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Abstract— Many real-world processes evolve in cascades over
complex networks, whose topologies are often unobservable and
change over time. However, the so-termed adoption times when
blogs mention popular news items, individuals in a community
catch an infectious disease, or consumers adopt a trendy electron-
ics product are typically known, and are implicitly dependent
on the underlying network. To infer the network topology, a
dynamic structural equation model is adopted that captures the
relationship between observed adoption times and the unknown
edge weights. Assuming a slowly time-varying network and
leveraging the sparse connectivity inherent to social networks,
edge weights are estimated by minimizing a sparsity-regularized
exponentially-weighted least-squares criterion. An alternating-
direction method of multipliers solver is developed to this end,
and preliminary tests on synthetic network data corroborate the
effectiveness of the novel algorithm in unveiling the dynamically-
evolving network topology.

I. INTRODUCTION

Networks arising in natural and man-made settings provide
the backbone for the propagation of contagions such as the
spread of popular news stories, the adoption of buying trends
among consumers, and the spread of infectious diseases. For
example, a terrorist attack may be reported within minutes on
mainstream news websites. A cascade emerges because these
websites’ readership typically includes bloggers who write
about the attack as well, influencing their own readers in turn
to do the same. Although the times when “nodes” get infected
are often observable, the underlying network topologies over
which cascades propagate are typically unknown and dynamic.
Knowledge of the topology plays a crucial role for several
reasons e.g., when social media advertisers select a small
set of initiators so that an online campaign can go viral, or
when healthcare initiatives wish to infer hidden needle-sharing
networks of injecting drug users.

Inference of networks using temporal traces of infec-
tion events has recently become an active area of research.
Several prior approaches postulate probabilistic models and
leverage maximum likelihood estimation (MLE) to infer edge
weights as pairwise transmission rates between nodes [7], [6].
However, these methods assume that the network does not
change over time. A dynamic algorithm has been recently
proposed to infer time-varying diffusion networks by solving
an MLE problem via stochastic gradient descent iterations
[8]. Although successful experiments on large-scale web data
reliably uncover information pathways, the estimator in [8]
does not explicitly account for edge sparsity prevalent in social
and information networks. Moreover, most prior approaches
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only attribute node infection events to the network topology,
and do not account for the influence of external sources such
as a ground crew for a mainstream media website.

The present paper proposes a dynamic structural equation
model (SEM) for the network, which postulates that node
infection times depend on both topological and external influ-
ences. Topological influences are modeled as linear combina-
tions of infection times of other nodes in the network, whose
weights correspond to entries in the time-varying adjacency
matrix. Accounting for external influences is well motivated by
drawing upon examples from online media, where established
news websites depend more on on-site reporting than blog
references. SEMs have recently been proposed for static gene
regulatory network inference from gene expression data; see
e.g., [3] and references therein. They are attractive because of
their simplicity, and ability to capture edge directionalities.

Supposing the network varies slowly with time, parameters
in the proposed dynamic SEM are estimated adaptively by
minimizing a sparsity-promoting exponentially-weighted least-
squares (LS) criterion. To account for the inherently sparse
connectivity of social networks, an `1-norm regularization
term that promotes sparsity on the entries of the network
adjacency matrix is incorporated in the cost function; see
also [4] and [1]. A novel algorithm to jointly track the
network’s adjacency matrix and the weights capturing the
level of external influences is developed, which adaptively
minimizes the resulting non-differentiable cost function via
the alternating-direction method of multipliers (ADMoM); see
e.g., [2]. The resulting algorithm is provably convergent, and
offers closed-form updates per iteration. The remainder of the
paper is organized as follows: Section II describes the dynamic
SEM and states the network topology inference problem, while
Section III develops the proposed topology-tracking algorithm.
Section IV presents preliminary numerical tests, and Section V
concludes the paper.

Notation. Bold uppercase (lowercase) letters will denote matri-
ces (column vectors), while operators (·)> and Tr(·) will stand
for matrix transposition and trace, respectively. The N × N
identity matrix will be represented by IN ; ‖.‖p, and ‖.‖F will
denote `p and Frobenius norms, respectively.

