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ABSTRACT

The recursive least-squares (RLS) algorithm offers both re-
duced complexity and limited memory requirements when it
comes to learning from data acquired sequentially in time.
The focus of this paper is on analyzing the performance of a
distributedrecursive least-squares (D-RLS) algorithm, suit-
able for online learning from network data. A steady-state
mean-square error (MSE) analysis of D-RLS is conducted,
by studying a stochastically-driven ‘averaged’ system that
approximates the D-RLS dynamics asymptotically in time.
For observations that are linearly related to the time-invariant
parameter vector sought, the simplifying independence set-
ting assumptions facilitate deriving accurate closed-form
expressions for the MSE limiting values. The problems of
mean and MSE-sense stability of D-RLS are also investi-
gated, and easily-checkable sufficient conditions are derived
under which a steady-state is attained. Computer simulations
demonstrate that the upshot of the analysis extends accu-
rately to the pragmatic setting where the underlying network
processes exhibit temporal correlations.

Index Terms— Distributed learning, online learning,
RLS algorithm, performance analysis.

1. INTRODUCTION

The explosion ofnetwork datahas created renewed interest
in the field of distributed signal and information processing
over graphs, calling for collaborative solutions that enable
real-time estimation of stationary signals as well as reduced-
complexity tracking of nonstationary network processes. In
this context, the focus of this paper is on analyzing the per-
formance of adistributed recursive least-squares (D-RLS)
algorithm, suitable foronlinelearning from network data [9].
In D-RLS a two-step iterative process takes place towards
consenting on the desired global exponentially-weighted
least-squares estimator (EWLSE) [1, 2]: network agents carry
out reduced-complexity tasks locally, and exchange messages
with one-hop neighbors to consent on the network-wide esti-
mates adaptively (Section 2). Network data acquired in real
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time enrich the estimation process and learn the unknown
statistics on-the-fly.

A detailed stability and MSE steady-state (s.s.)per-
formance analysisis conducted for D-RLS. Evaluating the
performance of (centralized) online learning algorithms is
a challenging problem in its own right; prior art from an
adaptive filtering vantage point is surveyed in e.g., [1, 2],
and the extensive list of references therein. On top of that,a
networked setting introduces unique challenges in the anal-
ysis such as heterogeneous spatio-temporal data profiles and
multiple sources of randomness, a consequence of e.g., un-
modeled complex dynamics and imperfect communication
links. The approach pursued here capitalizes on an ‘averaged’
error-form representation of the local recursions comprising
D-RLS, as a global dynamical system described by a stochas-
tic difference-equation derived in Section 3.2. Somehow
related approaches were adopted in [3] and [4]. Other note-
worthy analysis techniques include the energy-conservation
methodology in [5], [2, p. 287], and stochastic averaging [1,
p. 229]. For performance analysis ofdistributedonline learn-
ing algorithms, the former has been applied in e.g., [6], while
the latter can be found in [7].

The covariance matrix of the resulting state is shown to
encompass all the information needed to evaluate the rele-
vant network-wide and per-agent performance metrics (Sec-
tion 3.3). For observations that are linearly related to thetime-
invariant parameter vector sought, the simplifying indepen-
dence setting assumptions [1, pg. 110], [2, pg. 448] are key
enablers towards deriving accurate closed-form expressions
for the mean-square deviation and excess-MSE s.s. values
(Section 4.2). Stability in the mean- and MSE-sense are also
investigated, revealing easily-checkable sufficient conditions
under which a s.s. is attained. Numerical tests corroborating
the theoretical findings are presented in Section 5.
Notation: Operators⊗, (.)T , (.)†, λmax(.), tr(.), diag(.),
bdiag(.), E [.], will denote Kronecker product, transposition,
matrix pseudo-inverse, spectral radius, matrix trace, diagonal
matrix, block diagonal matrix, and expectation, respectively.
For both vectors and matrices,‖.‖ will stand for the2−norm.
Then×n identity matrix will be represented byIn, while1n

will denote then× 1 vector of all ones and1n×m := 1n1
T
m.

Similar notation will be adopted for matrices of all zeros.
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2. DISTRIBUTED RECURSIVE LEAST-SQUARES

Consider a network of interconnected agents{1, . . . , J} :=
J , naturally modeled as an undirected connected graph with
associated Laplacian matrixL. Agent j ∈ J is capable
of performing some local computations, as well as exchang-
ing messages with its directly connected neighbors inNj ⊆
J . Different from [3, 4] and [8], the present network model
accounts explicitly for imperfect exchanges of information
among agents. Specifically, messages received at agentj
from agenti at discrete-time instantt are corrupted by a zero-
mean additive noise vectorηi

j(t), assumed temporally and
spatially uncorrelated. The communication noise covariance
matrices are denoted byRηj

:= E[ηi
j(t)(η

i
j(t))

T ], j ∈ J .
The network infrastructure is utilized to estimate a param-

eter vectors0 ∈ R
p×1 in a distributed fashion and subject to

the single-hop communication constraints, by resorting tothe
least-squares (LS) criterion. Per time instantt = 0, 1, . . . ,
each agent acquires a regression vectorhj(t) ∈ R

p×1 and
a scalar observationxj(t), both assumed zero-mean without
loss of generality. Given new data sequentially acquired, a
pertinent approach to online learning is the EWLSE [2, 3, 8]

ŝewls(t) := arg min
s

t
∑

τ=0

J
∑

j=1

λt−τ
[

xj(τ) − hT
j (τ)s

]2
(1)

whereλ ∈ (0, 1] is a forgetting factor. A strictly-convex
term λtδ‖s‖2 is typically included in (1) for regularization
purposes, whereδ is a large positive constant. Note that in
forming ŝewls(t) the entire history of data{xj(τ),hj(τ)}tτ=0,
∀ j ∈ J is incorporated in the online estimation process.
Whenλ < 1, past data are exponentially discarded thus en-
abling tracking of nonstationary network processes.

The (centralized) estimator (1) is not amenable for dis-
tributed implementation since the global variables couples
the per-agent summands. A distributed algorithm was put
forth in [9] by reformulating the EWLSE into an equivalent
constrained form, which can be minimized in a distributed
fashion by resorting to the alternating-minimizationalgorithm
(AMA) [10]. The algorithmic construction details can be
found in [9, Sec. II]. Accounting for additive communica-
tion noise that corrupts the exchanges of Lagrange multipliers

{vj′

j }
j′∈Nj

j∈Nj
and local estimates{sj}j∈J through the vectors

η̄
j′

j (t) andηj′

j (t), respectively, the per agent tasks comprising
the AMA-based D-RLS algorithm are given by [9]

v
j′

j (t) = v
j′

j (t− 1) +
c

2

[

sj(t)− (sj′ (t) + η
j′

j (t))
]

(2)

Φ−1
j (t+ 1) = λ−1Φ−1

j (t)

−
λ−1Φ−1

j (t)hj(t+ 1)hT
j (t+ 1)Φ−1

j (t)

λ+ hT
j (t+ 1)Φ−1

j (t)hj(t+ 1)

(3)

Algorithm 1 : D-RLS at agentj

Arbitrarily initialize sj(0) and{vj′

j (−1)}j′∈Nj
.

for t = 0, 1,. . . do
Transmitsj(t) to neighbors inNj .

Update{vj′

j (t)}j′∈Nj
using (2).

Transmitvj′

j (t) to eachj′ ∈ Nj .
UpdateΦj(t+ 1) andψj(t+ 1) using (3) and (4).
Updatesj(t+ 1) using (5).

end for

ψj(t+ 1) = λψj(t) + hj(t+ 1)xj(t+ 1) (4)

sj(t+ 1) = Φ−1
j (t+ 1)ψj(t+ 1)

− 1

2
Φ−1

j (t+ 1)
∑

j′∈Nj

[

v
j′

j (t)− (vj
j′ (t) + η̄

j′

j (t))
]

.

(5)

Note thatj′ ∈ Nj in the dual-ascent iterations (2), while
c > 0 is a constant step-size. In addition, the per-agent
exponentially-weighteddata (cross-) correlations areψj(t) :=
∑t

τ=0 λ
t−τhj(τ)xj(τ) andΦj(t) :=

∑t
τ=0 λ

t−τhj(τ)h
T
j (τ).

Recursions (2)-(5) are tabulated as Algorithm 1, which
also details the inter-agent communications of multipliers and
local estimates taking place only within neighborhoods. If
the inter-agent links can be rendered error-free, results in [11]
show that D-RLS can be further simplified to reduce the com-
munication overhead and memory storage requirements.

3. ANALYSIS PRELIMINARIES

3.1. Analysis scope: assumptions and approximations

The challenges in evaluating the performance of classical
(centralized) LMS and RLS filters are well documented [2, 1],
and results for RLS are less common and typically involve
simplifying approximations. What is more, the distributed
setting studied in this paper introduces unique challengesin
the analysis. These include network data and multiple sources
of additive noise, a consequence of unmodeled dynamics, im-
perfect data acquisition and communication links.

In order to proceed, a few modeling assumptions are in-
troduced which delineate the scope of the ensuing stability
and performance results. For allj ∈ J , it is assumed that:

(a1) Agent observations obeyxj(t) = hT
j (t)s0+ǫj(t), where

the zero-mean white noise{ǫj(t)} has varianceσ2
ǫj

;

(a2) Vectors{hj(t)} are spatio-temporally white with positive-
definite covariance matrixRhj

; and

(a3) Vectors{hj(t)}, {ǫj(t)}, {ηj′

j (t)}j′∈Nj
and{η̄j′j (t)}j′∈Nj

are statistically independent.

Assumptions (a1)-(a3) comprise the widely adoptedindepen-
dence setting, for agent observations that are linearly related



to the parameter vector of interest; see e.g., [1, pg. 110], [2,
pg. 448]. In line with network-generated data, the statistical
profiles of both regressors and the noise quantities vary across
agents (space), yet they are assumed time invariant.

In the particular case of the D-RLS algorithm, a unique
challenge stems from the stochastic matricesΦ−1

j (t) present

in (5). Even obtainingΦ−1
j (t)’s distribution or computing its

expected value is a formidable task in general, due to the ma-
trix inversion operation. For these reasons some simplifying
approximations will be adopted to carry out the analysis that
otherwise becomes intractable.

By definition, matrixΦj(t) is obtained as an exponen-
tially weighted moving average (EWMA) of local regressor
outer products. The EWMA can be seen as an average mod-
ulated by a sliding window of equivalent length1/(1 − λ),
which clearly grows asλ → 1. This observation in along
with (a2) and the strong law of large numbers, justifies the
approximation

Φj(t) ≈ E[Φj(t)] =
Rhj

1− λ
, 0 ≪ λ < 1 andt → ∞.

(6)
The expectation ofΦ−1

j (t), on the other hand, is considerably
harder to evaluate. To overcome this challenge, the following
approximation will be invoked [2, 3]

E[Φ−1
j (t)] ≈ E[Φj(t)]

−1 ≈ (1− λ)R−1
hj

(7)

for 0 ≪ λ < 1 andt → ∞. It is a crude approximation at first
sight. However, experimental evidence suggests that the ap-
proximation is sufficiently accurate for all practical purposes,
when the forgetting factor approaches unity [2, p. 319].

3.2. Error-form D-RLS

The approach here to s.s. performance analysis relies on an
‘averaged’ error-form system representation of D-RLS in (2)-
(5), whereΦ−1

j (t) in (5) is replaced by the approximation

(1− λ)R−1
hj

, for sufficiently larget.
Towards obtaining such error-form representation, intro-

duce the local estimation errors{y1,j(t) := sj(t) − s0}Jj=1

and multiplier-based quantities{y2,j(t) :=
1
2

∑

j′∈Nj
(vj′

j (t−
1)−v

j
j′ (t−1))}Jj=1. It turns out that a convenient global state

to describe the spatio-temporal dynamics of D-RLS isy(t) :=
[yT

1 (t) y
T
2 (t)]

T = [yT
1,1(t) . . .y

T
1,J (t) y

T
2,1(t) . . .y

T
2,J (t)]

T ∈
R

2Jp. In addition, to concisely capture the effects of both
observation and communication noise on the estimation
errors across the network, define theJp × 1 noise super-
vectorsǫ(t) :=

∑t

τ=0 λ
t−τ [hT

1 (τ)ǫ1(τ) . . .h
T
J (τ)ǫJ (τ)]

