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Abstract—The recursive least-squares (RLS) algorithm has well-
documented merits for reducing complexity and storage require-
ments, when it comes to online estimation of stationary signals as
well as for tracking slowly-varying nonstationary processes. In this
paper, a distributed recursive least-squares (D-RLS) algorithm is
developed for cooperative estimation using ad hoc wireless sensor
networks. Distributed iterations are obtained by minimizing a sep-
arable reformulation of the exponentially-weighted least-squares
cost, using the alternating-minimization algorithm. Sensors carry
out reduced-complexity tasks locally, and exchange messages with
one-hop neighbors to consent on the network-wide estimates adap-
tively. A steady-state mean-square error (MSE) performance anal-
ysis of D-RLS is conducted, by studying a stochastically-driven ‘av-
eraged’ system that approximates the D-RLS dynamics asymptot-
ically in time. For sensor observations that are linearly related to
the time-invariant parameter vector sought, the simplifying inde-
pendence setting assumptions facilitate deriving accurate closed-
form expressions for the MSE steady-state values. The problems
of mean- and MSE-sense stability of D-RLS are also investigated,
and easily-checkable sufficient conditions are derived under which
a steady-state is attained. Without resorting to diminishing step-
sizes which compromise the tracking ability of D-RLS, stability
ensures that per sensor estimates hover inside a ball of finite ra-
dius centered at the true parameter vector, with high-probability,
even when inter-sensor communication links are noisy. Interest-
ingly, computer simulations demonstrate that the theoretical find-
ings are accurate also in the pragmatic settings whereby sensors
acquire temporally-correlated data.

Index Terms—Distributed estimation, performance analysis,
RLS algorithm, wireless sensor networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs), whereby large
numbers of inexpensive sensors with constrained

resources cooperate to achieve a common goal, constitute a
promising technology for applications as diverse and crucial as
environmental monitoring, process control and fault diagnosis
for the industry, and protection of critical infrastructure in-
cluding the smart grid, just to name a few. EmergentWSNs have
created renewed interest also in the field of distributed com-
puting, calling for collaborative solutions that enable low-cost
estimation of stationary signals as well as reduced-complexity
tracking of nonstationary processes; see e.g., [22], [33].
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In this paper, a distributed recursive least-squares (D-RLS)
algorithm is developed for estimation and tracking using ad hoc
WSNs with noisy links, and analyzed in terms of its stability
and mean-square error (MSE) steady-state performance. Ad
hoc WSNs lack a central processing unit, and accordingly
D-RLS performs in-network processing of the (spatially) dis-
tributed sensor observations. In words, a two-step iterative
process takes place towards consenting on the desired global
exponentially-weighted least-squares estimator (EWLSE): sen-
sors perform simple local tasks to refine their current estimates,
and exchange messages with one-hop neighbors over noisy
communication channels. New sensor data acquired in real time
enrich the estimation process and learn the unknown statistics
“on-the-fly”. In addition, the exponential weighting effected
through a forgetting factor endows D-RLS with tracking capa-
bilities. This is desirable in a constantly changing environment,
within which WSNs are envisioned to operate.

A. Prior art on Distributed Adaptive Estimation

Unique challenges arising withWSNs dictate that often times
sensors need to perform estimation in a constantly changing
environment without having available a (statistical) model for
the underlying processes of interest. This has motivated the de-
velopment of distributed adaptive estimation schemes, general-
izing the notion of adaptive filtering to a setup involving net-
worked sensing/processing devices [3, Sec. I-B].
The incremental (I-) RLS algorithm in [24] is one of the first

such approaches, which sequentially incorporates new sensor
data while performing least-squares estimation. If one can
afford maintaining a so-termed Hamiltonian cyclic path across
sensors, then I-RLS yields the centralized EWLS benchmark
estimate. Reducing the communication cost at a modest price
in terms of estimation performance, an I-RLS variant was also
put forth in [24]; but the NP-hard challenge of determining a
Hamiltonian cycle in large-size WSNs remains [18]. Without
topological constraints and increasing the degree of collabora-
tion among sensors, a diffusion RLS algorithm was proposed
in [3]. In addition to local estimates, sensors continuously
diffuse raw sensor observations and regression vectors per
neighborhood. This facilitates percolating new data across the
WSN, but estimation performance is degraded in the presence
of communication noise. When both the sensor measurements
and regression vectors are corrupted by additive (colored)
noise, the diffusion-based RLS algorithm of [1] exploits sensor
cooperation to reduce bias in the EWLSE. All [1], [3] and [24]
include steady-state MSE performance analysis under the in-
dependence setting assumptions [23, p. 448]. Distributed least
mean-squares (LMS) counterparts are also available, trading
off computational complexity for estimation performance; for
noteworthy representatives see [7], [14], [26], and references
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therein. Recent studies have also considered more elaborate
sensor processing strategies including projections [8], [12],
adaptive combination weights [30], or even sensor hierarchies
[4], [26], and mobility [32].
Several distributed (adaptive) estimation algorithms are

rooted on iterative optimization methods, which capitalize
upon the separable structure of the cost defining the desired
estimator. The sample mean estimator was formulated in [20]
as an optimization problem, and was solved in a distributed
fashion using a primal dual approach; see, e.g., [2]. Similarly,
the incremental schemes in e.g., [7], [19], [21], [24] are all
based on incremental (sub)gradient methods [17]. Even the
diffusion LMS algorithm of [14] has been recently shown
related to incremental strategies, when these are adopted to
optimize an approximate reformulation of the LMS cost [5].
Building on the framework introduced by [27], the D-LMS and
D-RLS algorithms in [15], [16], and [26] are obtained upon
recasting the respective decentralized estimation problems as
multiple equivalent constrained subproblems. The resulting
minimization subtasks are shown to be highly paralellizable
across sensors, when carried out using the alternating-direction
method of multipliers (AD-MoM) [2]. Much related to the
AD-MoM is the alternating minimization algorithm (AMA)
[31], used here to develop a novel D-RLS algorithm offering
reduced complexity when compared to its counterpart of [15].

