds true for the standard RLS scheme.1
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