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Abstract—Many real-world processes evolve in cascades over
complex networks, whose topologies are often unobservable and
change over time. However, the so-termed adoption times when
blogs mention popular news items, individuals in a community
catch an infectious disease, or consumers adopt a trendy elec-
tronics product are typically known, and are implicitly dependent
on the underlying network. To infer the network topology, a
dynamic structural equation model is adopted to capture the rela-
tionship between observed adoption times and the unknown edge
weights. Assuming a slowly time-varying topology and leveraging
the sparse connectivity inherent to social networks, edge weights
are estimated by minimizing a sparsity-regularized exponen-
tially-weighted least-squares criterion. To this end, solvers with
complementary strengths are developed by leveraging (pseudo)
real-time sparsity-promoting proximal gradient iterations, the
improved convergence rate of accelerated variants, or reduced
computational complexity of stochastic gradient descent. Nu-
merical tests with both synthetic and real data demonstrate the
effectiveness of the novel algorithms in unveiling sparse dynami-
cally-evolving topologies, while accounting for external influences
in the adoption times. Key events in the political leadership in
North Korea and the initial public offering of LinkedIn explain
connectivity changes observed in the associated networks inferred
from global cascades of online media.

Index Terms—Structural equation model, dynamic network, so-
cial network, contagion, sparsity.

I. INTRODUCTION

N ETWORKS arising in natural and man-made settings
provide the backbone for the propagation of contagions

such as the spread of popular news stories, the adoption of
buying trends among consumers, and the spread of infectious
diseases [11], [36]. For example, a terrorist attack may be
reported within minutes on mainstream news websites. An in-
formation cascade emerges because these websites’ readership
typically includes bloggers who write about the attack as well,
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influencing their own readers in turn to do the same. Although
the times when “nodes” get infected are often observable, the
underlying network topologies over which cascades propa-
gate are typically unknown and dynamic. Knowledge of the
topology plays a crucial role for several reasons e.g., when
social media advertisers select a small set of initiators so that
an online campaign can go viral, or when healthcare initiatives
wish to infer hidden needle-sharing networks of injecting drug
users. As a general principle, network structural information
can be used to predict the behavior of complex systems [16],
such as the evolution and spread of information pathways in
online media underlying e.g., major social movements and
uprisings due to political conflicts [35].
Inference of networks using temporal traces of infection

events has recently become an active area of research. Ac-
cording to the taxonomy in [16, Ch. 7], this can be viewed as
a problem involving inference of association networks. Two
other broad classes of network topology identification problems
entail (individual) link prediction, or, tomographic inference.
Several prior approaches postulate probabilistic models and
rely on maximum likelihood estimation (MLE) to infer edge
weights as pairwise transmission rates between nodes [34],
[27]. However, these methods assume that the network does
not change over time. A dynamic algorithm has been recently
proposed to infer time-varying diffusion networks by solving
an MLE problem via stochastic gradient descent iterations [35].
Although successful experiments on large-scale web data
reliably uncover information pathways, the estimator in [35]
does not explicitly account for edge sparsity prevalent in social
and information networks. Moreover, most prior approaches
only attribute node infection events to the network topology,
and do not account for the influence of external sources such as
a ground crew for a mainstream media website.
Structural equation models (SEMs) provide a general statis-

tical modeling technique to estimate linear relationships among
both endogenous and exogenous traits; see e.g., [15]. SEMs are
attractive because of their simplicity and ability to capture edge
directionalities. These directional effects are often not revealed
by standard linear models that leverage symmetric associations
between random variables, such as those represented by co-
variances or correlations, [26], [12], [17], [2]. They have been
widely adopted in many fields, such as economics, psychomet-
rics [28], social sciences [13], and genetics [6], [22]. In partic-
ular, SEMs have recently been proposed for static gene regula-
tory network inference from gene expression data; see e.g., [6],
[23] and references therein. However, SEMs have not been uti-
lized to track the (possibly) time-varying topology of dynamic
and directed networks.

1932-4553 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



564 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 8, NO. 4, AUGUST 2014

In this context, the present paper proposes a dynamic SEM
to account for directed networks over which contagions prop-
agate, and describes how node infection times depend on both
topological (endogenous) and external (exogenous) influences.
Topological influences are modeled in Section II as linear com-
binations of infection times of other nodes in the network, whose
weights correspond to entries in the time-varying asymmetric
adjacency matrix. Accounting for external influences is well
motivated by drawing upon examples from online media, where
established news websites depend more on on-site reporting
than blog references. External influence data is also useful for
model identifiability, since it has been shown necessary to re-
solve directional ambiguities [4]. Supposing the network varies
slowly with time, parameters in the proposed dynamic SEM are
estimated adaptively by minimizing a sparsity-promoting expo-
nentially-weighted least-squares (LS) criterion (Section III-A).
To account for the inherently sparse connectivity of social net-
works, an -norm regularization term that promotes sparsity
on the entries of the network adjacency matrix is incorporated
in the cost function; see also [1], [2], [7], [18].
A novel algorithm to jointly track the network’s adjacency

matrix and the weights capturing the level of external influences
is developed in Section III-B, which minimizes the resulting
non-differentiable cost function via a proximal-gradient (PG)
solver; see e.g., [5], [10], [31]. The resulting dynamic iter-
ative shrinkage-thresholding algorithm (ISTA) is provably
convergent, and offers parallel, closed-form, and sparsity-pro-
moting updates per iteration. Proximal-splitting algorithms
such as ISTA have been successfully adopted for various
signal processing tasks [9], and for parallel optimization [8].
Further algorithmic improvements are outlined in Section IV.
These include enhancing the algorithms’ rate of convergence
through Nesterov’s acceleration techniques [5], [29], [30]
(Section IV-A), and also adapting it for real-time operation
(Section IV-B). When minimal computational complexity is
at a premium, a stochastic gradient descent (SGD) algorithm
is developed in Section IV-C, which adaptively minimizes an
instantaneous (noisy) approximation of the ensemble LS cost.
Throughout, insightful and useful extensions to the proposed
algorithms that are not fully developed due to space limitations
are highlighted as remarks.
Numerical tests with synthetically generated data demon-

strate the effectiveness of the novel algorithms in unveiling
sparse dynamically-evolving topologies (Section V-A). Exper-
iments in Section V-B involve real temporal traces of popular
global events that propagated on news websites and blogs in
2011 [21]. For instance, topologies inferred from cascades as-
sociated to the meme “Kim Jong-un” exhibit an abrupt increase
in the number of edges following the appointment of the new
North Korean ruler.
Notation. Bold uppercase (lowercase) letters will denote
matrices (column vectors), while operators ,
and will stand for matrix transposition, maximum
eigenvalue, and diagonal matrix, respectively. The
identity matrix will be represented by , while will denote
the vector of all zeros, and . The
and Frobenius norms will be denoted by , and ,
respectively.

Fig. 1. Dynamic network observed across several time intervals. Note that few
edges are added/removed in the transition from to (slowly time-
varying network).

II. NETWORK MODEL AND PROBLEM STATEMENT

Consider a dynamic network with nodes observed over
time intervals , whose abstraction is a graph with
topology described by an unknown, time-varying, and weighted
adjacency matrix . Entry of (henceforth
denoted by ) is nonzero only if a directed edge connects
nodes and (pointing from to ) during the time interval
, as illustrated in the 8-node network in Fig. 1. As a result, one
in general has , i.e., matrix is generally non-sym-
metric, which is suitable to model directed networks that ex-
plicitly encode the level of directional influence. For instance,
if denotes a news blog maintained by a journalism student,
whereas represents the web portal of a mainstream newspaper,
then it is likely that for those where ,
since the student is more likely tomention the news portal on her
blog. Probably, the aforementioned directionality would have
been reversed during Nov.–Dec. 2010, if instead represents
the Wikileaks blog. Note that the model tacitly assumes that the
network topology remains fixed during any given time interval
, but can change across time intervals.
Suppose contagions are sampled out of all contagions that

propagate over the network during the observation interval, and
the difference between infection time of node by contagion
and the earliest observation time is denoted by . In online
media, can be obtained by recording the time when website
mentions news item . For uninfected nodes at interval is
infinite and is set to a large positive value for practical consid-
erations. Assume that the susceptibility of node to external
(non-topological) infection by contagion is known and time
invariant over the observation interval. In the web context,
can be set to the search engine rank of website with respect to
(w.r.t.) keywords associated with .
In order to track the unknown network topology, this paper

postulates that is linearly related to and the infection
times of its single-hop neighbors. Events that adhere to this
model of network-facilitated propagation abound on the web
where mention of e.g., a major baseball event by a blog will not
only depend on the times when similar blogs first reported the
event, but also the level of interest of the blogger in baseball as a
sport. In epidemiological studies, an individual’s infection time
by an infectious disease depends on the infection times of her
immediate contacts as well as her level of immunity to the dis-
ease. Consequently, is modeled according to the following
linear dynamic structural equation model (SEM)

(1)
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where captures the time-varying level of influence of ex-
ternal sources, and accounts for measurement errors and un-
modeled dynamics. It follows from (1) that if , then
is affected by the value of . Rewriting (1) for the entire net-
work leads to the vector model

(2)

where the vector collects the
node infection times by contagion during interval , and

. Similarly,
and . Collecting observations for all 1

contagions yields the dynamic matrix SEM

(3)

where , and
are all matrices. Note that the same network

topology is adopted for all contagions, which is suitable
e.g., when different information cascades are formed around a
common meme or trending (news) topic over the web; see also
the real data tests in Section V-B. For this same reason, it is nat-
ural to assume that all conditional error variances are equal.
Given and , the goal is to track the underlying

network topology and the effect of external influences
. To this end, the novel algorithm developed in the next

section assumes slow time variation of the network topology
and leverages the inherent sparsity of edges that is typical of
social networks.

III. TOPOLOGY TRACKING ALGORITHM

This section deals with a regularized LS approach to esti-
mating in (3). In a static setting with all measurements

available, one solves the batch problem

(4)

where is a sparsity-promoting regulariza-

tion, and controls the sparsity level of . Absence of a
self-loop at node is enforced by the constraint , while
having , ensures that is diagonal as in (2).
Note that the estimator (4) reasonably assumes equal residual
variances since infection times per cascade result from the same
contagion over the entire network.

A. Exponentially-Weighted LS Estimator

In practice, measurements are typically acquired in a sequen-
tial manner over large social networks with thousands or even
millions of nodes, calling for estimation algorithms with min-
imal storage requirements. Recursive solvers enabling sequen-
tial inference of the underlying network topology are thus pre-
ferred. Moreover, introducing a “forgetting factor” that assigns
more weight to the most recent residuals makes it possible to
track slow temporal variations of the topology. Note that the
batch estimator (4) yields single estimates that best fit

1The general case where the number of contagions possibly varies across
time intervals can be accommodated without extra effort.

the data and over the whole measurement horizon
, and as such (4) neglects potential network varia-

tions across time intervals.
For , the sparsity-regularized exponentially-

weighted LS estimator (EWLSE)

(5)

where is the forgetting factor that forms estimates
using all measurements acquired until time . When-

ever , past data are exponentially discarded thus enabling
tracking of dynamic network topologies. The first summand
in the cost corresponds to an exponentially-weighted moving
average (EWMA) of the squared model residuals norms. The
EWMA can be seen as an average modulated by a sliding
window of equivalent length , which clearly grows
as . In the so-termed infinite-memory setting whereby

, (5) boils down to the batch estimator (4). Notice that
is allowed to vary with time in order to capture the generally
changing edge sparsity level. In a linear regression context, a
related EWLSE was put forth in [1] for adaptive estimation
of sparse signals; see also [18] for a projection-based adaptive
algorithm.
Before moving on to algorithms, a couple of remarks are in

order.
Remark 1 (Modeling Slow Network Variations via Sparsity):

To explicitly model slow topological variations across time in-
tervals, a viable approach is to include an additional regular-
ization term in the cost of (5). This way, the
estimator penalizes deviations of the current topology estimate
relative to its immediate predecessor . Through the tuning
parameter , one can adjust how smooth are the admissible
topology variations from interval to interval. With a similar goal
but enforcing temporal smoothness via kernels with adjustable
bandwidth, an -norm-regularized logistic regression approach
was put forth in [17].
Remark 2 (Selection of ): Selection of the (possibly time-

varying) tuning parameter is an important aspect of regu-
larization methods such as (5), because controls the spar-
sity level of the inferred network and how its structure may
change over time. For sufficiently large values of one ob-
tains the trivial solution , while increasingly more
dense graphs are obtained as . An increasing will be
required for accurate estimation over extended time-horizons,
since for the norm of the LS term in (5) grows due to
noise accumulation. This way the effect of the regularization
term will be downweighted unless one increases at a suitable
rate, for instance proportional to as suggested by large de-
viation tail bounds when the errors are assumed ,
and the problem dimensions are sufficiently large [1],
[25], [26]. In the topology tracking experiments of Section V,
a time-invariant value of is adopted and typically chosen via
trial and error to optimize the performance. This is justified since
smaller values of are selected for tracking network variations,
which also implies that past data (and noise) are discarded faster,
and the norm of the LS term in (5) remains almost invariant. As
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future research it would be interesting to delve further into the
choice of using model selection techniques such as cross-val-
idation [6], Bayesian information criterion (BIC) scores [17], or
the minimum description length (MDL) principle [33], and in-
vestigate how this choice relates to statistical model consistency
in a dynamic setting.

B. Proximal Gradient Algorithm

Exploiting the problem structure in (5), a proximal gradient
(PG) algorithm is developed in this section to track the network
topology; see [31] for a comprehensive tutorial treatment on
proximal methods. PG methods have been popularized for
-norm regularized linear regression problems, through the

class of iterative shrinkage-thresholding algorithms (ISTA); see
e.g., [10], [39]. The main advantage of ISTA over off-the-shelf
interior point methods is its computational simplicity. Itera-
tions boil down to matrix-vector multiplications involving the
regression matrix, followed by a soft-thresholding operation
[14, p. 93].
In the sequel, an ISTA algorithm is developed for the sparsity

regularized dynamic SEM formulation (5) at time . Based
on this module, a (pseudo) real-time algorithm for tracking
the dynamically-evolving network topology over the horizon

is obtained as well. The resulting algorithm’s
memory storage requirement and computational cost per data
sample does not grow with .
Solving (5) for a single time interval . Introducing the
optimization variable , observe that the gra-
dient of is
Lipschitz continuous with a (minimum) Lipschitz constant

,
i.e., in
the domain of . The Lipschitz constant is time varying, but
the dependency on is kept implicit for notational conve-
nience. On the other hand, the regularizer is
non-smooth. Instead of directly optimizing the cost in (5), PG
algorithms minimize a sequence of overestimators evaluated at
judiciously chosen points (typically the current iterate, or a
linear combination of the two previous iterates as discussed in
Section IV-A). From the Lipschitz continuity of , for any
and in the domain of , it holds that

. Next, form
the quadratic approximation of the cost [cf. (5)]
at a given point

(6)

where , and clearly
for any and . Note that corre-

sponds to a gradient-descent step taken from , with step-size
equal to .

With denoting iterations, PG algorithms set
and generate the following sequence of iterates

(7)

where the second equality follows from the fact that the last
two summands in (6) do not depend on . The optimiza-
tion problem (7) is known as the proximal operator of the
function evaluated at , and is denoted as

. Henceforth adopting the notation
for convenience, the PG iterations

can be compactly rewritten as

(8)

A key element to the success of PG algorithms stems
from the possibility of efficiently solving the sequence of
subproblems (7), i.e., evaluating the proximal operator.
Let and denote row of and , respec-

tively; while denotes the vector obtained
by removing entry from row of , and likewise is
the matrix obtained by removing row from
. At time interval , consider the data-related EWMAs

, and
. In addition, let denote the

-th row of , and the matrix obtained
by removing row from . Further, let denote the

matrix obtained by removing the -th row
and -th column from . Upon computing the gradients (see
Appendix A for the detailed derivation)

(9)

(10)

it turns out that the parallel ISTA iterations are

(11)

(12)

where with entry given by
denotes the soft-thresholding operator. The iterations are

provably convergent to the globally optimal solution
of (5), as per the general convergence results available for PG
methods and ISTA in particular [10], [31].
Computation of the gradients in (9)–(10) requires one ma-

trix-vector multiplication by and one by , in addition
to three vector inner-products, plus a few (negligibly complex)
scalar and vector additions. Both the update of as well
as the soft-thresholding operation in (11) entail negligible com-
putational complexity. All in all, the simplicity of the resulting
iterations should be apparent. Per iteration, the actual rows of
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Fig. 2. MSE (i.e., ) performance of Algorithm 2 versus
time. For each , problem (5) is solved “inexactly” for (Algorithm 3), 5,
10, and 15 inner iterations. It is apparent that iterations suffice to attain
convergence to theminimizer of (5) per , especially after a short transient where
the warm-restarts offer increasingly better initializations.

the adjacency matrix are obtained by zero-padding the updated
, namely setting

(13)

This way, the desired SEM parameter estimates at time
are given by and

, for large enough so that con-
vergence has been attained.
Remark 3 (General Sparsity-Promoting Regularization):

Beyond , the algorithmic framework here
can accommodate more general structured sparsity-promoting
regularizers as long as the resulting proximal oper-
ator is given in terms of scalar or (and) vector
soft-thresholding operators. In addition to the -norm (Lasso
penalty), this holds e.g., for the sum of the -norms of vectors
with groups of non-overlapping entries of (group Lasso
penalty [40]), or, a linear combination of the aforementioned
two—the so-termed hierarchical Lasso penalty that encourages
sparsity across and within the groups defined over [38].
These types of regularization could be useful if one e.g., has a
priori knowledge that some clusters of nodes are more likely to
be jointly (in)active [35].
Solving (5) over the entire time horizon . To
track the dynamically-evolving network topology, one can go
ahead and solve (5) sequentially for each as data
arrive, using (9)–(12). (The procedure can also be adopted in
a batch setting, when all are available in memory.)
Because the network is assumed to vary slowly across time
intervals, it is convenient to warm-restart the ISTA iterations,
that is, at time initialize with the previous so-
lution . Since the sought estimates are expected
to be close to the initial points, one expects convergence to be
attained after few iterations.
To obtain the new SEM parameter estimates via (9)–(12), it

suffices to update (possibly) and the Lipschitz constant ,

Algorithm 1 Pseudo real-time ISTA for topology tracking

Require: .

1: Initialize
.

2: for do
3: Update and via (14)–(15).
4: Initialize , and set

.
5: while not converged do
6: for (in parallel) do
7: Compute and .
8: Form gradients at and via (9)–(10).
9: Update via (11).
10: Update via (12).
11: Update via (13).
12: end for
13: .
14: end while
15: return .
16: end for

as well as the data-dependent EWMAs ( is the -th column
of ), and . Interestingly, the potential growing-memory
problem in storing the entire history of data can be
avoided by performing the recursive updates

(14)

(15)

Note that the complexity in evaluating the Gram matrix
dominates the per-iteration computational cost of the

algorithm. To circumvent the need of recomputing the Lipschitz
constant per time interval (that in this case entails finding the
spectral radius of a data-dependent matrix), the step-size
in (11)–(12) can be selected by a line search [31]. One possible
choice is the backtracking step-size rule in [5], under which
convergence of (33)–(12) to can be established as
well.
Algorithm 1 summarizes the steps outlined in this section for

tracking the dynamic network topology, given temporal traces
of infection events and susceptibilities . It is termed
pseudo real-time ISTA, since in principle one needs to run mul-
tiple (inner) ISTA iterations till convergence per time interval

. This will in turn incur an associated delay, that
may (or may not) be tolerable depending on the specific net-
work inference problem at hand. Nevertheless, numerical tests
indicate that in practice 5–10 inner iterations suffice for conver-
gence; see also Fig. 2 and the discussion in Section IV-B.
Remark 4 (Comparison with the ADMM in [3]): In a confer-

ence precursor to this paper [3], an alternating-direction method
of multipliers (ADMM) algorithm was put forth to estimate the
dynamic SEM model parameters. While the basic global struc-
ture of the algorithm in [3] is similar to Algorithm 1, ADMM is
adopted (instead of ISTA) to solve (5) per time . To
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update , ADMM iterations require inverting the ma-
trix , that could be computationally demanding for
very large networks. On the other hand, Algorithm 1 is markedly
simpler and more appealing for larger-scale problems.

IV. ALGORITHMIC ENHANCEMENTS AND VARIANTS

This section deals with various improvements to Algorithm 1,
that pertain to accelerating its rate of convergence and also
adapting it for real-time operation in time-sensitive applica-
tions. In addition, a stochastic-gradient algorithm useful when
minimal computational complexity is at a premium is also
outlined.

A. Accelerated Proximal Gradient Method and Fast ISTA

In the context of sparsity-regularized inverse problems and
general non-smooth optimization, there have been several re-
cent efforts towards improving the sublinear global rate of con-
vergence exhibited by PG algorithms such as ISTA; see e.g., [5],
[29], [30] and references therein. Since for large-scale problems
first-order (gradient) methods are in many cases the only admis-
sible alternative, the goal of these works has been to retain the
computational simplicity of ISTA while markedly enhancing its
global rate of convergence.
Remarkable results in [30] assert that convergence speedups

can be obtained through the so-termed accelerated (A)PG
algorithm. Going back to the derivations in the beginning of
Section IV-A, APG algorithms generate the following sequence
of iterates [cf. (7) and (8)]

where

(16)

(17)

In words, instead of minimizing a quadratic approximation to
the cost evaluated at as in ISTA [cf. (7)], the accelerated
PG algorithm [a.k.a. fast (F)ISTA] utilizes a linear combination
of the previous two iterates . The itera-
tion-dependent combination weights are a function of the scalar
sequence (17). FISTA offers quantifiable iteration complexity,
namely a (worst-case) convergence rate guarantee of
iterations to return an -optimal solution measured by its ob-
jective value (ISTA instead offers ) [5], [30]. Even for
general (non-)smooth optimization, APG algorithms have been
shown to be optimal within the class of first-order (gradient)
methods, in the sense that the aforementioned worst-case con-
vergence rate cannot be improved [29], [30].
The FISTA solver for (5) entails the following steps [cf.

(9)–(12)]

(18)

Algorithm 2 Pseudo real-time FISTA for topology tracking

Require: .

1: Initialize
.

2: for do
3: Update and via (14)–(15).
4: Initialize

, and set .
5: while not converged do
6: for (in parallel) do
7: Compute and .
8: Update and via (18)–(19).
9: Form gradients at and via (20)–(21).
10: Update via (22).
11: Update via (23).
12: Update via (13).
13: end for
14: .
15: Update via (17).
16: end while
17: return .
18: end for

(19)

(20)

(21)

(22)

(23)

where is updated as in (17). The overall (pseudo) real-time
FISTA for tracking the network topology is tabulated under Al-
gorithm 2. As desired, the computational complexity of Algo-
rithms 1 and 2 is roughly the same. Relative to Algorithm 1, the
memory requirements are essentially doubled since one now has
to store the two prior estimates of and , which are neverthe-
less sparse and diagonal matrices, respectively. Numerical tests
in Section V suggest that Algorithm 2 exhibits the best perfor-
mance when compared to Algorithm 1 and the ADMM solver
of [3], especially when modified to accommodate real-time pro-
cessing requirements—the subject dealt with next.

B. Inexact (F)Ista for Time-Sensitive Operation

Additional challenges arise with real-time data collection,
where analytics must often be performed “on-the-fly” as well
as without an opportunity to revisit past entries. Online oper-
ation in delay-sensitive applications may not tolerate running
multiple inner (F)ISTA iterations per time interval, so that con-
vergence is attained for each as required by Algorithms 1
and 2. This section touches upon an interesting tradeoff that
emerges with time-constrained data-intensive problems, where
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Algorithm 3 Real-time inexact FISTA for topology tracking

Require: .

1: Initialize
.

2: for do
3: Update and via (14)–(15).
4: for (in parallel) do
5: Compute and .
6: Update and via (18)–(19).
7: Form gradients at and via (20)–(21).
8: Update via (22).
9: Update via (23).
10: Update via (13).
11: end for
12: Update via (17).
13: return .
14: end for

a high-quality answer that is obtained slowly can be less useful
than a medium-quality answer that is obtained quickly.
Consider for the sake of exposition a scenario where the un-

derlying network processes are stationary, or just piecewise sta-
tionary with sufficiently long coherence time for that matter.
The rationale behind the proposed real-time algorithm hinges
upon the fact that the solution of (5) for each
does not need to be super accurate in the aforementioned sta-
tionary setting, since it is just an intermediate step in the outer
loop matched to the time-instants of data acquisition. This moti-
vates stopping earlier the inner iteration which solves (5) (cf. the
while loop in Algorithms 1 and 2), possibly even after a single
soft-thresholding step, as detailed in the real-time Algorithm 3.
Note that in this case the inner-iteration index coincides with
the time index . A similar adjustment can be made to the ISTA
variant (Algorithm 1), and one can in general adopt a less ag-
gressive approach by allowing a few (not just one) inner-itera-
tions per .
A convergence proof of Algorithm 3 in a stationary network

setting will not be provided here, and is left as a future research
direction. For the infinite-memory case [cf. in (5)] and
the simpler ISTA counterpart of Algorithm 3 obtained when

, it appears possible to adapt the arguments in [24],
[25] to establish that the resulting iterations converge to a min-
imizer of the batch problem (4). In the dynamic setting where
the network is time-varying, then convergence is not expected
to occur because of the continuous network fluctuations. Still, as
with adaptive signal processing algorithms [37] one would like
to establish that the tracking error attains a bounded steady-state.
These interesting and challenging problems are the subject of
ongoing investigation and will be reported elsewhere.
For synthetically-generated data according to the setup de-

scribed in Section V-A, Fig. 2 shows the time evolution of Al-
gorithm 2’s mean-square error (MSE) estimation performance.
For each time interval , (5) is solved “inexactly” after running
only and 15 inner iterations. Note that the case

corresponds to Algorithm 3. Certainly iterations

Algorithm 4 SGD algorithm for topology tracking

Require: .

1: Initialize .
2: for do
3: Update .
4: for (in parallel) do
5: Form gradients at and via (24)–(25).
6: Update via (26).
7: Update via (27).
8: Update via (13).
9: end for
10: return .
11: end for

suffice for the FISTA algorithm to converge to the minimizer
of (5); the curve for is identical. Even with the
obtained performance is satisfactory for all practical purposes,
especially after a short transient where the warm-restarts offer
increasingly better initializations. While Algorithm 3 shows a
desirable convergent behavior, it seems that this example’s net-
work coherence time of time intervals is too short to be
tracked effectively. Still, if the network changes are sufficiently
smooth as it occurs at , then the real-time algorithm is
able to estimate the network reliably.

C. Stochastic-Gradient Descent Algorithm

A stochastic gradient descent (SGD) algorithm is developed
in this section, which operates in real time and can track the
(slowly-varying) underlying network topology. Among all al-
gorithms developed so far, the SGD iterations incur the least
computational cost.
Towards obtaining the SGD algorithm, consider in (5).

The resulting cost function can be expressed as ,
where and
only accounts for the data acquired at time interval . Motivated
by computational simplicity, the “inexact” gradient descent plus
soft-thresholding ISTA iterations yield the following updates

(24)

(25)

(26)

(27)

Compared to the parallel ISTA iterations in Algorithm 1 [cf.
(9)–(11)], three main differences are noteworthy: (i) iterations
are merged with the time intervals of data acquisition; (ii) the
stochastic gradients and involve the (noisy)
data instead of their time-averaged counter-
parts ; and (iii) a generic constant step-size is uti-
lized for the gradient descent steps.
The overall SGD algorithm is tabulated under Algorithm 4.

Forming the gradients in (24)–(25) requires one matrix-vector
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multiplication by and two by . These multiplica-
tions dominate the per-iteration computational complexity of
Algorithm 4, justifying its promised simplicity. Accelerated
versions could be developed as well, at the expense of marginal
increase in computational complexity and doubling the memory
requirements.
To gain further intuition on the SGD algorithm developed,

consider the online learning paradigm under which the network
topology inference problem is to minimize the expected cost

(subject to the usual constraints on
). The expectation is taken w.r.t. the unknown probability

distribution of the data. In lieu of the expectation, the approach
taken throughout this paper is to minimize the empirical cost

. Note that for ,
the minimizers of coincide with (4) since the scaling by

does not affect the optimal solution. For , the cost
implements an EWMA

which “forgets” past data and allows tracking. In all cases, the
rationale is that by virtue of the law of large numbers, if data

are stationary, solving yields
the desired solution to the expected cost.
A different approach to achieve this same goal—typically

with reduced computational complexity—is to drop the expec-
tation (or the sample averaging operator for that matter), and
update the estimates via a stochastic (sub)gradient iteration

. The
subgradients with respect to are

(28)

so the resulting algorithm has the drawback of (in general)
not providing sparse solutions per iteration; see also [7] for a
sparse least-mean squares (LMS) algorithm. For that reason,
the approach here is to adopt the proximal gradient (ISTA)
formalism to tackle the minimization of the instantaneous costs

, and yield sparsity-inducing soft-thresholded
updates (26). Also acknowledging the limitation of subgradient
methods to yield sparse solutions, related “truncated gradient”
updates were advocated for sparse online learning in [19].

D. Choice of Algorithm

In order to track the topology of a network from cascade data,
one is faced with making a choice among the developed algo-
rithms. Algorithm 2 enjoys a theoretically-proven faster con-
vergence than Algorithm 1, and it is recommended in situations
where real-time operation and computational cost are not crit-
ical e.g., when the number of nodes in the network are in the
range of hundreds or thousands. Algorithm 3 is a more practical
alternative to Algorithm 2 in real-time topology tracking appli-
cations. Algorithm 4 is the most lightweight and scalable option
for real-time settings, provided a slightly degraded error perfor-
mance is affordable. Matlab implementation of the algorithms
tested in the following section assumes that the network data
can be stored in main memory, and does not exploit the parallel
structure of the update recursions.

Fig. 3. Nonsmooth variation of synthetically-generated edge weights of the
time-varying network. For each edge, one of the four depicted profiles is chosen
uniformly at random.

V. NUMERICAL TESTS

Performance of the proposed algorithms is assessed in this
section via computer simulations using both synthetically-gen-
erated network data, and real traces of information cascades col-
lected from the web [21].

A. Synthetic Data

Data generation. Numerical tests on synthetic network data
are conducted here to evaluate the tracking ability and compare
Algorithms 1–4. From a “seed graph” with adjacency matrix

a Kronecker graph of size nodes was generated as
described in [20].2 The resulting nonzero edge weights of
were allowed to vary over intervals under 3 set-
tings: i) i.i.d. Bernoulli(0.5) random variables; ii) random se-
lection of the edge-evolution pattern uniformly from a set of
four smooth functions:

, and ; and iii)
random selection of the edge-evolution pattern uniformly from
a set of four nonsmooth functions shown in Fig. 3.
The number of contagions was set to , and was

formed with i.i.d. entries uniformly distributed over . Ma-
trix was set to , where is a standard
Gaussian random vector. During time interval , infection times
were generated synthetically as ,
where is a standard Gaussian random matrix.
Performance evaluation.With , Algorithm 1 was run
after initializing the relevant variables as described in the algo-
rithm table (cf. Section III-B). Cross validation was used to ini-
tialize over the grid by batch estimation of
for . Assigning a single cascade per fold, it turned out that
the best initialization was . In addition, for

as discussed in Remark 2. Fig. 4 shows the evolu-
tion of the mean-square error (MSE), . As

2The Matlab implementation of Algorithms 1–4 used here can handle net-
works of several thousand nodes. Still a smaller network is analyzed since re-
sults are still representative of the general behavior, and offers better visualiza-
tion of the results in e.g., the adjacency matrices in Figs. 5 and 6.
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Fig. 4. MSE versus time obtained using pseudo real-time ISTA (Algorithm 1),
for different edge evolution patterns.

Fig. 5. Actual adjacency matrix and corresponding estimate obtained
using pseudo real-time ISTA (Algorithm 1), at time intervals and

.

expected, the best performance was obtained when the temporal
evolution of edges followed smooth functions. Even though the
Bernoulli evolution of edges resulted in the highest MSE, Al-
gorithm 1 still tracked the underlying topology with reasonable
accuracy as depicted in the heat maps of the inferred adjacency
matrices; see Fig. 5.
Selection of a number of parameters is critical to the perfor-

mance of the developed algorithms. In order to evaluate the ef-
fect of each parameter on the network estimates, several tests
were conducted by tracking the non-smooth network evolution
using Algorithm 2 with varying parameter values. To illustrate
the importance of leveraging sparsity of the edge weights, Fig. 6
depicts heatmaps of the adjacency matrices inferred at ,
with set to 0, 50, and 100 for all time intervals. Comparisons
with the actual adjacency matrix reveal that increasing pro-
gressively refines the network estimates by driving erroneously
detected nonzero edge weights to 0. Indeed, the value

Fig. 6. Actual adjacency matrix at compared with the inferred adja-
cency matrices using pseudo real-time FISTA (Algorithm 2), with for
all and , and . While and markedly
overestimate the support set associated with the true network edges, the value

in this case appears to be just about right.

Fig. 7. MSE performance of the pseudo real-time FISTA (Algorithm 2) versus
time, for different values of the forgetting factor .

in this case appears to be just about right, while smaller values
markedly overestimate the support set associated with the edges
present in the actual network.
Fig. 7 compares the MSE performance of Algorithm 2 for

. As expected, the MSE asso-
ciated with values of approaching 1 degrades more dramati-
cally when changes occur within the network (at time intervals

, and in this case; see Fig. 3). TheMSE
spikes observed when are a manifestation
of the slower rate of adaptation of the algorithm for these values
of the forgetting factor. In this experiment, outper-
formed the rest for . In addition, comparisons of the
MSE performance in the presence of increasing noise variance
are depicted in Figure 8. Although the MSE values are compa-
rable during the initial stages of the topology inference process,
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Fig. 8. MSE performance of the pseudo real-time FISTA (Algorithm 2) versus
time, for different values of the noise variance .

Fig. 9. MSE performance of the real-time algorithms versus time. Algorithms
3 (real-time FISTA) and 4 (SGD), as well as inexact versions of Algorithm 1
(ISTA) and the ADMM solver in [3] are compared.

as expected higher noise levels lead toMSE performance degra-
dation in the long run.
Finally, a comparison of the real-time version of the different

algorithms was carried out when tracking the synthetic time-
varying network with non-smooth edge variations. Specifically,
the real-time (inexact) counterparts of ISTA, FISTA (cf. Algo-
rithm 3), SGD (cf. Algorithm 4), and a suitably modified ver-
sion of the ADMM algorithm developed in [3] were run as sug-
gested in Section IV-B, i.e., eliminating the inner while loop in
Algorithms 1 and 2 so that a single iteration is run per time in-
terval. Fig. 9 compares the resulting MSE curves as the error
evolves with time, showing that the inexact online FISTA al-
gorithm achieves the best error performance. The MSE perfor-
mance degradation of Algorithm 3 relative to its (exact) coun-
terpart Algorithm 2 is depicted in Fig. 2, as a function of the
number of inner iterations .

B. Real Data

Dataset description. The real data used was collected during
a prior study by monitoring blog posts and news articles for

memes (popular textual phrases) appearing within a set of over
3.3 million websites [35]. Traces of information cascades were
recorded over a period of one year, from March 2011 till Feb-
ruary 2012; the data is publicly available from [21]. The time
when eachwebsite mentioned a specific news itemwas recorded
as a Unix timestamp in hours (i.e., the number of hours since
midnight on January 1, 1970). Specific globally-popular topics
during this period were identified and cascade data for the top
5 000 websites that mentioned memes associated with them
were retained.
The real-data tests that follow focus on two keywords:

i) “Kim Jong-un” the current leader of North Korea whose
popularity rose after the death of his father and predecessor,
during the observation period; and ii) “Reid Hoffman” the
founder of the professional online social network LinkedIn,
that went public during the observation period. Each keyword
is associated with several phrases mentioned on the web by
blogs and news websites that covered the two individuals.
Each phrase is assigned a list of tuples in the form (website id,
timestamp) capturing the time when a website mentioned the
phrase. Defining a cascade as any list with at least 7 tuples,
the dataset was significantly reduced to the 360 websites over
which 466 cascades related to “Kim Jong-un” propagated
during a 45 week period. Similarly, 125 websites were retained
for propagation of 85 cascades related to “Reid Hoffman” over
41 weeks. Each time interval was set to one week and the
observation time-scale was adjusted to start at the beginning of
the earliest cascades.
In both cases, matrix was constructed by setting to

the time when website mentioned phrase if this occurred
during the span of week . Otherwise was set to a large
number, , where denotes the largest timestamp
in the dataset. Typically, the entries of matrix capture prior
knowledge about the susceptibility of each node to each conta-
gion. For instance, the entry could denote the online search
rank ofwebsite for a search keyword associatedwith contagion
. In the absence of such real data, the entries of were set to
zero. Although the caveat here is non-uniqueness of [4],
experimental results presented next interestingly demonstrate a
strong consistency with well-known events.
Experimental results. Algorithm 2 was run on real data with

and . The choice of Algorithm 2 was based
on its faster convergence properties when compared to the other
alternatives, and that this is not a delay-sensitive application.
Significantly more challenging for real data, was fixed for all
intervals, and its value was heuristically guided by a uniform
grid search over . Observing the edge evolution over
time, yielded results most consistent with real-world
events as will be described shortly. Fig. 10 depicts visualiza-
tions of the inferred network at and weeks.
Little was known about Kim Jong-un during the first 10 weeks
of the observation period. However, speculation about the pos-
sible successor of the dying North Korean ruler, Kim Jong-il,
rose until his death on December 17, 2011 (week 38). He was
succeeded by Kim Jong-un on December 30, 2011 (week 40).
The network visualizations show an increasing number of edges
over the 45 weeks, illustrating the growing interest of interna-
tional news websites and blogs in the new ruler. Unfortunately,
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Fig. 10. Visualization of the estimated networks obtained by tracking those information cascades related to the topic “Kim Jong-un”. Isolated nodes (without
edges) were filtered out of the network visualization. The abrupt increase in network connectivity can be explained by three key events: i) Kim Jong-un was
appointed as the vice chairman of the North Korean military commission ; ii) Kim Jong-il died ; and iii) Kim Jong-un became the ruler of North
Korea . (a) , (b) , (c) Inferred edges per week.

Fig. 11. Visualization of estimated networks obtained by tracking “Reid Hoffman” cascades at and weeks. (a) , (b) , (c) Inferred edges
per week.

the observation horizon does not go beyond weeks.
A longer span of data would have been useful to investigate at
what rate did the global news coverage on the topic eventually
subside.
Fig. 10 c) depicts the time evolution of the total number of

edges in the inferred dynamic network. Of particular interest
are the weeks during which: i) Kim Jong-un was appointed as
the vice chairman of the North Korean military commission;
ii) Kim Jong-il died; and iii) Kim Jong-un became the ruler of
North Korea. These events were the topics of many online news
articles and political blogs, an observation that is reinforced by
the experimental results shown in the plot.
The results of running Algorithm 2 on the second dataset are

shown in Fig. 11. Although Reid Hoffman was already popular
in technologymedia coverage, his visibility in popular news and
blogs increased tremendously following the highly successful
initial public offering (IPO) of LinkedIn on May 19, 2011. To-
wards the end of 2011, a number of other successful technology
companies like Groupon and Zynga went public, possibly stabi-
lizing the amount of media coverage on Reid Hoffman. In fact,
the drop in the number of edges towards week 41 could be at-

tributed to the captivation of media attention by the IPOs that
occurred later in the year.

VI. CONCLUDING SUMMARY

A dynamic SEM was proposed in this paper for network
topology inference, using timestamp data for propagation of
contagions typically observed in social networks. The model
explicitly captures both topological influences and external
sources of information diffusion over the unknown network.
Exploiting the inherent edge sparsity typical of large networks,
a computationally-efficient proximal gradient algorithm with
well-appreciated convergence properties was developed to min-
imize a suitable sparsity-regularized exponentially-weighted
LS estimator. Algorithmic enhancements were proposed, that
pertain to accelerating convergence and performing the network
topology inference task in real time. In addition, reduced-com-
plexity stochastic-gradient iterations were outlined and showed
to attain worthwhile performance.
A number of experiments conducted on synthetically-gen-

erated data demonstrated the effectiveness of the proposed
algorithms in tracking dynamic and sparse networks. Ex-
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perimental results on real datasets focused on two popular
personalities that made headlines during the observation period
successfully showed changes in edge connectivity between
media websites corresponding to increased media frenzy fol-
lowing specific events centered on them.
The present work opens up multiple directions for exciting

follow-up work. Future and ongoing research includes: i) inves-
tigating the conditions for identifiability of sparse and dynamic
SEMs, as well as their statistical consistency properties tied to
the selection of ; ii) consider also measures of causal influ-
ence, and formalizing links between causal effects and model
parameters [32]; iii) formally establishing the convergence of
the (inexact) real-time algorithms in a stationary network set-
ting, and tracking their MSE performance under simple models
capturing the network variation; iv) devising algorithms for
MLE of dynamic SEMs and comparing the performance of the
LS alternative of this paper; v) generalizing the SEM using
kernels or suitable graph similarity measures to enable network
topology forecasting; and vi) exploiting the parallel structure
of the algorithms to devise disk-based MapReduce/Hadoop
implementations scalable to million-node graphs.

APPENDIX A
DERIVATION OF ISTA ITERATIONS

This Appendix gives a more detailed derivation of the ISTA
iterations in Algorithm 1. Specializing to (5), note that (7) de-
composes into

(29)

(30)

subject to the constraints in (5) which so far have been left
implicit, and . