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ABSTRACT time enrich the estimation process and learn the unknown

Th ive | RLS) alaorithm offers both reo2ustics on-the-fly.
e recursive least-squares (RLS) algorithm offers both re o io stapility and MSE steady-state (s.sper-

duced complex!ty and limited memory requwemgnts yvhgn Itformance analysiss conducted for D-RLS. Evaluating the
comes to learning from data acquired sequentially in time

. . . gerformance of (centralized) online learning algorithras i

The focus of this paper is on analyzing the performance of ; L L
i . . .. a challenging problem in its own right; prior art from an
distributedrecursive least-squares (D-RLS) algorithm, Su't'ada tive filtering vantaae point is surveved in e [1, 2]
able foronline learning from network data. A steady-state P g ge p Y 9 1 2l

mean-square error (MSE) analysis of D-RLS is conducteaand the extensive list of references therein. On top of that,

. . ; . , networked setting introduces unique challenges in the-anal
by studying a stochastically-driven ‘averaged’ systemt tha . . :
ysis such as heterogeneous spatio-temporal data profiles an

approximates the D-RLS dynamics asymptotically in tlme'muItipIe sources of randomness, a consequence of e.g., un-

For observations that are linearly related to the timefiawd . . o
Y T odeled complex dynamics and imperfect communication
parameter vector sought, the simplifying independence sefn

ting assumptions facilitate deriving accurate closednrfor inks. The approach pursued here capitalizes on an avérage

expressions for the MSE limiting values. The problems Oferror-form representation of the local recursions conipgis

mean and MSE-sense stability of D-RLS are also investiP'RLS’ as a global dynamical system described by a stochas-

) . I . tic difference-equation derived in Section 3.2. Somehow
gated, and easily-checkable sufficient conditions areveéri related approaches were adopted in [3] and [4]. Other note-
under which a steady-state is attained. Computer simakatio pp b '

demonstrate that the upshot of the analysis extends accllo rthy analysis techniques include the energy-consemat

rately to the pragmatic setting where the underlying nekwor methodology in [5], 2, p. 287], gnd_ stpchashc averaging [1
I~ . p. 229]. For performance analysisdiktributedonline learn-
processes exhibit temporal correlations.

ing algorithms, the former has been applied in e.g., [6]|evhi
Index Terms— Distributed learning, online learning, the latter can be found in [7].
RLS algorithm, performance analysis. The covariance matrix of the resulting state is shown to
encompass all the information needed to evaluate the rele-
vant network-wide and per-agent performance metrics (Sec-
tion 3.3). For observations that are linearly related tdithe-
invariant parameter vector sought, the simplifying indepe
dence setting assumptions [1, pg. 110], [2, pg. 448] are key
enablers towards deriving accurate closed-form expressio
for the mean-square deviation and excess-MSE s.s. values
(Section 4.2). Stability in the mean- and MSE-sense are also
Ij_nvestigated, revealing easily-checkable sufficient dorts
under which a s.s. is attained. Numerical tests corrobayati
the theoretical findings are presented in Section 5.

1. INTRODUCTION

The explosion ohetwork datahas created renewed interest
in the field of distributed signal and information procegsin
over graphs, calling for collaborative solutions that daab
real-time estimation of stationary signals as well as redec
complexity tracking of nonstationary network processes. |
this context, the focus of this paper is on analyzing the pe
formance of adistributed recursive least-squares (D-RLS)
algorithm, suitable foonlinelearning from network data [9]. _ _
In D-RLS a two-step iterative process takes place toward§otation: Operatorse, ()" (O, Amax(-), tr(.), diag(.),
consenting on the desired global exponentially-weighte@®diad.), £ [.], will denote Kronecker product, transposition,
least-squares estimator (EWLSE) [1, 2]: network agentycar Matrix pseudo-inverse, spectral radius, matrix traceyatial
out reduced-complexity tasks locally, and exchange messagMatrix, block diagonal matrix, and expectation, respetyiv
with one-hop neighbors to consent on the network-wide estifOF both vectors and matrices|| will stand for the2—norm.

mates adaptively (Section 2). Network data acquired in real €7 x n identity matrix will be represented Hy,, while 1,,
will denote then x 1 vector of all ones and.,, ,,, := 1,1%.

