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Abstract—Given a limited number of entries from the superposi-
tion of a low-rank matrix plus the product of a known compression
matrix times a sparse matrix, recovery of the low-rank and sparse
components is a fundamental task subsuming compressed sensing,
matrix completion, and principal components pursuit. This paper
develops algorithms for decentralized sparsity-regularized rank
minimization over networks, when the nuclear- and -norm are
used as surrogates to the rank and nonzero entry counts of the
sought matrices, respectively. While nuclear-norm minimization
has well-documented merits when centralized processing is viable,
non-separability of the singular-value sum challenges its decen-
tralized minimization. To overcome this limitation, leveraging
an alternative characterization of the nuclear norm yields a
separable, yet non-convex cost minimized via the alternating-di-
rection method of multipliers. Interestingly, if the decentralized
(non-convex) estimator converges, under certain conditions it
provably attains the global optimum of its centralized counter-
part. As a result, this paper bridges the performance gap between
centralized and in-network decentralized, sparsity-regularized
rankminimization. This, in turn, facilitates (stable) recovery of the
low rank and sparse model matrices through reduced-complexity
per-node computations, and affordable message passing among
single-hop neighbors. Several application domains are outlined to
highlight the generality and impact of the proposed framework.
These include unveiling traffic anomalies in backbone networks,
and predicting networkwide path latencies. Simulations with
synthetic and real network data confirm the convergence of the
novel decentralized algorithm, and its centralized performance
guarantees.

Index Terms—Decentralized optimization, sparsity, nuclear
norm, low rank, networks, Lasso, matrix completion.

I. INTRODUCTION

L ET be a low-rank matrix
, and

be a sparse matrix with support size considerably smaller than
. Consider also a matrix and a set

of index pairs that define
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a sampling of the entries of . Given and a number of
(possibly) noise corrupted measurements1

(1)

the goal is to estimate low-rank and sparse , by denoising
the observed entries and imputing the missing ones. Introducing
the sampling operator which sets the entries of its matrix
argument not in to zero and leaves the rest unchanged, the data
model can be compactly written in matrix form as

(2)

A natural estimator accounting for the low rank of and the
sparsity of will be sought to fit the data in the least-
squares (LS) error sense, as well as minimize the rank of , and
the number of nonzero entries of measured by its -(pseudo)
norm; see e.g., [12], [29], [11], [15] for related problems sub-
sumed by the one described here. Unfortunately, both rank and
-norm minimization are in general NP-hard problems [16],

[33]. The nuclear norm , where de-
notes the -th singular value of , and the -norm

, are typically adopted as surrogates to and
, respectively [14], [20]. Accordingly, one solves

where are rank- and sparsity-controlling param-
eters. Being convex (P1) is appealing, and some of its spe-
cial instances are known to attain good performance in theory
and practice. For instance, when no data are missing (P1) can
be used to unveil traffic anomalies in networks [29]. Identifia-
bility results in [29] establish that and can be exactly re-
covered in the absence of noise, even when is a fat (com-
pression) operator. When equals the identity matrix, (P1)
reduces to the so-termed robust principal component analysis
(PCA), for which exact recovery results are available in [11]
and [15]. Moreover, for the special case , (P1) of-
fers a low-rank matrix completion alternative with well-docu-
mented merits; see e.g., [13] and [12]. Stable recovery results
in the presence of noise are also available for matrix comple-
tion and robust PCA [12], [42]. Earlier efforts dealing with the
recovery of sparse vectors in noise led to similar performance
guarantees; see e.g., [8].
In all these works, the samples and matrix are as-

sumed centrally available, so that they can be jointly processed
to estimate and by e.g., solving (P1). Collecting all this in-
formation can be challenging in various applications of interest,

1The notation adopted here is motivated by the anomaly detection problem
outlined in Section IV.A, where denotes the routing matrix, stands for
flows, for links and for time steps, while is a matrix of anomalies.
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or it may be even impossible in e.g., wireless sensor networks
(WSNs) operating under stringent power budget constraints.
In other cases such as the Internet or collaborative marketing
studies, agents providing private data for e.g., fitting a low-rank
preference model, may not be willing to share their training data
but only the learning results. Performing the optimization in a
centralized fashion raises robustness concerns as well, since the
central processor represents an isolated point of failure. Several
customized iterative algorithms have been proposed to solve in-
stances of (P1), and have been shown effective in tackling low-
to medium-size problems; see e.g., [29], [13], [34]. However,
most algorithms require computation of singular values per it-
eration and become prohibitively expensive when dealing with
high-dimensional data [35]. All in all, the aforementioned rea-
sons motivate the reduced-complexity decentralized algorithm
for nuclear and -norm minimization developed in this paper.
In a similar vein, stochastic gradient algorithms were recently

developed for large-scale problems entailing regularization with
the nuclear norm [28], [35]. Even though iterations in [35] are
highly paralellizable, they are not applicable to networks of ar-
bitrary topology. There are also several studies on decentral-
ized estimation of sparse signals via -norm regularized re-
gression; see e.g., [17], [23], [30]. Different from the treatment
here, the data model of [30] is devoid of a low-rank compo-
nent and all the observations are assumed available (but de-
centralized across several interconnected agents). Formally, the
model therein is a special case of (2) with ,
and , in which case (P1) boils
down to finding the least-absolute shrinkage and selection op-
erator (Lasso) [8].
Buildingon thegeneralmodel (2) and thecentralizedestimator

(P1), this paper develops decentralized algorithms to estimate
low-rank and sparse matrices, based on in-network processing
of a small subset of noise-corrupted and spatially-decentralized
measurements (Section III). This is a challenging task however,
since the non-separable nuclear-norm present in (P1) is not
amenable to decentralized minimization. To overcome this limi-
tation, results from [10] and [39] on alternative characterizations
of the nuclear norm are leveraged in Section III.A, to obtain for
the first time a separable yet non-convex cost that can be min-
imized in a decentralized fashion via the alternating-direction
method of multipliers (ADMM) [7]. The resultant iterations
entail reduced-complexity optimization subtasks per agent, and
affordable message passing only between single-hop neighbors
(Section III.C). Interestingly, the decentralized (non-convex)
estimator provably attains the global optimum of its centralized
counterpart (P1), provided it converges and a qualification
condition is satisfied; see also [10], [34] and [3] for related
results in the context of centralized smooth optimization.
In a nutshell, this work connects the exact and stable recovery

in e.g., [11], [12], [15], [29] to in-network minimization, so that
one can recover (in a stable manner) the unknown low-rank and
sparse matrices only through local computations and message
exchanges. To demonstrate the generality of the proposed esti-
mator and its algorithmic framework, three networking-related
application domains are outlined in Section IV, namely: i) un-
veiling traffic volume anomalies for large-scale networks [25],
[29]; ii) robust PCA [11], [15], and iii) low-rank matrix com-
pletion for networkwide path latency prediction [27]. Numer-

ical tests with synthetic and real network data drawn from these
application domains corroborate the effectiveness and conver-
gence of the novel decentralized algorithms, as well as their cen-
tralized performance benchmarks (Section V).
Section VI concludes the paper, while several technical de-

tails are deferred to the Appendix.
Notation: Bold uppercase (lowercase) letters will denote ma-

trices (column vectors), and calligraphic letters will be used for
sets. Operators and , will
denote transposition, matrix trace, maximum singular value,
spectral radius, Hadamard product, and Kronecker product,
respectively; will be used for the cardinality of a set, and
the magnitude of a scalar. The matrix vectorization operator

stacks the columns of matrix on top of each other to
return a supervector, and its inverse is . The diagonal
matrix has the entries of on its diagonal, and the
positive semidefinite matrix will be denoted by .
The -norm of is for .
For two matrices de-
notes their trace inner product. The Frobenious norm of matrix

is
is the spectral norm,

is the -norm, is the -norm,
and is the nuclear norm, where
denotes the -th singular value of . The identity matrix
will be represented by , while will stand for vector
of all zeros, and . Similar notations will be
adopted for vectors (matrices) of all ones.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider networked agents capable of performing some
local computations, as well as exchanging messages among di-
rectly connected neighbors. An agent should be understood as
an abstract entity, e.g., a sensor in aWSN, or a router monitoring
Internet traffic. The network is modeled as an undirected graph

, where the set of nodes corresponds
to the network agents, and the edges (links) in
represent pairs of agents that can communicate. Agent
communicates with its single-hop neighboring peers in , and
the size of the neighborhood will be henceforth denoted by .
To ensure that the data from an arbitrary agent can eventually
percolate through the entire network, it is assumed that:

(a1) Graph is connected; i.e., there exists a (possibly)
multi-hop path connecting any two agents.

With reference to the low-rank and sparse matrix recovery
problem outlined in Section I, in the network setting envisioned
here each agent acquires a few incomplete and noise-
corrupted rows of matrix . Specifically, the local
data available to agent is matrix , where

, and
. The index pairs in are those in for which the

row index matches the rows of observed by agent . Ad-
ditionally, suppose that agent has available the local matrix

, containing a row subset of associated with the
observed rows in , i.e., . With regards
to the decision variables, partition also

similar to and , where .
Agents collaborate to form the wanted estimator (P1) in a decen-
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tralized fashion, which can be equivalently rewritten as (define

Theobjectiveof thispaper is todevelopadecentralizedalgorithm
for sparsity-regularized rank minimization via (P1), based on
in-networkprocessingof the locallyavailabledata.Thedescribed
setup naturally suggests three characteristics that the algorithm
should exhibit: c1) agent should obtain an estimate of

and , which coincides with the corresponding solution of
the centralized estimator (P1) that uses the entire data ;
c2) processingper agent should be kept as simple as possible; and
c3) the overhead for inter-agent communications should be
affordable and confined to single-hop neighborhoods.

III. DECENTRALIZED ALGORITHM FOR IN-NETWORK
OPERATION

To facilitate reducing the computational complexity and
memory storage requirements of the decentralized algorithm
sought, it is henceforth assumed that:

(a2) The decision variable in (P1) has rank at most .
Analysis with real Internet traffic data reveals that origin-to-

destination flow traffic matrices have ; hence,
one can safely choose [25]. In addition, recall that the
rank of the solution in (P1) is controlled by the choice of
, and can be made small enough for sufficiently large . As

argued next, the smaller the value of , the more efficient the
algorithm becomes.
Because , (P1)’s search space is effectively re-

duced and one can factorize the decision variable as ,
where and are and matrices, respectively.
Adopting this reparametrization of in (P1), and defining

, one obtains
the following equivalent optimization problem

which is non-convex due to the bilinear terms , and
. The number of variables is reduced from

in (P1), to in (P2). The savings can be
significant when is in the order of a few dozens, and both and
are large. The dominant -term in the variable count of (P2)

is due to , which is sparse and can be efficiently handled even
when both and are large. Problem (P2) is still not amenable
to decentralized implementation due to: (i) the non-separable
nuclear norm present in the cost function; and (ii) the global
variables and coupling the per-agent summands.

A. A Separable Nuclear Norm Regularization

To address (i), consider the following neat characterization of
the nuclear norm [34], [39]

(3)

For an arbitrary matrix with SVD , the min-
imum in (3) is attained for and .
The optimization (3) is over all possible bilinear factorizations
of , so that the number of columns of and is also a vari-
able. Leveraging (3), the following reformulation of (P2) pro-

vides an important first step towards obtaining a decentralized
estimator:

Under (a2) and building on (3), it readily follows that the sepa-
rable Frobenius-norm regularization in (P3) comes with no loss
of optimality, meaning that (P1) and (P3) admit identical solu-
tions. This equivalence ensures that by finding the global min-
imum of (P3) (which can have significantly fewer variables than
(P1)), one can recover the optimal solution of (P1). However,
since (P3) is non-convex, it may have stationary points which
need not be globally optimal. Interestingly, the next proposition
offers a global optimality certificate for the stationary points of
(P3). For a proof, see Appendix A.
Proposition 1: Let be a stationary point of (P3).

If (no subscript in signifies
spectral norm), then is the globally op-
timal solution of (P1).
Note that the noise variance certainly affects the value of

, and thus satisfaction of the qualifi-
cation inequality in Proposition 1.
Remark 1 (Proposition 1 in Context): The ideas leading to

Proposition 1 were sparked by the results of [10], which intro-
duced the bilinear factorization as a viable alternative
for rank relaxation in semidefinite programming. Noteworthy
extensions include learning operators with spectral regulariza-
tion [3], and rank minimization with the nuclear-norm [34].
However, relative to [3], [10], [34] Proposition 1 has differences
and makes distinct contributions. Unlike [3] and [34] which
deal with smooth cost functions, the -norm regularization pro-
moting sparsity in renders the cost of (P3) non-smooth. Dif-
ferent from [10], Proposition 1 links the stationary points of
the non-convex (P3) with the global optima of (P1). (Instead,
[10] relates local minima of a related non-convex problem with
global optima of its convex counterpart). This difference bears
practical importance since most iterative solvers of non-convex
problems such as (P3), can at most guarantee solutions that are
stationary points.

B. Local Variables and Consensus Constraints

To decompose the cost function in (P3), in which summands
are coupled through the global variables and (cf. (ii) at
the beginning of this section), introduce auxiliary variables

representing local estimates of per
agent . These local estimates are utilized to form the separable
constrained minimization problem

For reasons that will become clear later on, additional vari-
ables were introduced to split the -norm fitting-
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error part of the cost of (P4), from the -norm regularization
on the (cf. Remark 4). These extra variables are not
needed if . The set of additional constraints

ensures that, in this sense, nothing changes in going from
(P3) to (P4). Most importantly, (P3) and (P4) are equivalent op-
timization problems under (a1). The equivalence should be un-
derstood in the sense that and
likewise for , where and are the op-
timal solutions of (P4) and (P3), respectively. Of course, the
corresponding estimates of will coincide as well. Even though
consensus is a fortiori imposed within neighborhoods, it extends
to the whole (connected) network and local estimates agree on
the global solution of (P3). To arrive at the desired decentral-
ized algorithm, it is convenient to reparametrize the consensus
constraints in (P4) as

(4)

(5)

where are auxiliary optimization
variables that will be eventually eliminated.

C. The Alternating-Direction Method of Multipliers

To tackle the constrained minimization problem (P4), asso-
ciate Lagrange multipliers with the splitting constraints

. Likewise, associate additional dual vari-
ables and ( and ) with the first pair of con-
sensus constraints in (4) [respectively (5)]. Next introduce the
quadratically augmented Lagrangian function

(6)

where is a positive penalty coefficient, and the primal vari-
ables are split into three groups

, and .
For notational convenience, collect all multipliers in

. Note that the re-
maining constraints in (4) and (5), namely

, have not been dualized.
To minimize (P4) in a decentralized fashion, a variation of

the alternating-direction method of multipliers (ADMM) will

be adopted here. The ADMM is an iterative augmented La-
grangian method especially well-suited for parallel processing
[7], which has been proven successful to tackle the optimization
tasks encountered e.g., with decentralized estimation problems
[30], [36]. The proposed solver entails an iterative procedure
comprising four steps per iteration

[S1] Update dual variables for all :

(7)

(8)

(9)

(10)

(11)

[S2] Update first group of primal variables:

(12)

[S3] Update second group of primal variables:

(13)

[S4] Update auxiliary primal variables:

(14)

This four-step procedure implements a block-coordinate de-
scent method with dual variable updates. At each step of
minimizing the augmented Lagrangian, the variables not being
updated are treated as fixed and are substituted with their most
up-to-date values. Different from ADMM, the alternating-min-
imization step here generally cycles over three groups of primal
variables – (cf. two groups in ADMM [6]). In some special
instances detailed in Section IV.C, cycling over two groups of
variables only is sufficient. In [S1], is the step size of the
subgradient ascent iterations (7)–(11). While it is common in
ADMM implementations to select , a distinction between
the step size and the penalty parameter is made explicit here in
the interest of generality.
Reformulating the estimator (P1) to its equivalent form (P4)

renders the augmented Lagrangian in (6) highly decomposable.
The separability comes in two flavors, both with respect to the
variable groups , and , as well as across the network
agents . This in turn leads to highly parallelized, simpli-
fied recursions corresponding to the aforementioned four steps.
Specifically, it is shown in Appendix B that if the multipliers
are initialized to zero, [S1]–[S4] constitute the decentralized al-
gorithm tabulated under Algorithm 1. In addition, define the
soft-thresholding matrix with -th entry given by

, where denotes the -th
entry of .
Remark 2 (Simplification of Redundant Variables):

Careful inspection of Algorithm 1 reveals that the in-
herently redundant auxiliary variables and multipliers

have been eliminated. Agent
does not need to separately keep track of all its non-redun-

dant multipliers , but only to update their
respective (scaled) sums and

.
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Algorithm 1: ADMM solver per agent

input

initialize
, and at random

for do

Receive from neighbors

[S1] Update local dual variables:

[S2] Update first group of local primal variables:

[S3] Update second group of local primal variables:

[S4] Update auxiliary local primal variables:

Broadcast to neighbors

end for

return

Remark 3 (Computational and Communication Cost): The
main computational burden of the algorithm stems from
solving unconstrained quadratic programs locally to update

, and to carry out simple soft-thresholding oper-
ations to update . On a per-iteration basis, network agents
communicate their updated local estimates
with their neighbors, to carry out the updates of the primal and
dual variables during the next iteration. Regarding communi-
cation cost, is a matrix and its transmission does
not incur significant overhead when is small. In addition,
the matrix can be communicated efficiently
after few iterations required to consent on the common support
(especially when the local estimates are initialized to zero).
Observe that the dual variables need not be exchanged.
Remark 4 (General Sparsity-Promoting Regularization):

Even though was adopted in (P1) to encourage spar-
sity in the entries of , the algorithmic framework here can
accommodate more general structured sparsity-promoting

penalties . To maintain the per-agent computational com-
plexity at affordable levels, the minimum requirement on the
admissible penalties is that the proximal operator

(15)

is given in terms of vector or (and) scalar soft-thresholding op-
erators. In addition to the -norm (Lasso penalty), this holds for
the sum of row-wise -norms (group Lasso penalty [40]), or, a
linear combination of the aforementioned two—the so-termed
hierarchical Lasso penalty that encourages sparsity across and
within the rows of [38]. All this is possible since by intro-
ducing the cost-splitting variables , the local sparse matrix
updates are for suitable (see
Appendix B). Relying on similar ideas, proximal-splitting algo-
rithms have been successfully adopted for various signal pro-
cessing tasks [19], and for parallel optimization [18].
When employed to solve non-convex problems such as (P4),

ADMM (or its variant used here) offers no convergence guar-
antees. However, there is ample experimental evidence in the
literature that supports empirical convergence of ADMM, es-
pecially when the non-convex problem at hand exhibits “favor-
able” structure. For instance, (P4) is bi-convex and gives rise to
the strictly convex optimization subproblems (12)–(14), which
admit unique closed-form solutions per iteration. This obser-
vation and the linearity of the constraints endow Algorithm 1
with good convergence properties—extensive numerical tests
including those presented in Section V demonstrate that this
is indeed the case. While a formal convergence proof goes be-
yond the scope of this paper, the following proposition proved
in Appendix C asserts that upon convergence, Algorithm 1 at-
tains consensus and global optimality.
Proposition 2: If the sequence of iterates

generated byAlgorithm 1 converge
to , and (a1) holds, then: i)

; and ii) if , then
and ,where is theglobaloptimumof(P1).

IV. APPLICATIONS

This section outlines a few applications that could benefit
from the decentralized sparsity-regularized rank minimization
framework described so far. In each case, the problem state-
ment calls for estimating low-rank and (or) sparse , given
decentralized data adhering to an application-dependent model
subsumed by (2). Customized algorithms are thus obtained as
special cases of the general iterations in Algorithm 1.

A. Unveiling Traffic Anomalies in Backbone Networks

In the backbone of large-scale networks, origin-to-desti-
nation (OD) traffic flows experience abrupt changes which
can result in congestion, and limit the quality of service pro-
visioning of the end users. These so-termed traffic volume
anomalies could be due to external sources such as network
failures, denial of service attacks, or, intruders which hijack the
network services [25]. Unveiling such anomalies is a crucial
task in engineering network traffic. This is a challenging task
however, since the available data are usually high-dimensional
noisy link-load measurements, which comprise the superposi-
tion of unobservable OD flows as explained next.
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The network is modeled as in Section II, and transports a set
of end-to-end flows (with ) associated with spe-
cific OD pairs. For backbone networks, the number of network
layer flows is typically much larger than the number of phys-
ical links . Single-path routing is considered here to
send the traffic flow from an origin to its intended destination.
Accordingly, for a particular flow multiple links connecting the
corresponding OD pair are chosen to carry the traffic. Sparing
details that can be found in [29], the traffic
carried over links and measured at time instants
can be compactly expressed as

(16)

where the fat routing matrix is fixed
and given, denotes the unknown “clean” traffic
flows over the time horizon of interest, and col-
lects the traffic volume anomalies. These data are decentralized.
Agent acquires a few rows of corresponding to the link-load
traffic measurements from its outgoing links, and
has available its local routing table which indicates the OD
flows routed through . Assuming a suitable ordering of links,
the per-agent quantities relate to their global counterparts in (16)
through and .
Common temporal patterns among the traffic flows in addi-

tion to their periodic behavior, render most rows (respectively
columns) of linearly dependent, and thus typically has low
rank [25]. Anomalies are expected to occur sporadically over
time, and only last for short periods relative to the (possibly
long) measurement interval . In addition, only a small frac-
tion of the flows are supposed to be anomalous at any given
time instant. This renders the anomaly matrix sparse across
rows and columns. Given local measurements and
the routing tables , the goal is to estimate in a de-
centralized fashion, by capitalizing on the sparsity of and the
low-rank property of . Since the primary goal is to recover ,
define which inherits the low-rank property from ,
and consider (cf. (16))

(17)

Model (17) is a special case of (2), when all the entries of
are observed, i.e., . Note that

is not sparse even though is itself sparse, hence principal
components pursuit is not applicable here [42]. Instead, the fol-
lowing estimator is adopted to unveil network anomalies [29]

which is subsumed by (P1). Accordingly, a decentralized
algorithm can be readily obtained by simplifying the general
iterations under Algorithm 1, the subject dealt with next.
Decentralized Algorithm for Unveiling Network
Anomalies (DUNA). For the specific case here in which

, the residuals in Algorithm 1
reduce to .
Accordingly, toupdate theprimalvariables
and as per Algorithm 1, one needs to solve respective
unconstrained strictly convex quadratic optimization problems.
These admit closed-form solutions detailed under Algorithm 2.

Algorithm 2: DUNA per agent

input

initialize
, and at random

for do

Receive from neighbors

[S1] Update local dual variables:

[S2] Update first group of local primal variables:

I

[S3] Update second group of local primal variables:

[S4] Update auxiliary local primal variables:

Broadcast to neighbors

end for

return

TheDUNAupdates of the local anomalymatrices are
given in terms of soft-thresholding operations, as in Algorithm 1.
Conceivably, the number of flows can be quite large, thus

inverting the matrix to update
could be complex computationally. Fortunately, the inversion
needs to be carried out once, and can be performed and cached
off-line. In addition, to reduce the inversion cost, the SVD of the
local routing matrices can be obtained
first, and the matrix inversion lemma can be subsequently em-
ployed to obtain ,

where and .
This computational shortcut is commonly adopted in statistical
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learning algorithms when ridge regression estimates are sought,
and the number of variables is much larger than the number
of elements in the training set [21, Ch. 18]. During the oper-
ational phase of the algorithm, the main computational burden
of DUNA comes from repeated inversions of (small) ma-
trices, and parallel soft-thresholding operations. The communi-
cation overhead is identical to the one incurred by Algorithm 1
(cf. Remark 3).
Remark 5 (Incomplete Link Traffic Measurements): In gen-

eral, one can allow for missing traffic data and the DUNA up-
dates are still expressible in closed form.

B. In-Network Robust Principal Component Analysis

Principal component analysis (PCA) is the workhorse of
high-dimensional data analysis and dimensionality reduc-
tion, with numerous applications in statistics, networking,
engineering, and the biobehavioral sciences; see, e.g., [24].
Nowadays ubiquitous e-commerce sites, complex networks
such as theWeb, and urban traffic surveillance systems generate
massive volumes of data. As a result, extracting the most infor-
mative, yet low-dimensional structure from high-dimensional
datasets is of paramount importance [21].
Data obeying postulated low-rank models include also out-

liers, which are samples not adhering to those nominal models.
Unfortunately, similar to LS estimates PCA is very sensitive to
the outliers [24]. While robust approaches to PCA are available,
recently polynomial-time algorithms with remarkable perfor-
mance guarantees have emerged for low-rank matrix recovery
in the presence of sparse - but otherwise arbitrarily large—errors
[11], [15], [42]. Robust PCA is of great interest in networking-
related applications. One can think of decentralized estimation
using reduced-dimensionality sensor observations [36], and un-
veiling anomalous flows in backbone networks from Netflow
data [2]; see also Section V.B.
In the network setting of Section II, each agent ac-

quires outlier-plus-noise corrupted rows of matrix
, where . Local data can thus be

modeled as , where
has low rank. Agents want to estimate (and the outliers )
in a decentralized fashion by forming the global estimator [42]

(18)

which is once more a special case of (P1) when .
Decentralized Robust Principal Component Analysis
(DRPCA) Algorithm. Regarding the general decentralized
formulation in (P4), the first constraint is no longer needed since

(cf. the discussion after (P4)). As agent is interested
in estimating , and is separable over the rows of ,
the only required constraints are .
These are associated with the dual variables per agent, and
are updated according to Algorithm 3. All in all, each agent
stores and recursively updates the primal variables ,
along with the matrix .
Mimicking the procedure that led to Algorithm 1, one finds

that primal variable updates in DRPCA are expressible in closed

Algorithm 3: DRPCA algorithm per agent

input
initialize , and
at random.

for do

Receive from neighbors

[S1] Update local dual variables:

[S2] Update first group of local primal variables:

[S2] Update second group of local primal variables:

[S3] Update third group of local primal variables:

Broadcast to neighbors

end for

return

form. In particular, the local outlier matrix minimizes
the Lasso cost

and is given in terms of soft-thresholding operations as seen in
Algorithm 3 (observe that

, where is defined in (15)).
DRPCA iterations are simple with small matrices in-

verted per iteration to update and (see Algorithm 3). Re-
garding communication cost, each agent only broadcasts a
matrix to its neighbors.

C. Decentralized Low-Rank Matrix Completion

The ability to recover a low-rank matrix from a subset of
its entries is the leitmotif of recent advances for localization
of wireless sensors [32], Internet traffic analysis [27], [41], and
preference modeling for recommender systems [4]. In the low-
rank matrix completion problem, given a limited number of
(possibly) noise corrupted entries of a low-rank matrix , the
goal is to recover the entire matrix while denoising the observed
entries, and accurately imputing the missing ones.
In the network setting envisioned here, agent has

available incomplete and noise-corrupted rows of
. Local data can thus be modeled as
. Relying on in-network processing, agents aim

at completing their own rows by forming the global estimator

(19)
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Algorithm 4: DMC algorithm per agent

Input

Initialize , and at random

for do

Receive from neighbors

[S1] Update local dual variables:

[S2] Update first group of local primal variables:

[S3] Update second group of local primal variables:

Broadcast to neighbors

end for

Return

which exploits the low-rank property of through nuclear-
norm regularization. Estimator (19) was proposed in [12], and
solved centrally whereby all data is available to feed
e.g., an off-the-shelf semidefinite programming (SDP) solver.
The general estimator in (P1) reduces to (19) upon setting

and . Hence, it is possible to derive a decentral-
ized algorithm for low-rank matrix completion by specializing
Algorithm 1 to the setting here.
Before discussing the algorithmic details, a brief paren-

thesis is in order to touch upon properties of local sam-
pling operators. Operator is a linear orthogonal pro-
jector, since it projects its matrix argument onto the sub-
space of matrices
with support contained in . Linearity of implies that

, where is a
symmetric and idempotent projection matrix that will prove
handy later on. To characterize , introduce an
masking matrix whose -th entry equals one when

, and zero otherwise. Since ,
from standard properties of the operator it follows that

.
Decentralized Matrix Completion (DMC) Algorithm. Going
back to the general decentralized formulation in (P4), since there
is no sparse component in the matrix completion problem
(19), the only constraints that remain are

. These correspond to the dual variables per
agent, and are updated as shown in Algorithm 4.

In the absence of and the auxiliary variables
, it suffices to cycle over two groups of primal

variables to arrive at the DMC iterations. The primal variable
updates can be readily obtained by capitalizing on the proper-
ties of the operator. In particular, Algorithm 1 indicates
that the recursions for are given by (let )

(20)

Likewise, is updated by solving the following subproblem
per iteration (let )

Both (20) and (21) are unconstrained convex quadratic prob-
lems, which admit the closed-form solutions tabulated under
Algorithm 4.
The per-agent computational complexity of the DMC algo-

rithm is dominated by repeated inversions of and
matrices to obtain and , respectively,

andmatrix multiplications to update and (cf.
Algorithm 4). Notice that has block-diag-
onal structure with blocks of size . Overall, the per-iteration
complexity across the network is upper bounded by ,
which grows linearly with the network size. This is affordable
since in practice is typically small for a number of applications
of interest (cf. the low-rank assumption). In addition, , the
number of row vectors acquired per agent, and , the number
of time instants for data collection, can be controlled by the de-
signer to accommodate a prescribed maximum computational
complexity. One can also benefit from the decomposability of
(21) and (20) across rows of and , respectively, and paral-
lelize the row updates. This way, one only needs to invert
matrices. On a per-iteration basis, network agents communicate
their updated local estimates only with their neighbors,
in order to carry out the updates of primal and dual variables
during the next iteration. In terms of communication cost,
is a matrix and its transmission does not incur significant
overhead for small values of . Observe that the dual variables

need not be exchanged, and the overall communication
cost does not depend on the network size .