T

and η̄(t) := [η̄T
1 (t) . . . η̄

T
J (t)]

T . Vectors{η̄j(t)}Jj=1 repre-
sent the aggregate noise corrupting the multipliers received
by agentj at time instantt, and are given bȳηj(t) :=
∑

j′∈Nj
η̄
j′

j (t)/2. Their respective covariance matrices are

easily computable under (a2)-(a3). For instance,

Rǫ(t) :=

(

1− λ2(t+1)

1− λ2

)

bdiag(Rh1
σ2
ǫ1
, . . . ,RhJ

σ2
ǫJ
)

while the structure ofRη̄ := E[η̄(t)η̄T (t)] can be found

in [9, App. E]. In addition, introduce thep(
∑J

j=1 |Nj |) × 1

vectorη(t) :=
[

{(η1
j′(t))

T }j′∈N1
. . . {(ηJ

j′(t))
T }j′∈NJ

]T
,

which comprises the receiver noise terms corrupting trans-
missions of local estimates across the whole network at time
instantt, and defineRη := E[η(t)ηT (t)].

Finally, letLc := (c/2)L⊗Ip ∈ R
Jp×Jp be a matrix cap-

turing network topology through the (scaled) graph Laplacian
matrixL, and defineR−1

h,λ := (1− λ)bdiag(R−1
h1

, . . . ,R−1
hJ

).
It is now possible to state the following important lemma1.

Lemma 1: Let (a1) and (a2) hold. Then fort ≥ t0 with
t0 sufficiently large while0 ≪ λ < 1, the global statey(t)
approximately evolves according to

y(t + 1) =bdiag(IJp,Lc)z(t+ 1) +

[

R−1
h,λ

0Jp×Jp

]

η̄(t)

+

[

R−1
h,λ(Pα −Pβ)

Pβ −Pα

]

η(t). (8)

The inner statez(t) := [zT1 (t) zT2 (t)]
T is arbitrarily initial-

ized at timet0, and updated according to

z(t+ 1) = Ψz(t) +Ψ

[

R−1
h,λ(Pα −Pβ)

C

]

η(t− 1)

+Ψ

[

R−1
h,λ

0Jp×Jp

]

η̄(t− 1) +

[

R−1
h,λ

0Jp×Jp

]

ǫ(t+ 1)

(9)

and the2Jp× 2Jp transition matrixΨ consists of the blocks
[Ψ]11 = [Ψ]12 = −R−1

h,λLc and [Ψ]21 = [Ψ]22 = LcL
†
c.

Matrix C is chosen such thatLcC = Pβ − Pα, where the
structure of the time-invariant matricesPα andPβ can be
found in [9, App. E].

The desired statey(t) is obtained as a rank-deficient linear
transformation of the inner statez(t), plus a stochastic offset
due to the effects of communication noise. A linear, time-
invariant, first-order difference equation describes the dynam-
ics ofz(t), and hence ofy(t), via the algebraic transformation
in (8). The time-invariant nature of the transition matrixΨ is
due to the approximationsΦ−1

j (t) ≈ R−1
h,λ, j ∈ J , partic-

ularly accurate for large enought > t0. Examination of (9)
reveals that the evolution ofz(t) is driven by three stochastic
input processes: i) communication noiseη(t − 1) affecting
the transmission of local estimates; ii) communication noise
η̄(t− 1) contaminating the Lagrange multipliers; and iii) ob-
servation noise withinǫ(t+ 1).

1Proofs are omitted here due to lack of space, but can be found in [9]



Table 1. Evaluation of local and global figures of merit fromRy(t)

MSD EMSE MSE

Local tr([Ry(t)]11,j) tr(Rhj
[Ry(t− 1)]11,j) tr(Rhj

[Ry(t− 1)]11,j) + σ2
ǫj

Global J−1tr([Ry(t)]11) J−1tr(Rh[Ry(t− 1)]11) J−1tr(Rh[Ry(t− 1)]11) + J−1
∑J

j=1 σ
2
ǫj

3.3. Performance Metrics

When it comes to performance evaluation of adaptive algo-
rithms, it is customary to consider as figures of merit the
so-called MSE, excess mean-square error (EMSE) and mean-
square deviation (MSD) [2], [1]. In the present setup for dis-
tributed online learning, it is pertinent to address both global
(network-wide) and local (per-agent) performance [6]. After
recalling the definitions of the local a priori errorej(t) :=
xj(t) − hT

j (t)sj(t− 1) and local estimation errory1,j(t) :=
sj(t) − s0, the per-agent performance metrics are defined
as MSEj(t) := E[e2j(t)], EMSEj(t) := E[(hT

j (t)y1,j(t −
1))2], and MSDj(t) := E[‖y1,j(t)‖2]. Their global counter-
parts are defined as the respective averages across agents, e.g.,
MSE(t) := J−1

∑J

j=1 E[ej(t)
2] and so on.