II. NETWORK MODEL AND PROBLEM STATEMENT

Consider a dynamic network with N nodes observed over
time intervals t = 1, . . . , T , whose topology is described by an
unknown, time-varying, and weighted adjacency matrix At ∈
RN×N . Entry (i, j) of At is nonzero only if an edge connects
nodes i and j during the time interval t, as illustrated in the
8-node network in Fig. 1. Suppose C contagions propagate
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Fig. 1: Dynamic network observed across time intervals.

over the network, and the difference between infection time
of node i by contagion c and the earliest observation time
is denoted by ytic. In online media, ytic can be obtained by
recording the time when website i mentions news item c. For
uninfected nodes at slot t, ytic is set to an arbitrarily large
number. Assume that the susceptibility xic of node i to external
(non-topological) infection by contagion c is known and time
invariant over the observation interval. In the web context, xic
can be set to the search engine rank of website i with respect
to (w.r.t.) keywords associated with c.

Infection time of node i during interval t is modeled as

ytic =
∑
j 6=i

atijy
t
jc + btiixic + etic (1)

where atij denotes entry (i, j) of At, btii captures the time-
varying level of influence of external sources, and etic accounts
for measurement errors and unmodeled dynamics. Rewriting
(1) for the entire network leads to the dynamic SEM

ytc = Atytc + Btxc + etc (2)

where the N × 1 vector ytc := [yt1c, . . . , y
t
Nc]
> collects the

node infection times by contagion c during interval t, and
Bt := diag(bt11, . . . , b

t
NN ). Similarly, xc := [x1c, . . . , xNc]

>

and etc := [et1c, . . . , e
t
Nc]
>. Collecting observations for all C

contagions yields the dynamic matrix SEM

Yt = AtYt + BtX + Et (3)

where Yt := [yt1, . . . ,y
t
C ], X := [x1, . . . ,xC ], and Et :=

[et1, . . . , e
t
C ] are all N × C matrices.

Given {Yt}Tt=1 and X, the goal is to track the underlying
network topology {At}Tt=1 and the effect of external influences
{Bt}Tt=1. To this end, the novel algorithm developed in the
next section assumes slow time variation of the network
topology and leverages the inherent sparsity of edges that is
typical of social networks.

III. TOPOLOGY TRACKING ALGORITHM

This section deals with a regularized LS approach to
estimating {At,Bt} in (3). In a static setting with all mea-
surements {Yt}Tt=1 available, one solves the batch problem

{Â, B̂} = arg min
A,B

1

2

T∑
t=1

‖Yt −AYt −BX‖2F + λ‖A‖1

s. to aii = 0, bij = 0, ∀i 6= j (4)

where ‖A‖1 :=
∑
i,j |aij | is a sparsity-promoting regulariza-

tion, and λ > 0 controls the sparsity level of Â. Absence of
a self-loop at node i is enforced by the constraint aii = 0.

A. Exponentially-weighted LS estimator

In practice, measurements are typically acquired in a se-
quential manner and the sheer scale of social networks calls for
estimation algorithms with minimal storage requirements. Re-
cursive solvers enabling sequential inference of the underlying
network topology are thus preferred. Moreover, introducing
a “forgetting factor” that assigns more weight to the most
recent residuals makes it possible to track temporal variations
of the topology. For τ = 1, . . . , T , the sparsity-regularized
exponentially-weighted LS estimator

{Âτ , B̂τ} = arg min
A,B

1

2

τ∑
t=1

βτ−t‖Yt −AYt −BX‖2F

+λτ‖A‖1
s. to aii = 0, bij = 0, ∀i 6= j (5)

where β ∈ (0, 1] and βτ−t is the forgetting factor, which forms
estimates {Âτ , B̂τ} using measurements acquired until time
τ . Notice that λτ is allowed to vary with time in order to
capture the generally changing edge sparsity.

B. ADMoM solver

Exploiting the problem structure in (5), an alternating-
direction method of multipliers (ADMoM) algorithm is de-
veloped to track the network topology. Leaving the equality
constraints (aii = 0, bij = 0, ∀i 6= j) temporarily implicit
and introducing a dummy variable C ∈ RN×N , leads to the
following equality constrained optimization problem:

{Âτ , B̂τ , Ĉτ} = arg min
A,B,C

1

2

τ∑
t=1

βτ−t‖Yt −AYt −BX‖2F

+λτ‖C‖1
s. to A = C. (6)

With ρ > 0 denoting the penalty parameter and Γ the matrix
of dual variables, the augmented Lagrangian for (6) is

Lρ(A,B,C,Γ) :=
1

2

τ∑
t=1

βτ−t‖Yt −AYt −BX‖2F

+λτ‖C‖1 + Tr{Γ>(A−C)}
+
ρ

2
‖A−C‖2F . (7)

During iteration r + 1 of the ADMoM algorithm, alternating
minimization of Lρ(A,B,C,Γ) w.r.t. A, B and C, followed
by an update of the dual variables yields

Ar+1 = arg min
A

1
2

τ∑
t=1

βτ−t‖Yt −AYt −BrX‖2F

+ρ
2‖A−Cr‖2F + Tr{Γ>r (A−Cr)} (8a)

Br+1 = arg min
B

1
2

τ∑
t=1

βτ−t‖Yt −Ar+1Y
t −BX‖2F (8b)

Cr+1 = arg min
C

ρ
2‖Ar+1 −C‖2F + Tr{Γ>r (Ar+1 −C)}

+λτ‖C‖1 (8c)
Γr+1 = Γr + ρ (Ar+1 −Cr+1) . (8d)

As shown next, subproblems (8a)-(8c) can be solved in closed
form and the resulting algorithm provably converges to global
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optima for each τ [2]. Turning attention to solving for Ar+1,
note that (8a) can be recast as

Ar+1 = arg min
a1,...,aN

N∑
i=1

[
1

2
a>i (P

τ + ρIN )ai

−a>i (ρci,r + pτi − γi,r − bii,rQτxi)

]
(9)

where constant terms w.r.t. A have been dropped and a>i ,
c>i,r, and γ>i,r correspond to row i of A, Cr, and Γr re-
spectively. In addition, Pτ :=

∑τ
t=1 β

τ−tYt(Yt)>, pτi :=∑τ
t=1 β

τ−tYtyti with (yti)
> corresponding to row i of Yt, and

Qτ :=
∑τ
t=1 β

τ−tYt. Interestingly, the data-related quantities
Pτ , pτi , and Qτ can be recursively updated as follows:

Pτ = βPτ−1 + Yτ (Yτ )> (10a)
pτi = βpτ−1i + Yτyτi (10b)
Qτ = βQτ−1 + Yτ . (10c)

The quadratic cost in (9) decouples across rows of A, and can
be efficiently solved per row in parallel and in closed form.
For row i, the constraint aii = 0 is incorporated by solving

ãi,r+1 = arg min
ãi

1

2
ã>i (P

τ
i + ρIN−1)ãi − ã>i wτ

i (11)

where ãi denotes the (N−1)×1 vector obtained by removing
entry i from ai. Similarly, Pτ

i is obtained by removing row i
and column i from Pτ , and wτ

i is obtained by removing entry
i from ρci,r + pτi − γi,r − bii,rQτxi. Solving (11) yields

ãi,r+1 = (Pτ
i + ρIN−1)

−1wτ
i (12)

and row i of Ar+1 is updated by setting

a>i,r+1 = [ãi1,r+1, . . . , ãii−1,r+1, 0,

ãii,r+1, . . . , ãiN−1,r+1]. (13)

Next, setting bij = 0 for all off-diagonal entries of B, it turns
out that (8b) amounts to solving N scalar problems

arg min
b11,...,bNN

N∑
i=1

τ∑
t=1

βτ−t
[
1

2
b2iix

>
i xi − biiyti

>
xi

+biia
>
i,r+1Y

txi

]
(14)

which yields the per-entry closed-form solution

bii,r+1 =
(qτi )

>xi − a>i,r+1Q
τxi

µτx>i xi
(15)

where (qτi )
> denotes row i of Qτ , and µτ := (1−βτ )/(1−β).