B. Contributions and Paper Outline

The present paper develops a fully distributed (D-) RLS
type of algorithm, which performs in-network, adaptive LS
estimation. D-RLS is applicable to general ad hoc WSNs that
are challenged by additive communication noise, and may lack
a Hamiltonian cycle altogether. Different from the distributed
Kalman trackers of, e.g., [6] and [22], the universality of the
LS principle broadens the applicability of D-RLS to a wide
class of distributed adaptive estimation tasks, since it requires
no knowledge of the underlying state space model. The al-
gorithm is developed by reformulating the EWLSE into an
equivalent constrained form [27], which can be minimized in
a distributed fashion by capitalizing on the separable struc-
ture of the augmented Lagrangian using the AMA solver in
[31] (Section II). From an algorithmic standpoint, the novel
distributed iterations here offer two extra features relative to
the AD-MoM-based D-RLS variants in [15] and [25]. First,
as discussed in Section II-B, the per-sensor computational
complexity is markedly reduced, since there is no need to
explicitly carry out a matrix inversion per iteration as in [15].
Second, the approach here bypasses the need of the so-termed
bridge sensors [25]. As a result, a fully distributed algorithm
is obtained whereby all sensors perform the same tasks in a
more efficient manner, without introducing hierarchies that
may require intricate recovery protocols to cope with sensor
failures.
Another contribution of the present paper pertains to a de-

tailed stability and MSE steady-state performance analysis for
D-RLS (Section IV). These theoretical results were lacking in
the algorithmic papers [15], [25], where claims were only sup-
ported via computer simulations. Evaluating the performance
of (centralized) adaptive filters is a challenging problem in its
own right; prior art is surveyed in, e.g., [28], [29, p. 120], and

[23, p. 357], and the extensive list of references therein. On top
of that, a WSN setting introduces unique challenges in the anal-
ysis such as space-time sensor data and multiple sources of ad-
ditive noise, a consequence of imperfect sensors and communi-
cation links. The approach pursued here capitalizes on an ‘av-
eraged’ error-form representation of the local recursions com-
prising D-RLS, as a global dynamical system described by a sto-
chastic difference-equation derived in Section III-B. The covari-
ance matrix of the resulting state is then shown to encompass
all the information needed to evaluate the relevant global and
sensor-level performance metrics (Section III-C). For sensor
observations that are linearly related to the time-invariant pa-
rameter vector sought, the simplifying independence setting as-
sumptions [29, p. 110], [23, p. 448] are key enablers towards
deriving accurate closed-form expressions for the mean-square
deviation and excess-MSE steady-state values (Section IV-B).
Stability in the mean- and MSE-sense are also investigated,
revealing easily-checkable sufficient conditions under which a
steady-state is attained.
Numerical tests corroborating the theoretical findings are pre-

sented in Section V, while concluding remarks and possible di-
rections for future work are given in Section VI.
Notation: Operators

will denote Kronecker product, transpo-
sition, matrix pseudo-inverse, spectral radius, matrix trace,
diagonal matrix, block diagonal matrix, expectation, and ma-
trix vectorization, respectively. For both vectors and matrices,

will stand for the 2-norm and for the cardinality of a
set or the magnitude of a scalar. The positive definite matrix
will be denoted by . The identity matrix will

be represented by , while will denote the vector of
all ones and . Similar notation will be adopted
for vectors (matrices) of all zeros. For matrix ,
range for some and
nullspace . The th vector in the
canonical basis for will be denoted by , .

II. PROBLEM STATEMENT AND DISTRIBUTED RLS ALGORITHM

Consider a WSN with sensors . Only
single-hop communications are allowed, i.e., sensor can com-
municate only with the sensors in its neighborhood ,
having cardinality . Assuming that inter-sensor links are
symmetric, the WSN is modeled as an undirected connected
graph with associated graph Laplacian matrix . Different
from [1], [3], and [24], the present network model accounts
explicitly for non-ideal sensor-to-sensor links. Specifically,
signals received at sensor from sensor at discrete-time
instant are corrupted by a zero-mean additive noise vector

, assumed temporally and spatially uncorrelated. The
communication noise covariance matrices are denoted by

, , .
The WSN is deployed to estimate a real signal vector
in a distributed fashion and subject to the single-hop com-

munication constraints, by resorting to the LS criterion [23, p.
658]. Per time instant , each sensor acquires a re-
gression vector and a scalar observation ,
both assumed zero-mean without loss of generality. A similar
setting comprising complex-valued data was considered in [3]
and [24]. Here, the exposition focuses on real-valued quantities
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for simplicity, but extensions to the complex case are straight-
forward. Given new data sequentially acquired, a pertinent ap-
proach is to consider the EWLSE [3], [23], [24]

(1)
where is a forgetting factor, while is
included for regularization. Note that in forming the EWLSE at
time , the entire history of data is
incorporated in the online estimation process. Whenever ,
past data are exponentially discarded thus enabling tracking of
nonstationary processes. Regarding applications, a distributed
power spectrum estimation task matching the aforementioned
problem statement, can be found in [15].
To decompose the cost function in (1), in which summands

are coupled through the global variable , introduce auxiliary
variables representing local estimates of per sensor
. These local estimates are utilized to form the separable
convex constrained minimization problem

(2)

From the connectivity of the WSN, (1) and (2) are equivalent
in the sense that and ; see
also [27]. To arrive at the D-RLS recursions, it is convenient
to reparametrize the constraint set (2) in the equivalent form

and (3)

where , , are auxiliary optimization vari-
ables that will be eventually eliminated.

A. The D-RLS Algorithm

To tackle the constrained minimization problem (2) at time
instant , associate Lagrange multipliers and with the
first pair of consensus constraints in (3). Introduce the ordinary
Lagrangian function

(4)

as well as the quadratically augmented Lagrangian

(5)

where is a positive penalty coefficient; and ,

, and . Observe
that the remaining constraints in (3), namely

, have not been dualized.
Towards deriving the D-RLS recursions, the alternating

minimization algorithm (AMA) of [31] will be adopted here to
tackle the separable EWLSE reformulation (2) in a distributed
fashion. Much related to AMA is the alternating-direction
method of multipliers (AD-MoM), an iterative augmented La-
grangian method specially well-suited for parallel processing
[2], [15], [27]. While the AD-MoM has been proven suc-
cessful to tackle the optimization tasks stemming from general
distributed estimators of deterministic and (non-)stationary
random signals, it is somehow curious that the AMA has
remained largely underutilized.
To minimize (2) at time instant , the AMA solver entails

an iterative procedure comprising three steps per iteration

[S1] Multiplier updates:

[S2] Local estimate updates:

(6)

[S3] Auxiliary variable updates:

(7)

where and in [S1]. Steps [S1] and [S3] are iden-
tical to those in AD-MoM [2]. In words, these steps correspond
to dual ascent iterations to update the Lagrange multipliers, and
a block coordinate-descent minimization of the augmented La-
grangian with respect to , respectively. The only differ-
ence is with regards to the local estimate updates in [S2], where
in AMA the new iterates are obtained by minimizing the or-
dinary Lagrangian with respect to . For the sake of the afore-
mentionedminimization, all other variables are considered fixed
taking their most up to date values . For
the AD-MoM instead, the minimized quantity is the augmented
Lagrangian both in [S2] and in [S3].
The AMA was motivated in [31] for separable problems that

are strictly convex in , but (possibly) only convex with respect
to . Under this assumption, [S2] still yields a unique minimizer
per iteration, and the AMA is useful for those cases in which
the Lagrangian is much simpler to optimize than the augmented
Lagrangian. Because of the regularization matrix ,
the EWLS cost in (2) is indeed strictly convex for all ,
and the AMA is applicable. Section II-B discusses the benefits
of minimizing the ordinary Lagrangian instead of its augmented
counterpart (5), in the context of distributed RLS estimation.
Carrying out the minimization in [S3] first, one finds



MATEOS AND GIANNAKIS: DISTRIBUTED RECURSIVE LEAST-SQUARES: STABILITY AND PERFORMANCE ANALYSIS 3743

so that for all [15]. As a result

is given by

(8)

for and . Moving on to [S2], from the sepa-
rable structure of (4) the minimization (6) can be split into
subproblems

Since each of the local subproblems corresponds to an uncon-
strained quadratic minimization, they all admit closed-form so-
lutions

(9)
where

(10)

(11)

Recursions (8) and (9) constitute the AMA-based D-RLS algo-
rithm, whereby all sensors keep track of their local esti-
mate and their multipliers , which
can be arbitrarily initialized. From the rank-one update in (10)
and capitalizing on the matrix inversion lemma, matrix
can be efficiently updated according to

(12)
with complexity . It is recommended to initialize the ma-
trix recursion with , where is
chosen sufficiently large [23]. Not surprisingly, by direct appli-
cation of the convergence results in [31, Prop. 3], it follows that:

Proposition 1:For arbitrarily initialized ,
and ; the local estimates generated

by (9) reach consensus as ; i.e.,

The upper bound is proportional to the modulus of the
strictly convex cost function in (2), and inversely proportional
to the norm of a matrix suitably chosen to express the linear con-
straints in (3); further details are in [31, Sec. 4]. Proposition 1
asserts that per time instant , the AMA-based D-RLS algorithm

yields a sequence of local estimates that converge to the global
EWLSE sought, as , or, pragmatically for large enough
. In principle, one could argue that running many consensus
iterations may not be a problem in a stationary environment.
However, when theWSN is deployed to track a time-varying pa-
rameter vector , one cannot afford significant delays in-be-
tween consecutive sensing instants.
One way to overcome this hurdle is to run a single consensus

iteration per acquired observation . Specifically, letting
in (8) and (9) one arrives at a single time scale D-RLS

algorithm which is suitable for operation in nonstationary WSN
environments. Accounting also for additive communication
noise that corrupts the exchanges of multipliers and local
estimates through the vectors and , respectively,
the per sensor tasks comprising the AMA-based single time
scale D-RLS algorithm are given by

(13)

(14)
(15)

(16)

Recursions (13)–(15) are tabulated as Algorithm 1, which also
details the inter-sensor communications of multipliers and local
estimates taking place within neighborhoods. When powerful
error control codes render inter-sensor links virtually ideal, di-
rect application of the results in [15] and [16] show that D-RLS
can be further simplified to reduce the communication overhead
and memory storage requirements.

Algorithm 1: AMA-based D-RLS

Arbitrarily initialize and .

for do

All : transmit to neighbors in .

All : update using (13).

All : transmit to each .

All : update and using (14)
and (15), respectively.

All : update using (16).

end for

B. Comparison With the AD-MoM-Based D-RLS Algorithm

A related D-RLS algorithmwas put forth in [15], whereby the
decomposable exponentially-weighted LS cost (2) is minimized
using the AD-MoM, rather than theAMA as in Section II-A. Re-
call that the AD-MoM solver yields as the optimizer
of the augmented Lagragian, while its AMA counterpart mini-
mizes the ordinary Lagrangian instead. Consequently, different
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from (16) local estimates in the AD-MoM-based D-RLS algo-
rithm of [15] are updated via

(17)

where [cf. (10)]

(18)

Unless , it is impossible to derive a rank-one update for
as in (10). The reason is the regularization term

in (18), a direct consequence of the quadratic penalty in the aug-
mented Lagrangian (5). This prevents one from efficiently up-
dating in (17) using the matrix inversion lemma [cf.
(14)]. Direct inversion of per iteration dominates the
computational complexity of the AD-MoM-based D-RLS algo-
rithm, which is roughly [15].
Unfortunately, the penalty coefficient cannot be set to zero

because the D-RLS algorithm breaks down. For instance, when
the initial Lagrange multipliers are null and , D-RLS boils
down to a purely local (L-) RLS algorithm where sensors do not
cooperate, hence consensus cannot be attained. All in all, the
novel AMA-based D-RLS algorithm of this paper offers an im-
proved alternative with an order of magnitude reduction in terms
of computational complexity per sensor. With regards to com-
munication cost, the AD-MoM-based D-RLS and Algorithm 1
here incur identical overheads; see [15, Sec. III-B] for a detailed
analysis of the associated cost, as well as comparisons with the
I-RLS [24] and diffusion RLS algorithms [3].
While the AMA-based D-RLS algorithm is less com-

plex computationally than its AD-MoM counterpart in [15],
Proposition 1 asserts that when many consensus iterations
can be afforded, convergence to the centralized EWLSE is
guaranteed provided . On the other hand, the
AD-MoM-based D-RLS algorithm will attain the EWLSE
for any (cf. [15, Prop. 1]). In addition, it does not
require tuning the extra parameter , since it is applicable when

because the augmented Lagrangian provides the
needed regularization.

III. ANALYSIS PRELIMINARIES

A. Scope of the Analysis: Assumptions and Approximations

Performance evaluation of the D-RLS algorithm is much
more involved than that of e.g., D-LMS [16], [26]. The chal-
lenges are well documented for the classical (centralized) LMS
and RLS filters [23], [29], and results for the latter are less
common and typically involve simplifying approximations.
What is more, the distributed setting introduces unique chal-
lenges in the analysis. These include space-time sensor data and

multiple sources of additive noise, a consequence of imperfect
sensors and communication links.
In order to proceed, a few typical modeling assumptions are

introduced to delineate the scope of the ensuing stability and
performance results. For all , it is assumed that:
a1) sensor observations adhere to the linear model

, where the zero-mean white
noise has variance ;

a2) vectors are spatio-temporally white with co-
variance matrix ; and

a3) vectors , , and

are independent.
Assumptions a1)–a3) comprise the widely adopted indepen-
dence setting, for sensor observations that are linearly related
to the time-invariant parameter of interest; see, e.g., [23, p.
448] and [29, p. 110]. Clearly, a2) can be violated in, e.g.,
FIR filtering of signals (regressors) with a shift structure as in
the distributed power spectrum estimation problem described
in [26] and [15]. Nevertheless, the steady-state performance
results extend accurately to the pragmatic setup that involves
time-correlated sensor data; see also the numerical tests in
Section V. In line with a distributed setting such as a WSN, the
statistical profiles of both regressors and the noise quantities
vary across sensors (space), yet they are assumed to remain
time invariant. For a related analysis of a distributed LMS
algorithm operating in a nonstationary environment, the reader
is referred to [16].
In the particular case of the D-RLS algorithm, a unique chal-

lenge stems from the stochastic matrices present in the
local estimate updates (16). Recalling (10), it is apparent that

depends upon the whole history of local regression vec-
tors . Even obtaining ’s distribution or com-
puting its expected value is a formidable task in general, due
to the matrix inversion operation. It is for these reasons that
some simplifying approximations will be adopted in the sequel,
to carry out the analysis that otherwise becomes intractable.
Neglecting the regularization term in (10) that vanishes ex-

ponentially as , the matrix is obtained as an ex-
ponentially weighted moving average (EWMA). The EWMA
can be seen as an average modulated by a sliding window of
equivalent length , which clearly grows as . This
observation in conjunction with a2) and the strong law of large
numbers, justifies the approximation

and (19)

The expectation of , on the other hand, is considerably
harder to evaluate. To overcome this challenge, the following
approximation will be invoked

(20)

for and ; see, e.g., [3] and [23]. It is admit-
tedly a crude approximation at first sight, because

in general, for any random variable . However, ex-
perimental evidence suggests that the approximation is suffi-
ciently accurate for all practical purposes, when the forgetting
factor approaches unity [23, p. 319].
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B. Error-Form D-RLS

The approach here to steady-state performance analysis relies
on an “averaged” error-form system representation of D-RLS
in (13)–(16), where in (16) is replaced by the approxi-
mation , for sufficiently large . Somehow related
approaches were adopted in [3] and [1]. Other noteworthy anal-
ysis techniques include the energy-conservation methodology
in [23, p. 287], [35], and stochastic averaging [29, p. 229]. For
performance analysis of distributed adaptive algorithms seeking
time-invariant parameters, the former has been applied in e.g.,
[13], [14], while the latter can be found in [26].
Towards obtaining such error-form repre-

sentation, introduce the local estimation errors
and multiplier-based quan-

tities .

It turns out that a convenient global state to describe the
spatio-temporal dynamics of D-RLS in (13)–(16) is

. In addition, to concisely capture the effects of both
observation and communication noise on the estimation
errors across the WSN, define the noise supervectors

and

. Vectors represent the
aggregate noise corrupting the multipliers received by sensor
at time instant , and are given by

(21)

Their respective covariance matrices are easily computable
under a2)–a3). For instance,

(22)

while the structure of is given in
Appendix E. Two additional communication noise super-
vectors are needed, namely

and , where for

(23)

Finally, let be a matrix capturing
the WSN connectivity pattern through the (scaled) graph Lapla-
cian matrix , and define .
Based on these definitions, it is possible to state the following
important lemma established in Appendix A.
Lemma 1: Let a1) and a2) hold. Then for with

sufficiently large while , the global state ap-
proximately evolves according to

(24)

where the matrix consists of the blocks
and . The

initial condition belongs to range .
The convenience of representing as in Lemma 1 will be-

come apparent in the sequel, especially when investigating suf-
ficient conditions under which the D-RLS algorithm is stable in
the mean sense (Section IV-A). In addition, the covariance ma-
trix of the state vector can be shown to encompass all the
information needed to evaluate the relevant per sensor and net-
workwide performance figures of merit, the subject dealt with
next.

C. Performance Metrics

When it comes to performance evaluation of adaptive
algorithms, it is customary to consider as figures of merit
the so-called MSE, excess mean-square error (EMSE), and
mean-square deviation (MSD) [23], [29]. In the present setup
for distributed adaptive estimation, it is pertinent to address
both global (network-wide) and local (per-sensor) performance
[14]. After recalling the definitions of the local a priori error

and local estimation error
, the per-sensor performance metrics are

defined as

MSE

EMSE

MSD

whereas their global counterparts are defined as the respective
averages across sensors, e.g., ,
and so on.
Next, it is shown that it suffices to evaluate the state covari-

ance matrix in order to assess the afore-
mentioned performance metrics. To this end, note that by virtue
of a1) it is possible to write .
Because is independent of the zero-mean

under a1)–a3), from the previous relation-
ship between the a priori and estimation errors one finds that
MSE EMSE . Hence, it suffices to focus on
the evaluation of EMSE , through which MSE can
also be determined under the assumption that the observation
noise variances are known, or can be estimated for that matter.
If denotes the th local error
covariance matrix, then MSD ; and under
a1)–a3), a simple manipulation yields

EMSE

To derive corresponding formulas for the global perfor-
mance figures of merit, let
denote the global error covariance matrix, and define

. It fol-
lows that MSD , and EMSE

.



3746 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 7, JULY 2012

TABLE I
EVALUATION OF LOCAL AND GLOBAL FIGURES OF MERIT FROM

Fig. 1. The covariance matrix and some of its inner submatrices that
are relevant to the performance evaluation of the D-RLS algorithm.

It is now straightforward to recognize that indeed pro-
vides all the information needed to evaluate the performance of
the D-RLS algorithm. For instance, observe that the global error
covariance matrix corresponds to the upper left
submatrix of , which is denoted by . Further,
the th diagonal submatrix of
is exactly , and is likewise denoted by . For
clarity, the aforementioned notational conventions regarding
submatrices within are illustrated in Fig. 1. In a nutshell,
deriving a closed-form expression for enables the evalu-
ation of all performance metrics of interest, as summarized in
Table I. This task will be considered in Section IV-B.
Remark 1: Since the “average” system representation of
in (24) relies on an approximation that becomes increas-

ingly accurate as and , so does the covariance
recursion for derived in Section IV-B. For this reason,
the scope of the MSE performance analysis of this paper per-
tains to the steady-state behavior of the D-RLS algorithm.

IV. STABILITY AND STEADY-STATE PERFORMANCE ANALYSIS

In this section, stability and steady-state performance
analyses are conducted for the D-RLS algorithm developed
in Section II-A. Because recursions (13)–(16) are stochastic
in nature, stability will be assessed both in the mean- and in
the MSE-sense. The techniques presented here can be utilized
with minimal modifications to derive analogous results for the
AD-MoM-based D-RLS algorithm in [15].

A. Mean Stability

Based on Lemma 1, it follows that D-RLS achieves consensus
in the mean sense on the parameter .
Proposition 2: Under a1)–a3) and for , D-RLS

achieves consensus in the mean, i.e.,

provided the penalty coefficient is chosen such that

(25)

Proof: Based on a1)–a3) and since the data is zero-mean,
one obtains after taking expectations on (24) that

. The following
lemma characterizes the spectrum of the transition matrix

; see Appendix B for a proof.
Lemma 2: Regardless of the value of , matrix

has eigenvalues equal
to one. Further, the left eigenvectors associated with the unity
eigenvalue have the structure , where
nullspace and . The remaining eigenvalues are
equal to zero, or else have modulus strictly smaller than one
provided satisfies the bound (25).
Back to establishing the mean stability result, let and
respectively denote the collection of right and left eigen-

vectors of associated with the eigenvalue one. By virtue of
Lemma 2 and provided satisfies the bound (25), one has that

; hence,

In obtaining the second equality, the structure for that is
given in Lemma 1 was used. The last equality follows from the
fact that nullspace as per Lemma 2, thus completing
the proof.
Before wrapping up this section, a comment is due on the suf-

ficient condition (25). When performing distributed estimation
under , the condition is actually not restrictive at all
since a factor is present in the denominator. When is
close to one, any practical choice of will result in asymp-
totically unbiased sensor estimates. Also note that the bound de-
pends on theWSN topology, through the scaled graph Laplacian
matrix .

B. MSE Stability and Steady-State Performance

In order to assess the steady-state MSE performance of
the D-RLS algorithm, we will evaluate the figures of merit
introduced in Section III-C. The limiting values of both the
local (per sensor) and global (network-wide) MSE, EMSE,
and MSD, will be assessed. To this end, it suffices to derive a
closed-form expression for the global estimation error covari-
ance matrix , as already argued in
Section III-C.
The next result provides an equivalent representation of the

approximate D-RLS global recursion (24), that is more suit-
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able for the recursive evaluation of . First, introduce the
vector

(26)

which comprises the receiver noise terms corrupting transmis-
sions of local estimates across the whole network at time instant
, and define . For notational convenience,
let .
Lemma 3: Under the assumptions of Lemma 1, the global

state in (24) can be equivalently written as

(27)

The inner state is arbitrarily initialized
at time , and updated according to

(28)

where the transition matrix consists of the blocks
and .

Matrix is chosen such that , where the
structure of the time-invariant matrices and is given in
Appendix E.

Proof: See Appendix C.
The desired state is obtained as a rank-deficient linear

transformation of the inner state , plus a stochastic offset
due to the presence of communication noise. A linear, time-in-
variant, first-order difference equation describes the dynamics
of , and hence of , via the algebraic transformation in
(27). The time-invariant nature of the transition matrix is due
to the approximations , , particularly
accurate for large enough . Examination of (28) reveals
that the evolution of is driven by three stochastic input pro-
cesses: i) communication noise affecting the transmis-
sion of local estimates; ii) communication noise con-
taminating the Lagrange multipliers; and iii) observation noise
within .
Focusing now on the calculation of

based on Lemma 3, observe from the upper block of
in (27) that

. Under a3), is independent of the
zero-mean ; hence,

(29)

which prompts one to obtain . Specifi-
cally, the goal is to extract its upper-left matrix block

. To this end, define the vectors

(30)

whose respective covariance matrices
and have a structure detailed in
Appendix E. Also recall that depends on the entire history
of regressors up to time instant . Starting from (28) and capi-
talizing on a2)–a3), it is straightforward to obtain a first-order
matrix recursion to update as

(31)

(32)

where the cross-correlation matrix
is recursively updated as (cf. Appendix D)

(33)

For notational brevity in what follows, in (32) de-
notes all the covariance forcing terms in the right-hand side
of (31). The main result of this section pertains to MSE sta-
bility of the D-RLS algorithm, and provides a checkable suffi-
cient condition under which the global error covariance matrix

has bounded entries as . Recall that a matrix
is termed stable, when all its eigenvalues lie strictly inside the
unit circle.
Proposition 3: Under a1)–a3) and for , D-RLS is

MSE stable, i.e., has bounded entries, provided
that is chosen so that is a stable matrix.

Proof: First observe that because , it holds that

(34)

If is selected such that is a stable matrix, then clearly
is also stable, and hence the matrix recursion (33) converges

to the bounded limit

(35)
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Based on the previous arguments, it follows that the forcing
matrix in (31) will also attain a bounded limit as
, denoted as . Next, we show that has

bounded entries by studying its equivalent vectorized dynamical
system. Upon vectorizing (32), it follows that

where in obtaining the last equality we used the property
. Because the eigenvalues of

are the pairwise products of those of , stability of
implies stability of the Kronecker product. As a result, the

vectorized recursion will converge to the limit

(36)

which of course implies that has
bounded entries. From (29), the same holds true for , and
the proof is completed.
Proposition 3 asserts that the AMA-based D-RLS algorithm

is stable in the MSE-sense, even when the WSN links are chal-
lenged by additive noise. While most distributed adaptive esti-
mation works have only looked at ideal inter-sensor links, others
have adopted diminishing step-sizes to mitigate the undesirable
effects of communication noise [10], [11]. This approach how-
ever, limits their applicability to stationary environments. Re-
markably, the AMA-based D-RLS algorithm exhibits robust-
ness to noise when using a constant step-size , a feature that
has also been observed for AD-MoM related distributed itera-
tions in e.g., [26], [27], and [15].
As a byproduct, the proof of Proposition 3 also provides part

of the recipe towards evaluating the steady-state MSE perfor-
mance of the D-RLS algorithm. Indeed, by plugging (34) and
(35) into (31), one obtains the steady-state covariance matrix

. It is then possible to evaluate , by reshaping the
vectorized identity (36). Matrix can be extracted from
the upper-left matrix block of , and the desired
global error covariance matrix becomes
available via (29). Closed-form evaluation of the ,
EMSE and MSD for every sensor is now pos-
sible given , by resorting to the formulae in Table I.
Before closing this section, an alternative notion of stochastic

stability that readily follows from Proposition 3 is established
here. Specifically, it is possible to show that under the indepen-
dence setting assumptions a1)–a3) considered so far, the global
error norm remains most of the time within a finite in-
terval, i.e., errors are weakly stochastic bounded (WSB) [28],
[29, p. 110]. This WSB stability guarantees that for any ,
there exists a such that uni-
formly in time.
Corollary 1: Under a1)–a3) and for , if

is chosen so that is a stable matrix, then the D-RLS
algorithm yields estimation errors which are WSB; i.e.,

.
Proof: Chebyshev’s inequality implies that

(37)

Fig. 2. An ad hoc WSN with sensors, generated as a realization of the
random geometric graph model on the unity square, with communication range

.

From Proposition 3, has bounded entries, im-
plying that . Taking the limit as

, while relying on the bound in (37) which holds for
all values of , yields the desired result.
In other words, Corollary 1 ensures that with overwhelming

probability, local sensor estimates remain inside a ball with fi-
nite radius, centered at . It is certainly a weak notion of sta-
bility, many times the only one that can be asserted when the
presence of, e.g., time-correlated data, renders variance calcu-
lations impossible; see also [26] and [28]. In this case where
stronger assumptions are invoked, WSB follows immediately
once MSE-sense stability is established. Nevertheless, it is an
important practical notion as it ensures—on a per-realization
basis—that estimation errors have no probability mass escaping
to infinity. In particular, D-RLS estimation errors are shown
WSB in the presence of communication noise; a property not
enjoyed by other distributed iterations for, e.g., consenting on
averages [34].

V. NUMERICAL TESTS

Computer simulations are carried out here to corroborate the
analytical results of Section IV-B. Even though based on sim-
plifying assumptions and approximations, the usefulness of the
analysis is justified since the predicted steady-state MSE fig-
ures of merit accurately match the empirical D-RLS limiting
values. In accordance with the adaptive filtering folklore, when

the upshot of the analysis under the independence set-
ting assumptions is shown to extend accurately to the pragmatic
scenario whereby sensors acquire non-Gaussian time-correlated
data. For sensors, a connected ad hoc WSN is gen-
erated as a realization of the random geometric graph model
on the unit-square, with communication range [9].
To model non-ideal inter-sensor links, additive white Gaussian
noise (AWGN) with variance is added at the receiving
end. The WSN used for the experiments is depicted in Fig. 2.
With , observations obey a linear model [cf. a1)] with

sensing AWGN of spatial variance profile , where
(are uniformly distributed) and i.i.d.. Regression
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Fig. 3. Global steady-state performance when . D-RLS is run with
ideal links and when communication noise with variance is present.
Comparisons with the AD-MoM-based D-RLS and diffusion RLS algorithms
are shown as well.

vectors have a shift structure,
and entries which evolve according to first-order stable autore-
gressive processes
for all . Parameters are selected as ,

i.i.d. in space, and the driving white noise
with spatial variance profile given

by with and i.i.d. The local covariance
matrices have symmetric Toeplitz structure, whereby the

elements on the th diagonal are for
and ( corresponds to the

main diagonal). Observe that the data is temporally correlated
and non-Gaussian, implying that a2) does not hold here. Two
test cases will be considered with regards to the nature of :

[ :] Time-invariant parameters with ; and
[ :] Large-amplitude slowly time-varying parameters
with [29, p. 121], [23, p. 360]

where with
for , the driving noise is zero-mean,
white Gaussian with covariance matrix ;
and . The DC component of the model is

.
For all experimental performance curves obtained by run-

ning the algorithms, the ensemble averages are approximated
via sample averaging over 200 runs of the experiment.
First, under TC1 and with all-zero initializations, ,

, and for the AMA-based D-RLS algorithm,
Fig. 3 depicts the network performance through the evolution
of EMSE and MSD figures of merit. Even though the
focus here is on noisy exchanges among sensors, ideal links
are also considered to assess the (expected) performance
degradation due to communication noise. The steady-state
limiting values found in Section IV-B are extremely accurate,
even though the simulated data does not adhere to a2), and the
results are based on simplifying approximations. Simulated
error trajectory curves for the AD-MoM-based D-RLS [15] and

Fig. 4. Global steady-state performance when . D-RLS is run with
ideal links and when communication noise with variance is present.
Comparisons with the AD-MoM-based D-RLS and diffusion RLS algorithms
are shown as well.

Fig. 5. Local steady-state performance evaluation when . D-RLS is
run with ideal links and when communication noise with variance is
present. The local EMSE and MSD figures of merit are depicted for sensors 3
and 12.

diffusion RLS algorithms (with Metropolis combining weights)
[3] are also included. Since , the AD-MoM-based D-RLS
algorithm demands an order of magnitude increase in terms
of computational complexity per sensor (cf. Section II-B), yet
its performance is comparable to that of AMA-based D-RLS.
Note also that in the presence of communication noise, dif-
fusion RLS yields inaccurate and biased local estimates [1].
The experiment is repeated for , and the results are
depicted in Fig. 4. The main conclusion here is that even when
is considerably smaller than 1, the predicted steady-state

performance metrics still offer accurate approximations of the
observed behavior. Similar overall conclusions can be drawn
from the plots in Fig. 5, that gauge local performance of two
randomly selected representative sensors when ;
see also Figs. 6 and 7, which depict EMSE and

MSD , for and 0.9, respectively. The
curves for the AD-MoM-based D-RLS and diffusion RLS
algorithms have been removed in the interest of clarity.
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Fig. 6. Local steady-state performance evaluation when . D-RLS is
run with ideal links and when communication noise with variance is
present. The steady-state EMSE and MSD figures of merit are depicted for all
sensors.

Fig. 7. Local steady-state performance evaluation when . D-RLS is
run with ideal links and when communication noise with variance is
present. The steady-state EMSE and MSD figures of merit are depicted for all
sensors.

The results in Section IV-B are also useful to study the effect
of on the steady-state MSE performance of the D-RLS algo-
rithm. For the same setup used to generate the results in Fig. 3,
Fig. 8 shows the trend of EMSE and MSD versus the
penalty parameter . Both noisy and ideal inter-sensor commu-
nication links are considered. For ideal links it is apparent that a
large value of decreases the steady-state error. On the other
hand, amplifies the communication noise and (sufficiently)
large values of are detrimental to the WSN performance. In
any case, Fig. 8 does not tell the whole story since also dictates
the convergence rate of the D-RLS algorithm.While deriving an
analytical expression for the convergence rate as a function of
is a challenging problem that goes beyond the scope of this
paper, it is worth pointing out that both the steady-state MSE
performance and the convergence rate should be taken into con-
sideration when selecting . Extensive numerical tests suggest

Fig. 8. Steady-state global performance figures of merit versus the penalty pa-
rameter .

Fig. 9. Global EMSE performance for a time-varying parameter when
. D-RLS and AD-MoM-based D-RLS are run when communication noise

is present . The first entry of and its estimate from sensor 3
are shown as well.

that for the WSN setting outlined earlier in this section,
attains the best tradeoff.
Moving on to the tracking performance of the D-RLS

algorithm under TC2, the top plot in Fig. 9 depicts the evo-
lution of EMSE for both the AMA- and AD-MoM-based
D-RLS algorithms. The forgetting factor is chosen as
and —all the remaining parameters are the same
as in the previous simulations. Again, the AD-MoM-based
D-RLS algorithm exhibits a marginal edge in terms of tracking
performance. However, this comes at the price of a marked
increase in computational complexity per sensor. The bottom
plot in Fig. 9 shows the first entry of as well as the corre-
sponding estimates for a representative sensor closely
tracking the true variations. The local estimate fluctuations
are a direct manifestation of the (expected) increase in MSE
due to the noise corrupting the exchanges of messages among
neighboring sensors.
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VI. CONCLUDING SUMMARY AND FUTURE WORK

A distributed RLS-like algorithm is developed in this paper,
which is capable of performing adaptive estimation and tracking
using WSNs in which sensors cooperate with single-hop neigh-
bors. The WSNs considered here are quite general since they
do not necessarily possess a Hamiltonian cycle, while the
inter-sensor links are challenged by communication noise.
Distributed iterations are derived after: i) reformulating in a
separable way the exponentially weighed least-squares (EWLS)
cost involved in the classical RLS algorithm; and ii) applying
the AMA to minimize this separable cost in a distributed
fashion. The AMA is especially well-suited to capitalize on the
strict convexity of the EWLS cost, and thus offer significant
reductions in computational complexity per sensor, when com-
pared to existing alternatives. This way, salient features of the
classical RLS algorithm are shown to carry over to a distributed
WSN setting, namely reduced-complexity estimation when a
state and/or data model is not available and fast convergence
rates are at a premium.
An additional contribution of this paper pertains to a detailed

steady-state MSE performance analysis, that relies on an “aver-
aged” error-form system representation of D-RLS. The theory
is developed under some simplifying approximations, and re-
sorting to the independence setting assumptions. This way, it
is possible to obtain accurate closed-form expressions for both
the per sensor and network-wide relevant performance metrics
as . Sufficient conditions under which the D-RLS al-
gorithm is stable in the mean- and MSE-sense are provided as
well. As a corollary, the D-RLS estimation errors are also shown
to remain within a finite interval with high probability, even
when the inter-sensor links are challenged by additive noise.
Numerical simulations demonstrated that the analytical findings
of this paper extend accurately to a more realistic WSN setting,
whereby sensors acquire temporally correlated sensor data.
Regarding the performance of the D-RLS algorithm, there are

still several interesting directions to pursue as future work. First,
it would be nice to establish a stochastic trajectory locking re-
sult which formally shows that as , the D-RLS estimation
error trajectories closely follow the ones of its time-invariant
“averaged” system companion. Second, the steady-state MSE
performance analysis was carried out when . For
the infinite memory case in which , numerical simula-
tions indicate that D-RLS provides mean-square sense-consis-
tent estimates, even in the presence of communication noise.
By formally establishing this property, D-RLS becomes an even
more appealing alternative for distributed parameter estimation
in stationary environments. While the approximations used in
this paper are no longer valid when , for Gaussian i.i.d.
regressors matrix isWishart distributed with knownmo-
ments. Under these assumptions, consistency analysis is a sub-
ject of ongoing investigation.

APPENDIX

A. Proof of Lemma 1

Let be chosen large enough to ensure that for

For , consider replacing in (16) with the approxi-
mation for its expected value, to arrive at the “av-
erage” D-RLS system recursions

(38)

(39)

After summing over , it follows from
(38) that for all

(40)

(41)

where the last equality was obtained after adding and sub-
tracting from the right-hand side of (40), and relying
on the definitions in (23). Upon: i) using a1) to eliminate

from (39); ii) recognizing in the right-hand side of
(39) and substituting it with (41); and iii) replacing the sums of
noise vectors with the quantities defined in (21) and (23); one
arrives at

(42)

What remains to be shown is that after stacking the recursions
(42) and (41) for to form the one for , we
can obtain the compact representation in (24). Examining (41)
and (42), it is apparent that a common matrix factor

can be pulled out to simplify the expression for
. Consider first the forcing terms in (24). Stacking the

channel noise terms from (42) and (41), readily yields the last
three terms inside the curly brackets in (24). Likewise, stacking
the terms for yields the
second term due to the observation noise; recall the definition
of . This term as well as the vectors are not present
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in (41), which explains the zero vector at the lower part of the
second and third terms inside the curly brackets of (24).
To specify the structure of the transition matrix , note

that the first term on the right-hand side of (41) explains
why . Similarly, the second term inside the
first square brackets in (42) explains why .
Next, it follows readily that upon stacking the terms

, which correspond to a
scaled Laplacian-based combination of vectors, one
obtains . This justifies why

.
A comment is due regarding the initialization for . Al-

though the vectors are decoupled so that

can be chosen arbitrarily, this is not the case for
which are coupled and satisfy

(43)

The coupling across dictates to be chosen
in compliance with (43), so that the system (24) is equivalent
to (38) and (39) for all . Let , where

is any vector in . Then, it is not difficult to see that
satisfies the conservation law (43). In conclusion, for

arbitrary the recursion (24) should be initialized
as , and the proof of Lemma 1 is
completed.

B. Proof of Lemma 2

Recall the structure of matrix given in Lemma 1, and define
for notational convenience. A vector

with is a left eigenvector
of associated to the eigenvalue , if and only if it solves the
following linear system of equations

(44)

(45)

For , (45) can only be satisfied when ,
and upon substituting this value in (44) one obtains that

nullspace nullspace for all values of
. Under the assumption of a connected ad hoc WSN,

nullspace span and hence nullspace is
a -dimensional subspace. Likewise, the structure of the left
eigenvectors associated to the eigenvalue can be char-
acterized from (44) and (45). Specifically, for one finds
that (44) and (45) are satisfied if and only if ,
and is an arbitrary vector in .
Finally, for one obtains from (45) that

. Plugging this last expression in (44) and upon
multiplying both sides of (44) by , yields the eigenvalues of
(that are different than one) as the roots of the second-order

polynomial

(46)

Dividing (46) by (eigenvalues different from are of
interest here) one arrives at

Hence, it is possible to select such that
, or equivalently ,

which is the same as condition (25).

C. Proof of Lemma 3

The goal is to establish the equivalence between the dynam-
ical systems in (24) and (27) for all , when the inner state
is arbitrarily initialized as . We will argue by
induction. For , it follows from (28) that

, since (by convention) there is
no communication noise for . Upon substituting
into (27), we find

(47)

Note that: i) ; ii)
for the system in Lemma 1; and

iii) , while [cf. Appendix E].
Thus, the right-hand side of (47) is equal to the right-hand side
of (24) for .
Suppose next that (27) and (28) hold true for and ,

with . The samewill be shown for and . To
this end, replace with the right-hand side of (27) evaluated
at time , into (24) to obtain

(48)

where in obtaining the last equality in (48), the following were
used: i) ; ii) the relation-
ship between and given in Appendix E; and iii)
the existence of a matrix such that . This
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made possible to extract the common factor and
deduce from (48) that is given by (27), while
is provided by (28).
In order to complete the proof, one must show the existence

of matrix . To this end, via a simple evaluation one can
check that nullspace nullspace , and since

is symmetric, one has nullspace range . As
nullspace range , it follows that
range range , which further implies that there
exists such that .

D. Derivation of (33)

First observe that the noise supervector obeys the first-
order recursion

(49)

Because under a3) the zero-mean are independent
of [cf. (28)], it follows readily that

. Plugging the expression for
and carrying out the expectation yields

(50)

The second equality follows from the fact that the zero-mean
communication noise vectors are independent of .
Scaling (50) by yields the desired result.

E. Structure of Matrices , , , , , and

In order to relate the noise supervectors and with
in (26), introduce two matrices

and . The

submatrices , are given by

and , with defined for
as

if
if

if
if

Note that denotes the order in which
appears in [cf. (26)]. It is straightforward

to verify that and .

Moving on to characterize the structure of and ,
from (21) and recalling that communication noise vectors are
assumed uncorrelated in space [cf. a3)], it follows that

Likewise, it follows from (26) that is a block diagonalmatrix
with a total of diagonal blocks of size , namely

Note also that the blocks for all , since
a sensor does not communicate with itself. In both cases, the
block diagonal structure of the covariance matrices is due to the
spatial uncorrelatedness of the noise vectors.
What is left to determine is the structure of and .

From (30) one readily obtains
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