Next, it is shown that it suffices to evaluate the state co-
variance matrixRy(t) := E[y(t)yT (t)] in order to assess
the aforementioned performance metrics. Under (a1) it is
possible to writeej(t) = −hT

j (t)y1,j(t−1)+ǫj(t). Because
y1,j(t − 1) is independent of the zero-mean{hj(t), ǫj(t)}
under (a1)-(a3), from the previous relationship between the
a priori and estimation errors one finds that MSEj(t) =
EMSEj(t) + σ2

ǫj
. Hence, it suffices to focus on the eval-

uation of EMSEj(t), through which MSEj(t) can also be
determined under the assumption that the observation noise
variances are known, or can be estimated for that matter.
If Ry1,j

(t) := E[y1,j(t)y
T
1,j(t)] denotes thej-th local er-

ror covariance matrix, then MSDj(t) = tr(Ry1,j
(t)); and

under (a1)-(a3), a simple manipulation yields EMSEj(t) =
tr(Rhj

Ry1,j
(t − 1)). To derive corresponding formulas for

the global performance metrics, letRy1
(t) := E[y1(t)y

T
1 (t)]

denote the global error covariance matrix, and defineRh :=
E[Rh(t)] = bdiag(Rh1

, . . . ,RhJ
). It follows that MSD(t) =

J−1tr(Ry1
(t)), and EMSE(t) = J−1tr(RhRy1

(t− 1)).

It is now apparent thatRy(t) indeed provides all the in-
formation needed to evaluate the performance of the D-RLS
algorithm. For instance, the global error covariance matrix
Ry1

(t) corresponds to theJp × Jp upper left submatrix of
Ry(t), which is denoted by[Ry(t)]11. Further, thej-th p× p
diagonal submatrix of[Ry(t)]11 is exactlyRy1,j

(t), and is
likewise denoted by[Ry(t)]11,j . In a nutshell, deriving a
closed-form expression forRy(t) enables the evaluation of
all performance metrics of interest, the subject of Section4.2.

4. STABILITY AND STEADY-STATE
PERFORMANCE ANALYSIS

In this section, stability and s.s. performance analyses are
conducted for the D-RLS algorithm outlined in Section 2. Be-
cause recursions (2)-(5) are stochastic in nature, stability will
be assessed both in the mean and in the MSE-sense.

4.1. Mean Stability

Based on Lemma 1, it follows that D-RLS achieves consensus
in the mean sense on the parameters0.

Proposition 1: Under (a1)-(a3) and for0 ≪ λ < 1,
the D-RLS algorithm achieves consensus in the mean, i.e.,
limt→∞ E[y1,j(t)] = 0p, ∀ j ∈ J provided the step-size
is chosen such that

0 < c <
4

(1− λ)λmax(R
−1
h (L⊗ Ip))

. (10)

When 0 ≪ λ < 1, (10) is actually not restrictive at all
since a1 − λ factor is present in the denominator. Whenλ
is close to one, any practical choice ofc > 0 will result in
asymptotically unbiased local estimates. Also note that (10)
depends on the network topology throughLc.

4.2. MSE Stability and Steady-State Performance

In order to assess the s.s. MSE performance of the D-RLS al-
gorithm, the figures of merit in Table 1 will be evaluated here.
To this end, it suffices to derive a closed-form expression
for the global estimation error covariance matrixRy1

(t) :=
E[y1(t)y

T
1 (t)], as already argued in Section 3.3.

Observe from the upperJp × 1 block ofy(t + 1) in (8)
thaty1(t+ 1) = z1(t+ 1) +R−1

h,λ[η̄(t) + (Pα −Pβ)η(t)].
Under (a3),z1(t+ 1) is independent of{η̄(t),η(t)}; hence,

Ry1
(t) = Rz1(t) +R−1

h,λRη̄R
−1
h,λ

+R−1
h,λ(Pα −Pβ)Rη(Pα −Pβ)

TR−1
h,λ (11)

which prompts one to obtainRz(t) := E[z(t)zT (t)]. Specif-
ically, the goal is to extract its upper-leftJp×Jp matrix block
[Rz(t)]11 = Rz1(t). To this end, define the vectors

η̄λ(t) :=

[

R−1
h,λ

0Jp×Jp

]

η̄(t)

ηλ(t) :=

[

R−1
h,λ(Pα −Pβ)

C

]

η(t) (12)



with respective covariance matricesRη̄
λ
:= E[η̄λ(t)η̄

T
λ (t)]

andRη
λ
:= E[ηλ(t)η

T
λ (t)]. Also recall thatǫ(t) depends on

the entire history of regressors up to time instantt. Starting
from (9) and capitalizing on the independence setting assump-
tions (a2)-(a3), it is straightforward to obtain a first-order ma-
trix recursion to updateRz(t) as

Rz(t) = ΨRz(t− 1)ΨT +ΨRη̄
λ
ΨT

+ΨRη
λ
ΨT +

[

R−1
h,λ

0Jp×Jp

]

Rǫ(t)

[

R−1
h,λ

0Jp×Jp

]T

+ΨRzǫ(t)

[

R−1
h,λ

0Jp×Jp

]T

+

(

ΨRzǫ(t)

[

R−1
h,λ

0Jp×Jp

]T
)T

(13)

where the cross-correlationRzǫ(t) := E[z(t − 1)ǫT (t)] is
recursively updated as

Rzǫ(t) = λΨRzǫ(t− 1)+λ

[

R−1
h,λ

0Jp×Jp

]

Rǫ(t− 1). (14)

The main result of this section pertains to MSE stability of the
D-RLS algorithm, and provides a checkable sufficient con-
dition under which the global error covariance matrix has
bounded entries ast → ∞. Recall that a matrix is termed
stable when its spectral radius is strictly less than one.

Proposition 2: Under (a1)-(a3) and for0 ≪ λ < 1, the
D-RLS algorithm is MSE stable, i.e.,limt→∞ Ry1

(t) has
bounded entries, provided thatc > 0 is chosen so thatΨ is a
stable matrix.

Proposition 2 asserts that the D-RLS algorithm is stable
in the MSE-sense, even when the exchanges of information
among agents are imperfect. While most distributed adap-
tive estimation works have only looked at ideal inter-agent
links, others have adopted diminishing step-sizes to mitigate
the undesirable effects of communication noise [12]. This
approach however, limits their applicability to stationary en-
vironments. Remarkably, the D-RLS algorithm exhibits ro-
bustness to noise when using a constant step-sizec.

Remark 1: Because the ‘average’ system representation
of y(t) relies on an approximation that becomes increasingly
accurate asλ → 1 andt → ∞, so does the covariance recur-
sion forRy(t) derived in (11). For this reason, the scope of
the MSE performance analysis of this paper is limited to the
steady-statebehavior of the D-RLS algorithm.

Remark 2: The following steps enable evaluation of the
s.s. MSE performance of D-RLS. First, one can solve for
Rzǫ(∞) usingRǫ(∞) in (14). Plugging the result into (13)
one obtains the s.s. covariance matrix of the forcing terms
in (13). It is then possible to evaluateRz(∞), by solving
(through vectorization) for the fixed point of (13) ast → ∞.
Matrix Rz1(∞) can be extracted from the upper-leftJp×Jp
matrix block ofRz(∞), and the desired global error covari-
ance matrixRy1

(∞) = [Ry(∞)]11 becomes available via

(11). Closed-form evaluation of the MSE(∞), EMSE(∞)
and MSD(∞) for every agentj ∈ J is now possible given
Ry1

(∞), by resorting to the formulae in Table 1.
Before closing this section, an alternative notion of

stochastic stability that readily follows from Proposition 2
is established here. Specifically, it is possible to show that the
global error norm‖y1(t)‖ remains most of the time in a finite
interval, i.e., errors are weakly stochastic bounded (WSB)[1,
pg. 110]. This WSB stability guarantees that for anyθ > 0,
∃ ζ > 0 such that Pr[‖y1(t)‖ < ζ] = 1− θ uniformly in time.