To solve (8c) it is prudent to rewrite the cost function in
terms of the rows of matrices Ar+1, Γr and C, leading to

arg min
c1,...,cN

N∑
i=1

[
ρ

2
‖ai,r+1 − ci‖22 − c>i γi,r + λτ‖ci‖1

]
. (16)

Upon defining αi,r+1 := ai,r+1 + 1
ργi,r and completing the

square in (16), the update step for matrix C can be cast as

arg min
c1,...,cN

N∑
i=1

[
1

2
‖αi,r+1 − ci‖22 +

λτ
ρ
‖ci‖1

]
(17)

Algorithm 1 ADMoM solver for topology tracking

1: Input: {Yτ}Tτ=1, X, ε, β, ρ
2: Initialize P0, Q0, B0, Γ0, C0, µ0, λ0
3: for τ = 1, . . . , T do
4: Initialize r = 0
5: Update Pτ , Qτ , λτ , µτ
6: repeat
7: for i = 1 . . . N do
8: Compute wτ

i , Pτ
i , pτi

9: Compute ãi,r+1 = (Pτ
i + ρIN−1)

−1wτ
i

10: Update ai,r+1 via (13)
11: Update bii,r+1 via (15)
12: Update ci,r+1 via (19)
13: end for
14: Γr+1 = Γr + ρ(Ar+1 −Cr+1)
15: r = r + 1
16: until ‖Ar+1 −Cr+1‖F ≤ ε
17: Return Aτ = Ar, Bτ = Br

18: end for

which amounts to solving

arg min
ci

1

2
‖αi,r+1 − ci‖22 +

λτ
ρ
‖ci‖1 (18)

per row i. The Lasso problem (18) admits a closed-form
solution, in terms of the soft-thresholding operator:

ci,r+1 := S(αi,r+1, λτ/ρ) (19)

whose j-th entry is

cij,r+1 =

{
|αij,r+1| − λτ

ρ sign(αij,r+1), if |αij,r+1| > λτ
ρ

0, otherwise.
(20)

Algorithm 1 summarizes the steps outlined in this section for
tracking the dynamic network topology. In practice, 5-10 inner
ADMoM iterations suffice for convergence per τ = 1, . . . , T .

C. Algorithmic improvements

Online operation in delay-sensitive applications may not
tolerate running multiple inner ADMoM iterations per time
interval, while the matrix inversions in (12) incur O(N3)
complexity except when β = 1. These considerations motivate
the following improvements to Algorithm 1:
I1. Single-iteration ADMoM, i.e., drop the repeat loop so that
lines 6−16 in Algorithm 1 are run once per time interval; and
I2. Leveraging the strict convexity of (6) w.r.t. A adopt the
alternating-minimization algorithm (AMA) [9], which amounts
to minimizing the ordinary Lagrangian w.r.t. A [instead of
the augmented Lagrangian in (8a)]. This leads to updates
ãi,r+1 = (Pτ

i )
−1wτ

i , which can be recursively obtained with
complexity O(N2) using the matrix inversion lemma.

Due to space limitations, these algorithmic enhancements
will be reported in a journal paper currently under preparation.

IV. SIMULATIONS

Numerical tests on synthetic network data are conducted
here to evaluate the tracking ability of Algorithm 1. From a
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Fig. 2: Nonsmooth variation of edge weights.

“seed graph” with adjacency matrix

M =


0 0 1 1

0 0 1 1

0 1 0 1

1 0 1 0


a Kronecker graph of size N = 64 nodes was generated
as described in [5]. The resulting nonzero edge weights of
At were allowed to vary over T = 200 intervals under 3
settings: i) i.i.d. Bernoulli(0.5) random variables; ii) random
selection of the edge-evolution pattern uniformly from a set
of 4 smooth functions: aij(t) = 0.5 + 0.5sin(0.1t), aij(t) =
0.5 + 0.5cos(0.1t), aij(t) = e−0.01t, and aij(t) = 0; and iii)
random selection of the edge-evolution pattern uniformly from
a set of 4 nonsmooth functions shown in Fig. 2.

The number of contagions was set to C = 80, and X
was formed with i.i.d. entries uniformly distributed over [0, 3].
Matrix Bt was set to diag(bt), where bt ∈ RN is a standard
Gaussian random vector. During time interval t, infection times
were generated synthetically as Yt = (IN−At)−1(BtX+Et),
where Et is a standard Gaussian random matrix.

With β = 0.98, ρ = 1, and ε = 10−3, Algorithm 1 was run
after initializing P0 = IN , Q0 = 0, Γ0 = 0, B0 = diag(1),
C0 = 1N×N , µ0 = 0, and λ0 = 25. In addition, λτ = λ0 for
τ = 1, . . . , T . Fig. 3 shows the evolution of the mean-square
error (MSE),

∑
i,j(â

t
ij − atij)

2/N2. The best performance
was obtained when the temporal evolution of edges followed
smooth functions. Although, the binary random evolution of
edges resulted in the highest MSE, Algorithm 1 still tracked
the underlying topology with reasonable accuracy as shown
in the heat maps of the inferred adjacency matrices (Fig. 4).
Non-smooth network evolution was tracked by both Algorithm
1 and one-step AMA. In addition to a significant speed-up in
the online setting, comparable MSE was achieved by t = 50.

V. CONCLUDING SUMMARY

A dynamic SEM was proposed in this paper for network
topology inference, using timestamp data for propagation of
contagions typically observed in social networks. The model
explicitly captures both topological influences and external
sources of information diffusion over the unknown network.
Exploiting the inherent edge sparsity typical of large networks,
a novel algorithm based on ADMoM iterations was developed.
Numerical tests demonstrate the potential of the approach for
tracking the topology of slowly time-varying social networks.

Future research directions will focus on: i) developing
first-order (e.g., stochastic gradient descent) algorithms for
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Fig. 3: Mean-square error evolution over time.
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Fig. 4: Inferred and actual adjacency matrices at t = 20, 180.

enhanced scalability; ii) studying convergence of the single-
iteration ADMoM and AMA variants for topology tracking;
and iii) carrying out tests with real network data such as traces
of popular news items on the web.

REFERENCES

[1] D. Angelosante, J. A. Bazerque, and G. B. Giannakis, “Online adaptive
estimation of sparse signals: where RLS meets the `1-norm,” IEEE Trans.
on Sig. Proc., vol. 58, pp. 3436–3447, July 2010.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. and Trends in Machine Learning, vol. 3, pp. 1–
122, July 2011.

[3] X. Cai, J. A. Bazerque, and G. B. Giannakis, “Gene network inference
via sparse structural equation modeling with genetic perturbations,” PLoS
Comp. Biology, vol. 9, e1003068, May 2013.

[4] Y. Chen, Y. Gu, and A. O. Hero III, “Sparse LMS for system
identification,” Proc. of the Intl. Conf. on Acoust., Speech, and Signal
Proc., Taipei, Taiwan, pp. 1952–1955, April 19–24, 2009.

[5] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: an approach to modeling networks,” J.
Machine Learning Research, vol. 11, pp. 985–1042, March 2010.

[6] S. Meyers and J. Leskovec, “On the convexity of latent social network
inference,” Proc. of Neural Information Proc. Sys. Conf., Vancouver,
Canada, Dec. 6–9, 2010.

[7] M. G. Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering the
temporal dynamics of diffusion networks,” Proc. of 28th Intl. Conf.
Machine Learning, Bellevue, Washington, USA, Jun. 28 – Jul. 2, 2011.

[8] M. G. Rodriguez, J. Leskovec, and B. Schölkopf, “Structure and
dynamics of information pathways in online media,” Proc. of the 6th
ACM Intl. Conf. on Web Search and Data Mining, pp. 23–32, Feb. 2013.

[9] P. Tseng, “Applications of a splitting algorithm to decomposition in
convex programming and variational inequalities,” SIAM J. Control
Optim., vol. 29, pp. 119–138, Jan. 1991.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

295


