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Distributed Recursive Least-Squares for Consensus-Based
In-Network Adaptive Estimation

Gonzalo Mateos, Ioannis D. Schizas, and Georgios B. Giannakis

Abstract—Recursive least-squares (RLS) schemes are of paramount im-
portance for reducing complexity and memory requirements in estimating
stationary signals as well as for tracking nonstationary processes, especially
when the state and/or data model are not available and fast convergence
rates are at a premium. To this end, a fully distributed (D-) RLS algorithm
is developed for use by wireless sensor networks (WSNs) whereby sensors
exchange messages with one-hop neighbors to consent on the network-wide
estimates adaptively. The WSNs considered here do not necessarily possess
a Hamiltonian cycle, while the inter-sensor links are challenged by commu-
nication noise. The novel algorithm is obtained after judiciously reformu-
lating the exponentially-weighted least-squares cost into a separable form,
which is then optimized via the alternating-direction method of multipliers.
If powerful error control codes are utilized and communication noise is
not an issue, D-RLS is modified to reduce communication overhead when
compared to existing noise-unaware alternatives. Numerical simulations
demonstrate that D-RLS can outperform existing approaches in terms of
estimation performance and noise resilience, while it has the potential of
performing efficient tracking.

Index Terms—Distributed estimation, RLS algorithm, wireless sensor
networks (WSNs).

I. INTRODUCTION

It has been recognized that sensors comprising WSNs deployed to
perform collaborative estimation tasks, should be empowered with
signal processing tools that enable low-cost estimation of stationary
signals as well as reduced-complexity tracking of nonstationary
processes. Emergent WSN-based applications include distributed
localization, power spectrum estimation, target tracking, and have mo-
tivated the development of distributed adaptive estimation schemes.
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The incremental (I-) RLS algorithm in [6] is one such approach,
which sequentially incorporates new sensor data while performing
least-squares (LS) estimation. In the stationary setup I-RLS yields the
centralized LS estimator, at the price of requiring a Hamiltonian cycle
through which local sensor estimates and matrices are continuously
refined and communicated. An approximate I-RLS scheme devoid of
inter-sensor matrix communications was also put forth in [6], but the
NP-hard challenge of determining a Hamiltonian cycle in large-size
WSNs remains [4]. Without topological constraints and increasing the
degree of collaboration among sensors, a diffusion RLS algorithm was
proposed in [2]. In addition to local estimates, sensors continuously
diffuse raw sensor observations and regression vectors per neighbor-
hood. This facilitates percolating new data across the WSN, but can
degrade the estimation performance in the presence of communication
noise. Both [2] and [6] include steady-state mean-square error (MSE)
performance analysis under the independence setting assumptions
[5, p. 448]. Distributed least mean-squares (LMS) counterparts are
also available, trading off computational complexity for estimation
performance; see [3], [8], and references therein. The space-time dif-
fusion algorithm in [11] also allows for online incorporation of sensor
information. However, it requires full knowledge of the data model
and costly exchanges of matrices among neighbors in the process of
consenting to the LS estimator.

The present paper develops a fully distributed (D-) RLS type of al-
gorithm, which performs consensus-based, in-network, adaptive LS es-
timation. It is applicable to general ad hoc WSNs that are challenged
by additive communication noise. Different from [11], D-RLS can be
applied to a wide class of distributed estimation tasks as it requires
no knowledge of the sensor data model. The algorithm is derived by
optimizing the convex exponentially-weighted LS (EWLS) cost using
distributed optimization techniques, namely the alternating-direction
method of multipliers (AD-MoM) [1, p. 253]. Relative to the D-RLS
variant in [7], the reformulation of the EWLS cost into separable form
circumvents the requirement of the special type of sensors comprising
the so-called bridge sensor subset; see also [9]. As a byproduct, this ap-
proach results in a fully distributed algorithm whereby all sensors per-
form the same tasks, without introducing hierarchies that may require
intricate recovery protocols to cope with sensor failures. The exponen-
tial weighting effected through a forgetting factor endows D-RLS with
tracking capabilities. This is desirable in a constantly changing envi-
ronment, within which WSNs are envisioned to operate. Remarkably,
whenever the use of powerful channel codes renders inter-sensor links
virtually noise-free, the D-RLS algorithm can be streamlined to lower
communication overhead, yet higher convergence rates with respect to
(w.r.t.) existing approaches in [2] and [8].