Corollary 1: Under (a1)-(a3) and for0 ≪ λ < 1, if
c > 0 is chosen so thatΨ is a stable matrix, then the
D-RLS algorithm yields estimation errors which are WSB;
i.e.,limζ→∞ supt≥t0

Pr[‖y1(t)‖ ≥ ζ] = 0.

In words, Corollary 1 ensures that with overwhelming
probability, local agent estimates remain inside a ball with
finite radius, centered ats0.

5. NUMERICAL TESTS

Computer simulations are carried out here to corroborate the
analytical results of Section 4.2. Even though based on sim-
plifying assumptions and approximations, the usefulness of
the analysis is justified since the predicted s.s. MSE figures
of merit accurately match the empirical D-RLS limiting val-
ues. Interestingly, whenλ → 1 the upshot of the analysis
under the independence setting assumptions is shown to ex-
tend accurately to the pragmatic scenario whereby agents ac-
quire time-correlated data. ForJ = 15 agents, a connected
network is generated as a realization of the random geometric
graph model on the unit-square, with communication range
r = 0.3. To model imperfect inter-agent links, additive white
Gaussian noise (AWGN) with varianceσ2

η = 0.5 is added at
the receiving end.

With p = 4, observations obey a linear model [cf.
(a1)] with sensing AWGN of spatial variance profileσ2

ǫj
=

10−3αj , whereαj ∼ U [0, 1] (are uniformly distributed) and
i.i.d.. Regression vectorshj(t) := [hj(t) . . . hj(t− p+ 1)]T

have a shift structure, and entries which evolve accord-
ing to first-order stable autoregressive processeshj(t) =
(1− ρ)βjhj(t− 1) +

√
ρωj(t) for all j ∈ J . Parameters are

selected asρ = 5 × 10−1, βj ∼ U [0, 1] i.i.d. in space, and
the driving white noiseωj(t) ∼ U [−

√
3σωj

,
√
3σωj

] with
spatial variance profile given byσ2

ωj
= 2γj with γj ∼ U [0, 1]

and i.i.d.. Accordingly, the local covariance matricesRhj

have a Toeplitz structure. Observe that the data is tempo-
rally correlated, implying that (a2) does not hold here. The
time-invariant parameter vector sought iss0 = 1p. For all
experimental performance curves obtained by running the al-
gorithms, the ensemble averages are approximated via sample
averaging over200 runs of the experiment.

With all-zero initializations,λ = 0.99, c = 0.1 andδ =
100 for the D-RLS algorithm, Fig. 1 depicts the network



Fig. 1. Global s.s. performance whenλ = 0.99. D-RLS is run
with ideal links and when communication noise with variance
σ2
η = 0.5 is present. Comparisons with the AD-MoM-based

D-RLS and diffusion RLS algorithms are shown as well.

performance through the evolution of EMSE(t) and MSD(t)
figures of merit. Even though the focus here is on noisy
exchanges among agents, ideal links are also considered to
assess the (expected) performance degradation due to com-
munication noise. The s.s. limiting values found in Section
4.2 are extremely accurate, even though the simulated data
does not adhere to (a2), and the results are based on simplify-
ing approximations. Simulated error trajectory curves forthe
alternating-direction method of multipliers (AD-MoM)-based
D-RLS [11] and diffusion RLS algorithms (with Metropo-
lis combining weights) [3] are also included. Sinceλ < 1,
the AD-MoM-based D-RLS algorithm demands an order of
magnitude increase in terms of computational complexity per
agent [9, Sec. II-B], yet its performance is comparable to that
of D-RLS. Note also that in the presence of communication
noise, diffusion RLS yields inaccurate and biased local esti-
mates [4]. Similar overall conclusions can be drawn from the
plots in Fig. 2, that gauge local performance by depicting
{EMSEj(∞)}Jj=1 and{MSDj(∞)}Jj=1. The curves for the
AD-MoM-based D-RLS and diffusion RLS algorithms were
not included in the interest of clarity.
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