Work was supported by an AFOSR MURI grant no. FA 9550-10-6705 ~ Similar notation will be adopted for matrices of all zeros.
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2. DISTRIBUTED RECURSIVE LEAST-SQUARES Algorithm 1 : D-RLS at agenj

Arbitrarily initialize s;(0) and{v;:/ (=D}jren;-
fort=0,1,...do
Transmits; (¢) to neighbors inV;.
Update{v? (1)}, ex, using (2).
Transmitv/ (t) to eachj’ € A;.
Update®; (¢ + 1) andwp; (¢ + 1) using (3) and (4).
Updates; (¢ + 1) using (5).
end for

Consider a network of interconnected agefits. .., J} =

J, naturally modeled as an undirected connected graph with
associated Laplacian matrik. Agent;j € J is capable

of performing some local computations, as well as exchang-
ing messages with its directly connected neighbor&/jnC

J. Different from [3, 4] and [8], the present network model
accounts explicitly for imperfect exchanges of informatio
among agents. Specifically, messages received at ggent
from agent at discrete-time instartare corrupted by a zero-
mean additive noise vectoy;(t), assumed temporally and (¢t + 1) = Mp,(t) + hy(t + 1)z;(t + 1) 4)
spatially uncorrelated. The communication noise covagan e

matrices are denoted B, := E[n’(t)(n}(t))"],j € J. sit+1) =@ ¢+ 1)¢p;(t+1)

The network infrastructure is utilized to estimate a param- _ lq,fl(t +1) Z {VJ:’ (t) — (V% (t) + ;71’ )] .
eter vectos, € RP*! in a distributed fashion and subject to 2 JeN; ! ’ !
the single-hop communication constraints, by resortirtp¢o (5)

least-squares (LS) criterion. Per time instant 0,1, ...,
each agent acquires a regression vebigt) € RP*! and Note thatj’ € N in the dual-ascent iterations (2), while
a scalar observation; (¢), both assumed zero-mean withoutc > 0 is a constant step-size. In addition, the per-agent
loss of generality. Given new data sequentially acquired, axponentially-weighted data (cross-) correlationsay¢t) :=
pertinent approach to online learning is the EWLSE [2, 3, 8] 3! _ \~7h, (7)a;(7) and®; () := 3" _y A~ "h;(1)h? (7).
) Recursions (2)-(5) are tabulated as Algorithm 1, which

.= arg minz Z AT (7)) — h?(T)S]Q (1) also detgils the inter-agent communiga’Fions pfmultipl'amrd

i S ' local estimates taking place only within neighborhoods. If

] . . the inter-agent links can be rendered error-free, resu[tsli]
whereA € (0,1] is a forgetting factor. A strictly-convex show that D-RLS can be further simplified to reduce the com-

term \'4|[s||* is typically included in (1) for regularization ynication overhead and memory storage requirements.
purposes, wheré is a large positive constant. Note that in

formingsewss(t) the entire history of datéz; (), h; (7)}£_,,

VY j € J is incorporated in the online estimation process.
When\ < 1, past data are exponentially discarded thus ens
abling tracking of nonstationary network processes.

The (centralized) estimator (1) is not amenable for dis-The challenges in evaluating the performance of classical
tributed implementation since the global variableouples (centralized) LMS and RLS filters are well documented [2, 1],
the per-agent summands. A distributed algorithm was puand results for RLS are less common and typically involve
forth in [9] by reformulating the EWLSE into an equivalent simplifying approximations. What is more, the distributed
constrained form, which can be minimized in a distributedsetting studied in this paper introduces unique challefrges
fashion by resorting to the alternating-minimizationalgon  the analysis. These include network data and multiple ssurc
(AMA) [10]. The algorithmic construction details can be of additive noise, a consequence of unmodeled dynamics, im-
found in [9, Sec. lI]. Accounting for additive communica- perfect data acquisition and communication links.
tion noise that corrupts the exchanges of Lagrange mutipli In order to proceed, a few modeling assumptions are in-

{v’ }JEN] and local estimate$s; } ;¢ s through the vectors troduced which delineate the scope of the ensuing stability
and performance results. For glE 7, it is assumed that:

éewls(t)

3. ANALYSIS PRELIMINARIES

3.1. Analysis scope: assumptions and approximations

77] ( )andn ( ), respectively, the per agent tasks comprising
the AMA- based D-RLS algorithm are given by [9] (al) Agentobservations obey(t) = h;F (t)so+e;(t), where

, , ¢ , the zero-mean white noide;(¢)} has varianceffj;
Vi () = V] (t = 1)+ 5 [50) (5 ()) + ] (8)]

(a2) Vectors{h,(t)} are spatio-temporally white with positive-

(2 definite covariance matriRy,,; and
@ (t+1) =2Te (¢ , .
pr=ame, . (23) Vectors{h, (1)}, {6, (1)}, {7 ()} e, and (] (0} e,
(t+1)@; ' (t) are statistically independent.

A71e (b (t+ 1h

A+hl(t+1)® J(t) (t+1)

Assumptions (al)-(a3) comprise the widely adoptetkpen-
() dence settingfor agent observations that are linearly related



to the parameter vector of interest; see e.g., [1, pg. 120], [ easily computable under (a2)-(a3). For instance,
pg. 448]. In line with network-generated data, the statdti
profiles of both regressors and the noise quantities vapsacr Re(t) = <1 — A2
agents (space), yet they are assumed time invariant. e 1— X2

In the particular case of the D-RLS algorithm, a unique

) bdiathIU?N ceey RhJO'EQJ)

challenge stems from the stochastic matri@gs1 (t) present  while the structure oRy := E[n(t)7” (t)] can be found
in (5). Even obtainingﬁj_l(t)’s distribution or computing its in [9, App. E]. In addition, introduce thp(z:'.]:1 IN;]) x 1

; . . ) ' T
expected value is a formidable task in general, due to the Mectorn(t) = (s ) Yirenn - A% ) Y yrens ]

trix inversion operation. For these reasons some simplifyi \hich comprises the receiver noise terms corrupting trans-
approximations will be adopted to carry out the analysi$ thamssions of local estimates across the whole network at time
otherwise .b.etlzomes |nt-ractable.. . instantt, and defineRy, := En®nT @)

By definition, matrix®;(¢) is obtained as an exponen- Finally, letL, := (c/2)L®1, € R'P*/? be a matrix cap-
tially weighted moving average (EWMA) of local regressoryring network topology through the (scaled) graph Lagaci
outer products. The EWMA can be seen as an average mogiatrix L. and defin&t;f\ =(1- )\)bdiagR,:l R;l)

. . . . 1 s . 1 9 ey 7 .
ula_ted by a sliding window of equalent Ieng_lh(l_ -V, It is now possible to state the following important lemima
which clearly grows as\ — 1. This observation in along

with (a2) and the strong law of large numbers, justifies th&-€mma 1. Let (al) and (a2) hold. Then far > ¢, with
approximation to sufficiently large whiléd < A < 1, the global statey(t)

approximately evolves according to

Ry,
P (t) ~ E[®;(t)] = . 0« A< landt — oc. -1
i) [25(0)] 1—A y(t +1) =bdiag1,,, L.)z(t + 1) + [ Ry ] 7(t)
(6) 07px.1p
The expectation o{);l(t), on the other hand, is considerably R, (P, —Pp)
harder to evaluate. To overcome this challenge, the foligwi + { h’f,ﬁ _p ] n(t). (8)

approximation will be invoked [2, 3]

The inner statex(t) := [z7(t) 22 (t)]7 is arbitrarily initial-

—1 ~ . -1 _ —1
El®; ()] ~ E[2;(t)] ~ (1 /\)th 7 ized at timety, and updated according to

J
for0 < A < 1landt — oco. Itis a crude approximation at first R, . (P, — Pj)
sight. However, experimental evidence suggests that the ap z(t + 1) = ¥z(t) + ¥ [ A pe } n(t—1)
proximation is sufficiently accurate for all practical poges, R R-1
when the forgetting factor approaches unity [2, p. 319]. + 0 { A ] nt—1)+ [ h,A } e(t+1)

0Jp><Jp JpxJp
)

3.2. Error-form D-RLS

and the2Jp x 2Jp transition matrix® consists of the blocks

The approach here to s.s. performance analysis relies on ?‘E’]u — W] = —R\L, and [Bly; = [B]y, — LL!
= = h,Ac = = Lichic-

L .2 Math 1 hosen such i C — P — P where e

’ o B structure of the time-invariant matricd3,, andPg can be
(1-=MRy, ,forsgfﬁuently larger. ~ foundin[9, App. EJ.

Towards obtaining such error-form representation, intro-  The gesired statg(t) is obtained as a rank-deficient linear
duce the local estimation errofy,;(1) := s;(t) — 50}/3‘]:1 transformation of the inner statét), plus a stochastic offset
and multiplier-based quantiti€y ; (t) := %Zj'e/vj (vi (t—  due to the effects of communication noise. A linear, time-
1) _V;j/ (t—1))}7_,. Itturns outthat a convenient global state invariant, first-order difference equation describes treein-
to describe the spatio-temporal dynamics of D-RL§(§ :=  ICS ofz(t), and hgnce g;‘z(t), viathe algebralc_transformgtlon
T @)y T = [yT,@)...yT, () yE,(t)...yT ,()]T e N (8). The time-invariant nature of the transition matirds

' : ' 4 due to the approxmatlon@j‘l(t) R R,;&,j € J, partic-
Hlarly accurate for large enough> t,. Examination of (9)
reveals that the evolution aft) is driven by three stochastic
input processes: i) communication noiggé — 1) affecting
the transmission of local estimates; ii) communicatiorsaoi
7n(t — 1) contaminating the Lagrange multipliers; and iii) ob-
servation noise withie(t + 1).

R27P_ In addition, to concisely capture the effects of both
observation and communication noise on the estimatio
errors across the network, define thip x 1 noise super-
vectorse(t) = Yo' _ AT (T)er(r) ... hT(1)es (1)]T
andq(t) := [} (t)...n%5#)]". Vectors{n,(t)}{_, repre-
sent the aggregate noise corrupting the multipliers reckiv
by agent;j at time instantt, and are given byn;(t) :=

ZjleNj 7_7;: (t)/2. Their respective covariance matrices are !Proofs are omitted here due to lack of space, but can be fouje] i



Table 1. Evaluation of local and global figures of merit frdRy, (¢)
| | MSD | EMSE | MSE |
Local || tr([Ry(t)]11,;) | tr(Rp,[Ry(t—1)]11,) tr(Ry, [Ry (t — 1)]115) + 02,
Global || J7'tr([Ry(t)]11) | J HWr(Ru[Ry(t — D]11) | JHr(RL[R, (¢ — )]11) + J 1 ijl crfj

3.3. Performance Metrics 4, STABILITY AND STEADY-STATE
PERFORMANCE ANALYSIS

. . ] In this section, stability and s.s. performance analyses ar
When it comes to performance evaluation of adaptive algogonducted for the D-RLS algorithm outlined in Section 2. Be-
rithms, it is customary to consider as figures of merit thes5se recursions (2)-(5) are stochastic in nature, siabiil

so-called MSE, excess mean-square error (EMSE) and meags assessed both in the mean and in the MSE-sense.
square deviation (MSD) [2], [1]. In the present setup for dis

tributed online learning, it is pertinent to address botibgl

(network-wide) and local (per-agent) performance [6].eAft 4.1. Mean Stability

recalling the definitions of the local a priori erref(t) :=  Based on Lemma 1, it follows that D-RLS achieves consensus
xj(t) — hJT(t)sj (t — 1) and local estimation errgr; ;(¢) :==  in the mean sense on the paramester

s;j(t) — so, the per-agent performance metrics are definegroposition 1: Under (al)-(a3) and ford < A < 1,

as MSE(t) := Ele}(t)], EMSE;(t) := E[(h] (1)y1,;(t —  the D-RLS algorithm achieves consensus in the mean, i.e.,

1))?], and MSD(t) := E[|ly1,;(t)||?]. Their global counter- 1im, ... E[y, ;(t)] = 0,, Vj € J provided the step-size
parts are defined as the respective averages across agents, & chosen such that
MSE(t) := J~1 3], E[e;(t)? and so on. A
0<ce< T . (10)
Next, it is shown that it suffices to evaluate the state co- (1= MAmax(Ry, (L@ L))

variance matrixR,(t) := E[y(t)y” (¢)] in order to assess When0 < A\ < 1, (10) is actually not restrictive at all
the aforementioned performance metrics. Under (al) it isince al — ) factor is present in the denominator. When
possible to write2;(t) = —h (t)y1 ;(t—1)+¢;(t). Because is close to one, any practical choice ©f> 0 will result in
y1,;(t — 1) is independent of the zero-medh,(t),¢;(t)}  asymptotically unbiased local estimates. Also note th@} (1
under (al)-(a3), from the previous relationship between thdepends on the network topology through
a priori and estimation errors one finds that M&§ =
EMSE;(t) + o2 Hence, it suffices to focus on the eval- 4 2 MSE Stability and Steady-State Performance
uation of EMSE(t), through which MSE(t) can also be
determined under the assumption that the observation noié@ order to assess the s.s. MSE performance of the D-RLS al-
variances are known’ or can be estimated for that mattegorithm, the figures of merit in Table 1 will be evaluated here
If Ry, ,(t) := E[Yl,j(t)Y{,j(t)] denotes thej-th local er-  To this end, it sgfﬁcgs to derive a _closed—form expression
ror covariance matrix, then MS@¥) = tr(R,, ,(t)); and for the global estimation error covariance maftiy, (t) =
under (al)-(a3), a simple manipulation yields EM8E —  Ely1(t)y7 (1)}, as already argued in Section 3.3.
tr(Ry,, Ry, , (t — 1)). To derive corresponding formulas for ~ Observe from the uppefp x 1 block of y (¢ + 1) in (8)
the global performance metrics, B, (t) := Ely: (t)yT (t)]  thatyi(t +1) = zi(t + 1) + R 3 [(t) + (Pa — Pg)n(t)].
denote the global error covariance matrix, and defne:=  Under (a3)z: (¢ + 1) is independent of#(t), n(t)}; hence,
E[Ry(t)] = bdiagRp,, - .., Ry,). Itfollows that MSO(t) = _ —1p_p-1
J-Mr(R,, (1)), and EMSE?) = J~-tr(RuRy, ( — 1)). Ry, (8) = Ray (1) + Ry SRy Ry,

+ R;})\(Pa - P,@)RU(Pa - PB)TR;}A (11)

It is now apparent thaR,(t) indeed provides all the in-
formation needed to evaluate the performance of the D-RL
algorithm. For instance, the global error covariance rratri
R,, (t) corresponds to thdp x Jp upper left submatrix of

§/hich prompts one to obtaiR . (t) := E[z(t)z” (¢)]. Specif-
ically, the goal is to extract its upper-lefp x Jp matrix block
[R:(t)]11 = Ry, (). To this end, define the vectors

R, (t), which is denoted byR(¢)]11. Further, thej-thp x p - R -

diagonal submatrix ofR,(t)}11 is exactlyR,, (t), and is (1) = { 0, };TJ ] (t)

likewise denoted byR,(¢)]11,;. In a nutshell, deriving a fl ?

closed-form expression fdR,(t) enables the evaluation of 1, (t) = { Rh,k(Pa —Py) ] n(t) (12)
all performance metrics of interest, the subject of Secti@n C



with respective covariance matricBs; = E[n,\@#)ni()]  (11). Closed-form evaluation of the M&k), EMSE o)
andRy) = E[n,(t)n% (t)]. Also recall thak(t) dependson  and MSDco) for every agenyj € J is now possible given
the entire history of regressors up to time instanStarting Ry, (o0), by resorting to the formulae in Table 1.

from (9) and capitalizing on the independence setting apsum  Before closing this section, an alternative notion of
tions (a2)-(a3), it is straightforward to obtain a first-erdha-  stochastic stability that readily follows from Propositi@

trix recursion to updat® . (¢) as is established here. Specifically, it is possible to showtta
. . global error normj|y: (¢)|| remains most of the time in a finite
R.(t) = YR.(t-1)¥" + YRy ¥ interval, i.e., errors are weakly stochastic bounded (W3B)
R-1 rR-l 17 Pg. 110]. This WSB stability guarantees that for @y 0,
+ ¥Ry ¥+ [ 0. ] Re(t) { 0. } 3¢ > 0such that Py (t)]| < ¢] = 1 — @ uniformly in time.
JpxJp JpxJp

— LA\ T Corollary 1: Under (al)-(a3) and ford0 <« X < 1, if
R, } n (\IIR ) [ R, ] ) ¢ > 0 is chosen so tha is a stable matrix, then the
0.7px.Jp =€ 07pxJp D-RLS algorithm yields estimation errors which are WSB;
(13)  i-elime oo sup;sy, Prlly1(4)] = (] =0.
In words, Corollary 1 ensures that with overwhelming
where the cross-correlatidR.e(t) := E[z(t — 1)e’ (t)] is  probability, local agent estimates remain inside a balhwit
recursively updated as finite radius, centered ap.

+ WR.¢(t) [

Rze(t)ZA\I/Rze(t—l)ﬂ[ Ry, }Re(t—l). (14)

JpxJp

5. NUMERICAL TESTS

The main result of this section pertains to MSE stabilityhef t Computer simulations are carried out here to corroborate th

D-RLS algorithm, and pravides a checkable sufficient COnl';malytical results of Section 4.2. Even though based on sim-

dition under Whlch the global error covarlan(.:e.matrlx hasplifying assumptions and approximations, the usefulndss o
bounded entries as — oo. Recall that a matrix is termed

table when it tral radius is strictly | th the analysis is justified since the predicted s.s. MSE figures
stable when Its spectral radius 1S strictly 1ess than one. of merit accurately match the empirical D-RLS limiting val-

Proposition 2: Under (al)-(a3) and fo) < A < 1, the  yes. Interestingly, when — 1 the upshot of the analysis
D-RLS algorithm is MSE stable, i.elim;,o Ry, (t) has  under the independence setting assumptions is shown to ex-
bounded entries, provided that> 0 is chosen so thal isa  tend accurately to the pragmatic scenario whereby agents ac
stable matrix. quire time-correlated data. Fdr = 15 agents, a connected
Proposition 2 asserts that the D-RLS algorithm is stable\etwork is generated as a realization of the random geatnetri
in the MSE-sense, even when the exchanges of informatiogyaph model on the unit-square, with communication range
among agents are imperfect. While most distributed adap- — (.3. To model imperfect inter-agent links, additive white

tive estimation works have only looked at ideal inter-agenigaussian noise (AWGN) with varianoé) = 0.5 is added at
links, others have adopted diminishing step-sizes to at#éig the receiving end.

the undesirable effects of communication noise [12]. This \jith p = 4, observations obey a linear model [cf.
approach however, limits their applicability to statioy_le_n- (a1)] with sensing AWGN of spatial variance profi@ =
vironments. R_emarkably, _the D-RLS algorlthm_ exhibits r0'10*3a]—, wherea; ~ [0, 1] (are uniformly distributeoi) and
bustness to noise when using a constant stepesize i.i.d.. Regression vectols; (t) := [A;(t)... h;(t — p+1)|T

Remark 1:  Because the ‘average’ system representatiohave a shift structure, and entries which evolve accord-
of y(t) relies on an approximation that becomes increasinglyhg to first-order stable autoregressive procegsgds) =
accurate a3 — 1 andt — oo, so does the covariance recur- (1— p)Bih;(t — 1)+ /pw;(t) for all j € 7. Parameters are
sion forR,(t) derived in (11). For this reason, the scope ofselected ap = 5 x 1071, B; ~ U[0,1] i.i.d. in space, and
the MSE performance analysis of this paper is limited to thehe driving white noisev;(t) ~ U[—/30.,,,V/30.,] with
steady—stat«behavior of the D-RLS algorithm. spatiaj variance proﬁ]e given by;u’)j = 2fyj with v~ ]/{[07 1]
Remark 2:  The following steps enable evaluation of the and i.i.d.. Accordingly, the local covariance matridgs,

s.s. MSE performance of D-RLS. First, one can solve fohave a Toeplitz structure. Observe that the data is tempo-
R..e(00) usingRe(oo) in (14). Plugging the result into (13) rally correlated, implying that (a2) does not hold here. The
one obtains the s.s. covariance matrix of the forcing termfime-invariant parameter vector soughtsis = 1,. For all

in (13). It is then possible to evaluai.(co), by solving  experimental performance curves obtained by running the al
(through vectorization) for the fixed point of (13) &s+ co.  gorithms, the ensemble averages are approximated viasampl
Matrix R, (o0) can be extracted from the upper-Iéft x Jp ~ averaging ove200 runs of the experiment.

matrix block of R, (c0), and the desired global error covari-  With all-zero initializations A = 0.99, ¢ = 0.1 andé =
ance matrixR,, (c0) = [Ry(c0)]11 becomes available via 100 for the D-RLS algorithm, Fig. 1 depicts the network
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Even though the focus here is on noisy

exchanges among agents, ideal links are also considered g
assess the (expected) performance degradation due to com-
munication noise. The s.s. limiting values found in Section
4.2 are extremely accurate, even though the simulated datgs)
does not adhere to (a2), and the results are based on simplify
ing approximations. Simulated error trajectory curvesfier
alternating-direction method of multipliers (AD-MoM)-bad

D-RLS [11] and diffusion RLS algorithms (with Metropo-

s combining weights) [3] are also included. Sinke< 1,

[7]

the AD-MoM-based D-RLS algorithm demands an order of
magnitude increase in terms of computational complexity pe

agent[9, Sec. lI-B], yet its performance is comparable &t th

eRLS is run with ideal links and when communication noise

varianceag = 0.5is present.
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