Section II describes the WSN model and formulates the desired cen-
tralized exponentially-weighted least-squares estimator (EWLSE) as a
convex optimization problem. A distributed power spectrum estima-
tion task is introduced in Section II-B, to motivate the aforementioned
formulation. The AD-MoM is utilized to minimize a separable refor-
mulation of the original problem, leading to a set of local (per-sensor)
recursions which constitute the D-RLS algorithm (Section III-A). After
describing the operation of D-RLS, the detailed communication/com-
putational cost analysis in Section III-B contrasts D-RLS with the ex-
isting approaches in [2], [11], and [6]. Numerical tests showcase the
merits of the novel distributed estimation algorithm (Section IV), while
concluding remarks are given in Section V.

II. PROBLEM STATEMENT

Consider a WSN with sensors ��� � � � � �� �� � . Only single-hop
communications are allowed, i.e., sensor � can communicate only with
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the sensors in its neighborhood �� � � , having cardinality ��� �.
Assuming that inter-sensor links are symmetric, the WSN is modeled
as an undirected connected graph. Different from [2], [11] and [6],
the present network model accounts explicitly for non-ideal sensor-to-
sensor links. Specifically, signals received at sensor � from sensor �
at discrete-time instant � are corrupted by a zero-mean additive noise
vector ��������, assumed temporally and spatially uncorrelated.

The WSN is deployed to estimate a real signal vector ����� � ���

in a distributed fashion and subject to the single-hop communication
constraints, by resorting to the LS criterion [5, p. 658]. Per time instant
� � �� �� � � � � each sensor acquires a regression vector ����� � ���

and a scalar observation �����, both assumed zero-mean without loss of
generality. A similar data setting was considered in [2] and [6]. Given
new data sequentially acquired, a pertinent approach is to consider the
EWLSE [2], [5], [6]
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where � � ��� �� is a forgetting factor, while the positive definite matrix
���� is included for regularization. Note that in forming the EWLSE at
time �, the entire history of data ������������������ 	 � � � is incor-
porated in the online estimation process. Whenever � 	 �, past data are
exponentially discarded thus enabling tracking of nonstationary pro-
cesses.

Remark 1: If one can afford constructing/maintaining a cyclic path
across sensors; or, having sensors continuously communicate their new
data to a central unit (fusion center), then the I-RLS algorithm in [6]
can find the centralized EWLSE benchmark. However, in-network (or
diffusion) estimators may consume less power relative to I-RLS while
exhibiting improved resilience to sensor failures—a feature particularly
critical as the WSN size increases.

Next, we describe an application setup for distributed adaptive linear
LS estimation, which naturally gives rise to the aforementioned data
setting and highlights the importance of the problem addressed.

A. Distributed Power Spectrum Estimation

Consider an ad hoc WSN deployed e.g., for collaborative habitat
monitoring, whereby sensors observe a narrowband source to deter-
mine its spectral peaks. Such information enables the WSN to disclose
hidden periodicities due to a physical phenomenon controlled by e.g.,
a seismic source. Let 
��� denote the source of interest, which can be
modeled as an autoregressive (AR) process [10, p. 106]
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where  is the order of the AR process, ���� the AR coefficients,
and ���� denotes white noise. The source propagates to sensor � via a
multi-path channel modeled as an FIR filter ����� �

� ��
	�� ��
	�

�	,
of unknown order �� and tap coefficients ���
	�. In the presence of
additive sensing noise ������, the observation at sensor � is ����� �

� ��
	�� ��
	
�� � �� � ������. Since ����� is an ARMA process, it can

be written as [10]
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where the moving average (MA) coefficients ��� � and the variance of
the white noise process ������ depend on ���
	�, ����, and the variance
of the noise terms ���� and ������. For the purpose of determining spec-
tral peaks, the MA term in (3) can be treated as observation noise, i.e.,
����� ��

�

� ��
�� ������ � ��. This is important since sensors do not

have to know the source-sensor channel coefficients as well as the noise

variances. The spectral content of the source can be obtained provided
sensors estimate the coefficients ����, so let �� �� ��� � � ����

� . Note
from (3) that the regressor vectors here are ����� � ������� �� 
 
 
 �
����� ��� , directly from the sensor data ������� without the need of
training/estimation.

Remark 2: The source-sensor channels may introduce deep fades at
the frequencies occupied by the source. Thus, having each sensor oper-
ating on its own may lead to faulty assessments. The necessary spatial
diversity to effect improved spectral estimates, can only be achieved
through sensor collaboration as in the D-RLS algorithm described next.

III. DISTRIBUTED RLS ALGORITHM

In this section, we first construct the D-RLS algorithm, and then pro-
vide further insights regarding its implementation and associated com-
munication overhead and computational complexity. The approach fol-
lowed consists of two main steps: i) reformulate (1) into an equivalent
separable minimization problem that is amenable to distributed imple-
mentation; and ii) rely on the AD-MoM [1, p. 253] to split (1) into
simpler optimization subtasks that can be carried out locally at each
sensor.

To decompose the cost function in (1), in which summands are cou-
pled through the global variable �, we introduce auxiliary variables
����

�
��� that represent local estimates of �� per sensor �. These local

estimates are utilized to form the convex constrained minimization
problem:
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From the connectivity of the WSN, (1) and (4) are equivalent in the
sense that ������ � ���������, 	 � � � and � � �; see also [9].

Algorithm Construction

In order to tackle (4) in a distributed fashion, we resort to AD-MoM
to obtain an adaptive algorithm that: i) allows recursive estimation of
a time-invariant parameter ��; and ii) can track a time-varying process
�����. To facilitate application of AD-MoM, consider the auxiliary vari-
ables ���� �� �� for � � � , and replace the constraints in (4) with the
equivalent ones
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Variables ��� are only used to derive the local recursions but will be

eventually eliminated. Next, associate Lagrange multipliers �
�
� and

���
�
� with the constraints in (5), and form the quadratically augmented

Lagrangian
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where � is positive penalty coefficient; and ��� �� ����
�
���,

� �� ���� �
� ��
��� and ��� ���� �� ���� � ���

�
� �

� ��
��� . Now, let
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� � �� �� � � � denote the iteration index for the recursive algo-
rithm to be constructed in order to minimize (4) at time instant � � �.
The first step in the AD-MoM updates the multipliers using the
gradient ascent iterations
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where � � � , and �� � �� with �� �� �. The second step entails re-
cursions that are obtained after minimizing (6) w.r.t. ���, assuming that

all other variables ��� � �� �� �� ���� �� � �� ���
� ��
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��� are fixed.
The separable structure of (6) w.r.t. �� leads to the � separate mini-
mization subproblems

����� �� � � ��

�� �����
�

���

���

	
����� 	
��� �� �

�
� ����� 


� � �
��

	
���

�
�
� ������

�
� ��

	��� ��� �� �� � ���
�
� ��� �� ��
� ��

�
�

�
� ��

��� � �
�
� ��� �� ���� � ��� � �

�

�
��� �� ����

(9)

which are quadratic and whose optimal solution is available in closed-
form.

The third step involves updating �
�
� �� � �� ��. The related

recursions are obtained after minimizing 	� 	�������������
�� ���� �� ��� ������ �� ��
 w.r.t. �, while treating ������ �� � � �� ��
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��� as fixed. Then, given the separable structure of

the Lagrangian in (6) w.r.t. ��� , it follows after retaining only the

�
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� -dependent terms in (6) that
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which being linear-quadratic accepts the closed-form solution
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Substituting (10) into (7) and (8), it follows that if the Lagrange mul-
tipliers are initialized such that ��� �� � �� �� � �����

�
�� � �� ��, then

�
�
� ��� �� �� � �����

�
��� �� �� for all � and �, while

�
�
� ����� ����

�
� ����� �� ���

�

�
	������������ �������
 (11)

where � � � and �� � �� . Notice that sensor � has to store and update
only ���� �� � �� ���� �� since ���

�
� turned out to be redundant. To

obtain a recursion for ������� ����: i) substitute (10) into (9); ii) use
the identity ���

�
� ��� �� �� � ���

�
��� �� �� to eliminate ����� from (9);

and iii) apply first-order optimality conditions to the resulting quadratic
cost. Then, ����� �� � � �� can be obtained recursively as
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Recursions (11) and (12) constitute the D-RLS algorithm, whereby all
sensors � � � keep track of their local estimate ���� � �� � � ��

and their multipliers ���� �� � �� ���� �� , which can be arbitrarily
initialized. For 	 � � , matrix ������ ��� �� can be also recursively ob-
tained from ������ ��� with complexity����� using the matrix inversion
lemma; i.e.,
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Interestingly, the first term in ���� � �� � � ��, namely ������ �
������� � ��, is a regularized version of the local EWLSE per
sensor � at time instant � � �. The regularization is imposed by the
scaled identity matrix term in ������ � ��. Contrary to the classical
RLS, see e.g., [5], it allows one to set ���� � � without compromising
the invertibility of �������. The remaining terms in (12) are responsible
for fusing information from the neighborhood of sensor �, refining in
that way the local estimate provided by ������ �� � ����� � ��. As

promised, the variables ��� have been completely eliminated from the
D-RLS recursions in (11)–(12).

In order to solve (4) at time instant �� �, all sensors run local con-
sensus recursions. During the �� � ��st consensus iteration, sensor �
receives the local estimates �� �� � �� �� from its neighbors �� � ��

and updates its multipliers ��� �� � �� �� via (11). Then, sensor � re-

ceives the multipliers ���� ��� �� ���� �� and uses them along with
��� ��� �� ���� �� to evaluate ����� �� � � �� via (12). This way,
recursions (11)–(12) minimize (4) asymptotically. Specifically, it fol-
lows that:

Proposition 1: For arbitrarily initialized ���� ��� ���
� ��

��� , ����� ��
and any � � �; the local estimates ����� �� reach consensus as � �
; i.e.,

���
���

����� �� � �����	���� �� ��� � � � �

Proof: For any �, the arguments in [9, Appendix B] apply directly
to obtain the convergence claim.

Thus, D-RLS recursions are able to attain the EWLSE at each time
instant � as long as the number of consensus iterations grows. For a
time-invariant setup, running many consensus iterations, i.e., � � �
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would not be a problem, though this is not the case when the sensors
track a time-varying process �����. One way to enable D-RLS operation
in nonstationary settings, is to apply one consensus iteration per time
instant �. In this case, � � � and recursions (11)–(12) simplify to
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where ����� ��� and 	����� ��� denote the additive communication noise
present in the reception of ����� and �

�

�
��� at sensor �, respectively.

In detail, during time instant ��� sensor � receives the local estimates
��� ��������� ����� �� and plugs them into (13) to evaluate ��� ��� for

�� � �� . Then, it receives ��
�
���� 	����� ��� from its neighbors �� � �� ,

which are used together with ��� ��� � ����� ����� �� and the new
observation data within ������ ��� ��������� �� to obtain ����� �� via
(14). Recursions (13)–(14) constitute a single-time (ST-) scale version
of D-RLS, abbreviated as STD-RLS. Note also that there is no need
for a common penalty coefficient � across sensors; that is, each sensor
can use its own local penalty coefficient �� � 
 allowing increased
flexibility to attain potentially higher convergence rates.

Remark 3: A similar consensus-based RLS algorithm was put forth
in the conference precursor of this paper [7]. To enable task paralleliza-
tion via AD-MoM while ensuring that estimates agree across the whole
WSN, the approach in [7] judiciously reformulates (1) by relying on the
so called bridge sensor subset. Not only setting up—but readjusting the
bridge sensor set, e.g., when sensors inevitably fail in battery-limited
WSN deployments—requires additional coordination among sensors
with an associated communication overhead. Compared to [7], the ap-
proach followed here does not require such a bridge sensor set, and
in this sense, it offers a fully distributed, robust, and resource efficient
RLS-type algorithm for use in ad hoc WSNs.

A. Communication and Computational Costs

Next, we analyze the communication and computational costs asso-
ciated with D-RLS, and compare them with those incurred by existing
approaches. Per D-RLS iteration each sensor transmits 	���� � � ��

scalars corresponding to the multipliers ���� �� �� , and the local es-
timate �� . In diffusion RLS [2], each sensor transmits �	 � � scalars
per iteration. However, when considering the reception cost it can be
seen that while in D-RLS each sensor receives ���� �	 scalars per re-
cursion, in diffusion RLS the number of received scalars increases to
��� ���	 � �� per iteration. Even though the transmission cost is ar-
guably greater than the one related to reception, it will be corroborated
via numerical examples that the higher transmission cost in D-RLS
pays off in improved convergence rates and robustness in the presence
of communication noise.

The communication cost for I-RLS in [6] is��	��, since each sensor
has to transmits to its successor in the Hamiltonian cycle a 	 � 	 co-
variance matrix; similar complexity is incurred by the scheme in [11].
A low communication cost I-RLS is also proposed in [6] in which each
sensor within the cycle transmits and receives 	 scalars per iteration,
though the challenges related to I-RLS remain as the WSN scales.

Interestingly, when communication noise is not present as in the sce-
narios considered in [2], [6], [11], D-RLS can be modified such that its
corresponding communication complexity becomes lower than the one
incurred by diffusion RLS. Specifically, note that if the multipliers ���
are initialized such that ��� ��� 
� � ���

�
��� 
�, then in the absence of

noise ��� ��� �� � ���
�
��� �� for all � and � [cf. (7)]. Similarly, for the

STD-RLS it follows that if ��� �
� � ���
�
�
�, and noise is not present

then ��� ��� � ���� ��� for all �. Taking into account this equality, and

setting 	����� ��� � ����� ��� � �, the recursion for ����� �� in STD-RLS
is rewritten as [the same can be done with (12)]

����� ��������� ��� ��������� ��������� ��� ��
� ��

�
�
� ���

� �

�
������ ��� �� ��� ������ �

� ��

�� ��� 
 (15)

The second summand on the right-hand side of (15) incorporates
only local multipliers stored at sensor �. Thus, each sensor does
not exchange multipliers with its neighbors to update ���� � ��.
When using the modified STD-RLS comprising recursions (13) and
(15), each sensor transmits 	 scalars and receives ��� �	 scalars per
iteration. Clearly, the communication overhead is smaller than the one
associated with diffusion RLS. However, as in diffusion RLS the low
transmission cost is counterbalanced by the lack of resilience in the
presence of communication noise.

Next, we focus on the computational complexity involved in im-
plementing (13)–(14). Updating the multipliers incurs complexity in
the order of ����� �	�. In determining ����� ��, the dominating cost
arises from calculating ������ �� � ��. Recall that when � � �, matrix
������ ��� �� can be computed recursively with a complexity of ��	��.
If � � �, then the complexity for determining ������ �� � �� is ��	��.
In diffusion RLS, the computational complexity is also dominated by
the cost of recursively updating the inverse of the regression covariance
matrix, and is of order ����� �	

��. Thus, for � � � the computational
complexity per iteration is smaller than the one in diffusion RLS. For
� � �, the way D-RLS and diffusion RLS compare in terms of com-
putational complexity depends on the relative size of ���� ��

�
��� and

	. Specifically, if 	 � ��� � (e.g., in localization applications where
	 	 ), then D-RLS incurs smaller complexity. While, if 	 � ��� �
diffusion RLS is less complex computationally.

Remark 4: Despite the fact that the computational complexity
of (ST-)D-RLS depends on the estimation setting, the novel algo-
rithm enjoys communication noise resilience, not present in existing
alternatives. This property makes (ST-)D-RLS a viable candidate for
estimation/tracking in WSNs. It is also an expected feature since both
algorithms rely on the AD-MoM, which exhibits robustness in the
presence of communication noise [9].

These claims are also supported by simulations in the next section,
which corroborate the advantages of the proposed approach both in
terms of estimation performance as well as noise resilience.

IV. NUMERICAL TESTS

Here we test the novel D-RLS and STD-RLS algorithms in the spec-
tral application setting described in Section II-B, conducting several
performance comparisons with: i) I-RLS [6]; ii) diffusion RLS using
Metropolis weights [2]; iii) local (L-) RLS, whereby each sensor runs
an independent RLS algorithm solely based on its own data (no inter-
sensor communications); and iv) D-LMS with step-size  � �
�� [8].
For � � 
 sensors, an ad hoc WSN is generated by using the random
geometric graph model in �
� ���, with communication range � � 

�;
see Fig. 1. For the examples with noisy links, additive white Gaussian
noise (AWGN) with variance ��� � �
�� is added at the receiving
end. The source ���� is an AR (4) process with coefficients �� �
��

�� �
��� 

��� 

���� and driving noise variance ��� � �
��,
which yields a spectrum with a single peak at � � ���. The source-
sensor channels have order �� � �, and the channels to the sensors
3, 7, 15, and 27 vanish at the frequency � � ���. The observation
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Fig. 1. Ad hoc WSN with � � �� sensors.

AWGN has a spatial variance profile ���� � �� � ����, where the co-
efficients �� � � ��� �� (uniformly distributed) are i.i.d. across sensors.

Thirty consensus steps are ran per acquired observation in D-RLS,
in order to ensure a fair comparison with I-RLS in terms of processing
delay. The delay is due to the estimation cycle over all � � ��
sensors, that should be completed before new information can be
incorporated. With � � � and �� � ����� � in both D-RLS and
STD-RLS, Fig. 2 (top) compares the global MSE evolution (learning
curve) obtained as ��� �

���
���	��
	��

�
� �
	���
��		��, whereas

the expectation is approximated by averaging over 250 realizations
of the experiment. Similar curves are shown in Fig. 2 (bottom), in
this case for the global mean-square deviation (MSD) metric given by
��� �

���
������
	� �����. In the absence of communication noise,

the cost-effective version of STD-RLS is implemented via recursions
(13) and (15). I-RLS and D-RLS behave similarly providing a perfor-
mance benchmark, while D-LMS—a first-order method—converges
much slower than all distributed RLS schemes. STD-RLS outperforms
diffusion RLS in terms of convergence rate, and most importantly, it
does not suffer from the catastrophic noise accumulation exhibited by
diffusion RLS when the links are not ideal.

With regards to local performance in steady-state, for � � ��
 we
illustrate in Fig. 3 (top) the figures of merit which are customary in
the adaptive literature [2], [5], [8]: i) MSE ���	��
	 � �

�
� �
	���
 �

�		��; ii) excess-MSE (EMSE) �����
� �
	����
��	���		

��; and MSD
������
	 � �����. With reference to Remark 2, it is apparent that a
scheme devoid of sensor collaboration such as L-LMS, fails to obtain
satisfactory estimates at the sensors affected by the channel fades. On
the other hand, STD-RLS exploits the available spatial diversity to at-
tain improved estimation performance, see, e.g., the local MSD curves.

Next, we illustrate the capabilities of STD-RLS when it comes to
tracking a time varying parameter ���
	. For � � � and for the same
WSN setup, we simulate a large amplitude slowly time-varying process
���
	 � �� � �	���
 � �	 � ����
	 with � � ��
 and ����
	 �
� ��� ������	 (multivariate normal distribution). A linear model is
adopted for the sensor observations, i.e., 	��
	 � �

�
� �
	���
	 � ���
	

with ���
	 � � ��� ����	 for all � � 	 . Regressors are temporally
correlated, as���
	 � ����
	   ���
��	�� with entries which evolve
according to ���
	 � �� � �	�����
 � �	 �



����
	. We choose

� � ���, the �� � � ��� �� are i.i.d. in space, and the driving white
noise ���
	 � � ��
��� �



��� � has a spatial variance profile given

by ��� � ������ , with �� � � ��� �� and i.i.d. For � � ��� and
�� � ����� �, Fig. 3 (bottom) depicts the second entry of ���
	 as

Fig. 2. Global network performance in a distributed power spectrum estimation
task: (top) MSE (learning curve); (bottom) MSD.

well as the corresponding estimate for a representative sensor closely
tracking the true variations. In the presence of communication noise,
the larger estimate fluctuations are a direct manifestation of the (ex-
pected) increased MSE, as evidenced by the learning curves in Fig. 3
(bottom).

The scheme in [11] has not been included in the numerical com-
parisons because a complete data model is not available for the power
spectrum estimation problem. Specifically, the variance of the aggre-
gate observation noise term ���
	 is unknown (cf. Section II-A). Fur-
ther, the algorithm in [11] is incapable of tracking ���
	 due to its di-
minishing step-size.

V. CONCLUDING REMARKS

We developed a distributed RLS-like algorithm for adaptive es-
timation/tracking using WSNs in which sensors communicate via
single-hop noisy links. The approach adopted involves i) reformu-
lating in a separable way the exponentially weighed least-squares
cost involved in the classical RLS algorithm; and ii) applying the
AD-MoM scheme to minimize this separable cost in a distributed
fashion. The resulting algorithm entails only local computational
tasks across sensors that simply exchange messages with single-hop
neighbors only.

In order to accommodate nonstationary applications, STD-RLS was
derived from D-RLS entailing a single consensus recursion per time
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Fig. 3. (top) Local (per-sensor) performance in a distributed power spectrum
estimation task; (bottom) Tracking with STD-RLS.

instant �. Different from existing approaches, (ST)D-RLS exhibits
robustness to inter-sensor communication noise at the expense of
a slightly higher communication complexity. When noise is not an
issue, (ST)D-RLS can be modified to lower communication overhead
relative to adaptive diffusion estimation schemes. Numerical exam-
ples demonstrate the noise robustness of (ST)D-RLS, as well as its
convergence and tracking capabilities in comparison with existing
alternatives.1

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, 2nd ed. Belmont, MA: Athena-Scientific,
1999.

[2] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE
Trans. Signal Process., vol. 56, no. 5, pp. 1865–1877, May 2008.

[3] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adap-
tive networks: Formulation and performance analysis,” IEEE Trans.
Signal Process., vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

1The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies of the
Army Research Laboratory or the U. S. Government.

[4] C. H. Papadimitriou, Computational Complexity. Reading, MA: Ad-
dison-Wesley, 1993.

[5] A. H. Sayed, Fundamentals of Adaptive Filtering. New York: Wiley,
2003.

[6] A. H. Sayed and C. G. Lopes, “Distributed recursive least-squares over
adaptive networks,” in Proc. 40th Asilomar Conf. On Signals, Systems
and Computers, Pacific Grove, CA, Oct./Nov. 2006, pp. 233–237.

[7] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Consensus-based dis-
tributed recursive least-squares estimation using ad hoc wireless sensor
networks,” in Proc. 41st Asilomar Conf. Signals, Systems, Computers,
Pacific Grove, CA, Nov. 2007, pp. 386–390.

[8] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed LMS for
consesus-based in-network adaptive processing,” IEEE Trans. Signal
Process., vol. 57, no. 6, pp. 2365–2382, Jun. 2009.

[9] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy links – Part I: Distributed estimation of deterministic
signals,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 350–364, Jan.
2008.

[10] P. Stoica and R. Moses, Spectral Analysis of Signals. Englewood
Cliffs, NJ: Prentice-Hall, 2005.

[11] L. Xiao, S. Boyd, and S. Lall, “A space-time diffusion scheme for
peer-to-peer least-squares estimation,” in Proc. Int. Conf. Info. Proc.
Sensor Networks, Nashville, TN, 2006, pp. 168–176.

Joint Transmitter/Receiver I/Q Imbalance Compensation
for Direct Conversion OFDM in Packet-Switched

Multipath Environments

Jeffrey Feigin and David Brady

Abstract—This correspondence presents an algorithm for compensation
of I/Q imbalance for a direct-conversion packet-switched orthogonal fre-
quency-division-multiplexing (OFDM) communications system, which ac-
counts for transmitter I/Q imbalance, receiver I/Q imbalance, phase/fre-
quency error, and dispersive multipath fading. The proposed estimation
algorithm is then presented, which operates within the framework of ex-
isting multiuser OFDM radio standards (802.11a). It is shown that this al-
gorithm accurately estimates and corrects transceiver I/Q imbalance on a
packet-by-packet basis, all within the receiver’s digital baseband.

Index Terms—Direct conversion, IEEE802.11, IEEE802.16, I/Q error,
I/Q imbalance, OFDM, WIMAX, WLAN, zero-IF.

I. INTRODUCTION

Orthogonal frequency-division-multiplexing (OFDM) modulation
enables low cost and current consumption while supporting high spec-
tral efficiency through dispersive channels, and it is the predominant
modulation format for some wireless communications systems. Addi-
tionally, a direct-conversion radio architecture provides the potential
for excellent current consumption, size, and radio performance, and
it inherently allows a great degree of channel bandwidth flexibility.
However, uncalibrated direct-conversion transceivers suffer from I/Q
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