V. NUMERICAL TESTS

This section corroborates convergence and gauges perfor-
mance of the proposed algorithms, when tested on the appli-
cations of Section IV using synthetic and real network data.
Synthetic network data. A network of agents is con-
sidered as a realization of the random geometric graph model,
that is, agents are randomly placed on the unit square and two
agents communicate with each other if their Euclidean distance
is less than a prescribed communication range of ;
see Fig. 1. The network graph is bidirectional and comprises
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Fig. 1. A network of agents.

links, and OD flows. The
entries of are independent and identically distributed (i.i.d.),
zero-mean, Gaussian with variance ; i.e., .
Low-rank matrices with rank are generated from the bilinear
factorization model , where and are
and matrices with i.i.d. entries drawn from Gaussian dis-
tributions and , respectively. Every
entry of is randomly drawn from the set with

. Unless otherwise
stated, and are used throughout.
Different values of , and are examined.
Internet2 network data. Real data including OD flow traffic
levels and end-to-end latencies are collected from the opera-
tion of the Internet2 network (Internet backbone network across
USA) [1]. Both versions of the Internet2 network, referred as v1
and v2, are considered. OD flow traffic levels are recorded for
a three-week operation of Internet2-v1 during Dec. 8–28, 2003
[25], and are used to assess performance of DUNA and DRPCA
(see Sections V.A and V.B next). Internet2-v1 contains
agents, links, and flows. To test the DMC algo-
rithm, end-to-end flow latencies are collected from the operation
of Internet2-v2 during Aug. 18–22, 2011 [1]. The Internet2-v2
network comprises agents, links, and
flows.
Selectionof tuningparameters. The sparsity- and rank-control-
lingparameters and are tuned tooptimizeperformance.The
optimality conditions for (P1) indicate that for
and is the unique op-
timal solution. This in turn confines the search space for and
to the intervals and , respectively. In

addition, for the case of matrix completion and robust PCA one
can use the heuristic rules proposed in e.g., [12] and [11].

A. Unveiling Network Anomalies

Data is generated from , where the
routing matrix is obtained after determining shortest-path
routes of the OD flows. For , DUNA is run
until convergence is attained. These values were experimentally
chosen to obtain the fastest convergence rate. The time evolu-
tion of consensus among agents is depicted in Fig. 2 (top), for
representative agents in the network. The metric of interest here
is the relative error per agent ,
which compares the corresponding local estimate with the net-
work-wide average ; and likewise for

Fig. 2. Performance of DUNA. (Top) Relative consensus error for representa-
tive network agents with and . (Bottom) Relative estimation
error for decentralized and centralized algorithms under various sparsity levels.

the . Fig. 2 (top) shows that DUNA converges and agents
consent on the global matrices as .
To corroborate that DUNA attains the centralized perfor-

mance, the accelerated proximal gradient algorithm of [29] is
employed to solve (P1) after collecting all the per-agent data
in a central processing unit. For both the decentralized and
centralized schemes, Fig. 2 (bottom) depicts the evolution of
the relative error for various sparsity
levels, where for DUNA. It is apparent that
the decentralized estimator approaches the performance of its
centralized counterpart, thus corroborating convergence and
global optimality as per Proposition 2.
Unveiling Internet2-v1 network anomalies from SNMP
measurements. Given the OD flow traffic measurements
discussed at the beginning of Section V, the link loads in
are obtained through multiplication with the Internet2-v1

routing matrix [1]. Even though is “constructed” here from
flow measurements, link loads can be typically acquired from
simple network management protocol (SNMP) traces [26].
The available OD flows are a superposition of “clean” and
anomalous traffic, i.e., the sum of unknown “ground-truth”
low-rank and a sparse matrices adhering to (16) when

. Therefore, the proposed algorithms are applied first
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Fig. 3. Unveiling anomalies from Internet2-v1 SNMP data. (Top) ROC curves
of the proposed versus the PCA-based method. (Bottom) Amplitude of the true
and estimated anomalies for and .

to obtain a reasonably precise estimate of the “ground-truth”
. The estimated exhibits three dominant singular

values, confirming the low-rank property of .
The receiver operation characteristic (ROC) curves in

Fig. 3 (top) highlight the merits of (P1) when used to identify
Internet2-v1 network anomalies. Even at low false alarm rates
of e.g., , the anomalies are accurately detected

. In addition, DUNA consistently outperforms the
landmark PCA-based method of [25], and can identify multiple
anomalous flows. Fig. 3 (bottom) illustrates the magnitude of
the true and estimated anomalies across flows and time.

B. Robust PCA

Next, the convergence and effectiveness of the proposed
DRPCA algorithm is corroborated with the aid of computer
simulations. An data matrix is generated as

, and the centralized estimator (18) is obtainedusing
the ADMM method proposed in [11]. In the network setting,
each agent has available rows of . Fig. 2 (bottom) is
replicated as Fig. 4 (top) for the robust PCA problem dealt with
here, and for different values of (the assumed upper bound
on rank ). It is again apparent that DRPCA converges and
approaches the performance of (18) as .

Fig. 4. Performance of DRPCA. (Top) Relative estimation error for decentral-
ized and centralized algorithms under different . (Bottom) Amplitude of true
and estimated anomalies using Internet2-v1 network data when

and .

Unveiling Internet2-v1 network anomalies from Netflow
measurements. Suppose a router monitors the traffic
volume of OD flows to unveil anomalies using e.g., the Net-
flow protocol [2]. Collect the time-series of all OD flows as
the rows of the matrix , where

and account for anomalies and noise, respectively. As
elaborated in Section IV.A, the common temporal patterns
across flows renders the traffic matrix low-rank. Owing to
the difficulties of measuring the large number of OD flows, in
practice only a few entries of are typically available [26],
or, link traffic measurements are utilized as in Section IV.A
(recall that ). In this example, because the Internet2-v1
network data comprises only flows, it is assumed that

.
To better assess performance, large spikes are injected into

one percent randomly selected entries of the ground truth-traffic
matrix estimated in Section V.A. The DRPCA algorithm
is run on this Internet2-v1 Netflow data to identify the anom-
alies. The results are depicted in Fig. 4 (bottom). DRPCA ac-
curately identifies the anomalies, achieving when

.
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Fig. 5. Performance of DMC. (Top) Relative estimation error for decentral-
ized and centralized algorithms under various noise strengths and percentage of
available entries. (Bottom) Predicted and true end-to-end delays of Internet2-v2
network for .

C. Low-Rank Matrix Completion

In addition to the synthetic data specifications outlined at the
beginning of this section, the sampling set is picked uniformly
at random, where each entry of the matrix is a Bernoulli
random variable taking the value one with probability .
Data for the matrix completion problem is thus generated as

, where is an
matrix with . The data available to agent

is , which corresponds to a row subset of .
As with the previous test cases, it is shown first that the DMC

algorithm converges to the (centralized) solution of (19). To
this end, the centralized singular value thresholding algorithm
is used to solve (19) [13], when all data is available
for processing. For both the decentralized and centralized
schemes, Fig. 5 (top) depicts the evolution of the relative
error for different values of (noise
strength), and percentage of missing entries (controlled by ).
Regardless of the values of and , the error trends clearly
show the convergent behavior of the DMC algorithm and
corroborate Proposition 2. Interestingly, for small noise levels

where the estimation error approaches zero, the decentralized
estimator recovers almost exactly.
Internet2-v2 network latency prediction. End-to-end network
latency information is critical towards enforcing quality-of-ser-
vice constraints in many Internet applications. However,
probing all pairwise delays becomes infeasible in large-scale
networks. If one collects the end-to-end latencies of source-sink
pairs in a delay matrix , strong de-
pendencies among path delays render low-rank [27]. This is
mainly because the paths with nearby end nodes often overlap
and share common bottleneck links. This property of along
with the decentralized-processing requirements of large-scale
networks, motivates well the adoption of the DMC algorithm
for networkwide path latency prediction. Given the -th row
of is partially available to agent , the goal is to impute the
missing delays through agent collaboration.
The DMC algorithm is tested here using the real path latency

data collected from the operation of Internet2-v2. Spectral
analysis of reveals that the first four singular values are
markedly dominant, demonstrating that is low rank. A
fraction of the entries in are purposely dropped to yield
an incomplete delay matrix . After running the DMC
algorithm, the true and predicted latencies are depicted in
Fig. 5 (bottom) (for 20% missing data). The relative prediction
error is around 10%.

D. Comparison With Centralized Processing

As a means of offering additional design insights, this section
presents performance tradeoffs that become relevant as the net-
work size increases. Specifically, comparisons in terms of run-
ning time are carried out with respect to the centralized pro-
cessing benchmark (P1). Throughout, a network modeled as
a square grid (uniform lattice) with agents per row/column
(i.e., total agents) is adopted. The lattice exhibits a
more uniform degree distribution than the random geometric
graph, since the only possible degree values are , re-
gardless of . The DRPCA algorithm is tested with data gener-
ated as outlined in Section V.B. Relevant parameter choices are

.
To gauge running times as the network grows, consider a

fixed size data matrix with . The
rows of are split among agents so that each agent has avail-
able rows. This way comparisons can be carried out on
equal footing because even when network sizes differ, the same
network-wide problem is solved.
The evolution of the relative estimation error for the DRPCA

algorithm under various network sizes is depicted
in Fig. 6. The error is plotted both against iteration index and
CPU time. The centralized benchmark offered by the ADMM-
based algorithm in [11], is adopted to solve (P1) for the robust
PCA special case. Convergence time of the decentralized algo-
rithm is competitive with its centralized counterpart for small-
size networks ( agents). It is apparent that as the net-
work size increases, convergence becomes slower as local data
need to percolate the entire (larger) network, under the con-
straint of single-hop message exchanges. It is worth noting that
the results in Fig. 6 were obtained using simple (by no means
performance-optimized) Matlab scripts for Algorithm 3. Natu-
rally, there is considerable room for improvement in terms of
software implementation.
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Fig. 6. Relative DRPCA estimation error versus iteration index and CPU time,
under different network sizes when , and .

Remark 6 (In-Network Versus Centralized): Albeit a fusion
center (FC)-based solver may incur less run time, there are
well-documented advantages favoring decentralized algo-
rithms when it comes to signal and information processing over
large-scale networks; see e.g., [5]. Three design considerations
advocating decentralized in-network over FC-based imple-
mentations are: i) robustness against single-agent (FC) failure;
ii) reduction of noise affecting inter-agent exchanges is more
effective when communicating local estimates rather than raw
data with the FC [31]; and iii) higher communication overhead
is incurred by FC-based schemes when agents implement
time-adaptive (online) signal processing algorithms. Of course,
all these factors are application dependent and it is up to the
network operator to adopt the algorithm that best suits the given
specifications and resource constraints.

VI. CONCLUDING SUMMARY

A framework for decentralized sparsity-regularized rank
minimization is developed in this paper, that is suitable for (un)
supervised inference tasks carried over networks. By resorting
to the ADMM and an alternative characterization of the nuclear
norm (originally proposed to relax matrix rank constraints in
semidefinite programs), the novel decentralized algorithm, if
convergent, provably attains the performance of the centralized
benchmark. Fundamental problems such as in-network com-
pressed sensing, matrix completion, and principal component
pursuit, are all captured under the same umbrella.
With regards to applications, focus is placed on key network

health monitoring tasks geared to obtaining full yet succinct rep-
resentation of network metrics, such as end-to-end path delays,
as well as prompt and accurate identification of network anoma-
lies from possibly partial and corrupted measurements. Numer-
ical tests with synthetic and real network data drawn from these
application domains corroborate the effectiveness and conver-
gence of the novel decentralized algorithm, and its centralized
performance guarantees. Regarding network anomaly identifi-
cation, the formulation here jointly exploits the spatiotemporal
correlations in the link traffic as well as the sparsity of the anom-
alies, through an optimal single-shot estimation-detection pro-

cedure that markedly outperforms the sparsity-agnostic work-
horse PCA-based method of [25].
An interesting future direction is to devise and analyze the

performance of decentralized online algorithms for sparsity-reg-
ularized rank minimization, capable of processing network data
in real time. In this context, exciting possibilities emerge by
bringing together recent advances in online rank-minimization
[28], [35], and decentralized adaptive algorithms developed for
estimation and tracking over networks [31], [37]. In addition, it
is of interest to rigorously establish convergence of Algorithm 1.
Such results couldmarkedly broaden the applicability ofADMM
for large-scale optimization over networks, even in the presence
ofnon-convexbuthighly structured andseparable cost functions.

APPENDIX

A. Proof of Proposition 1

Recall the cost function of (P3) defined as

(22)

The stationary points of (P3) are obtained by setting
to zero the (sub)gradients, and solving [9]

(23)

(24)

(25)

Clearly, every stationary point satisfies
and . It follows from the op-

timality conditions (23)–(25) that

(26)

(27)
Define , and consider
now the following convex optimization problem

(28)

which is equivalent to (P1). The equivalence can be readily in-
ferred by minimizing (P5) with respect to first, and
taking advantage of the following alternative characterization
of the nuclear norm (see e.g., [34])

In what follows, the optimality conditions for the conic program
(P5) are explored. To this end, the Lagrangian is first formed as

where denotes the dual variables associated with the conic
constraint (28). For notational convenience, partition in four



5386 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 21, NOVEMBER 1, 2013

blocks , and
, in accordance with the block structure of

in (28), where and are and matrices. The
optimal solution to (P5) must: (i) null the (sub)gradients

(29)

(30)

(31)

(32)

and satisfy (ii) the complementary slackness condition
; (iii) primal feasibility ; and (iv)

dual feasibility .
Recall the stationary point of (P3), and introduce candidate

primal variables and
; and the dual variables

, and .Then, (i)
holds sinceafter plugging thecandidateprimal anddualvariables
in (29)–(32), the subgradients vanish. Moreover, (ii) holds since

where the last two equalities follow from (27). Condition (iii) is
also met since

(33)

To satisfy (iv), based on a Schur complement argument [22] it
suffices to enforce .

B. Derivation of Algorithm 1

It is shown here that [S1]–[S4] in Section III.C give rise to
the set of recursions tabulated under Algorithm 1. To this end,
recall the augmented Lagrangian function in (6) and focus first
on [S4]. From the decomposable structure of , (14) decouples
into simpler strictly convex sub-problems for and
, namely

(34)

(35)

(36)

Note that in formulating (35) and (36), the auxiliary variables
and were eliminated using the constraints

and , respectively. The unconstrained quadratic
problems (35) and (36) admit the closed-form solutions

(37)

(38)

Using (37) to eliminate and from (8) and (9) re-
spectively, a simple induction argument establishes that if the
initial Lagrange multipliers obey ,
then for all , where and

. Likewise, the same holds true for and .
The collection of multipliers is thus re-
dundant, and (37)–(38) simplify to

(39)

(40)

Observe that and for all
, identities that will be used later on. By plugging (39) and

(40) into (8) and (10) respectively, the non-redundant multiplier
updates become

(41)

(42)

If , then the structure of (41) reveals
that for all , where and
. Clearly, the same holds true for , and these identities

will become handy in the sequel.
Moving on to [S3], (13) decouples into unconstrained

quadratic sub-problems

The minimization (12) in [S2] also decomposes into simpler
sub-problems, both across agents and across the variables

and , which are decoupled in the aug-
mented Lagrangian when all other variables are fixed. Specifi-
cally, the per agent updates of are given by

(43)

where the corresponding update in the Algorithm 1 was ob-
tained after using: i) which follows from the
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identities and estab-
lished earlier; ii) the definition ;
and iii) the identity , which allows to merge
the identical quadratic penalty terms and eliminate both
and using (39).
Upon defining and following

similar steps as the ones that led to (43), one arrives at

This problem now is a separable instance of the Lasso (also re-
lated to the proximal operator of the -norm); hence, its solu-
tion is expressible in terms of the soft-thresholding operator as
in Algorithm 1.

C. Proof of Proposition 2

Let , and likewise for all other con-
vergent sequences in Algorithm 1. Examination of the recursion
for in the limit as , reveals that

. Upon vectorizing the matrix quanti-
ties involved, this system of equations implies that the super-
vector belongs to the nullspace
of , where is the Laplacian of the network graph

. Under (a1), this guarantees that
. From the analysis of the limiting behavior of , the

same argument leads to , which estab-
lishes the consensus results in the statement of Proposition 2.
Hence, one can go ahead and define and .
Before moving on, note that convergence of implies that

. These observations guarantee that the
limiting solution is feasible for (P4).
To prove the optimality claim it suffices to show that upon

convergence, the fixed point of the iterations
comprising Algorithm 1 satisfies the Karush-Kuhn-Tucker
(KKT) optimality conditions for (P4). Proposition 1 asserts
that if is indeed an
optimal solution to (P1). To this end, consider the updates of
the primal variables in Algorithm 1, which satisfy

(44)

(45)

(46)

Taking the limit from both sides of (44)–(46), and summing up
over all yields

(47)

(48)

(49)

where . To arrive at
(47), the assumption that is used,
and thus which leads to

.
Next, consider the auxiliary matrices

. In the limit as , the update
recursion for in Algorithm 1 can be written as

. Proceed by defining
, and observe that the input-output relationship

of the soft-thresholding operator yields

(50)

Given (50), define and
, and show that they satisfy the fol-

lowing properties: (i) (entrywise); (ii) ,
if ; (iii) if ; (iv)

; and (v) . Properties (i)–(iii)
follow after adding up the result in (50) for .
Property (iv) is readily checked from the definitions of and
. Finally, (v) follows since

(51)

where (from the identity ) is
used to obtain the last equality.
The proof is concluded by noticing that properties (i)–(v)

along with (47)–(49) comprise the KKT conditions for the fol-
lowing optimization problem

where and play the role of the optimal
primal and dual variables, respectively. This last problem is
clearly equivalent to (P4).
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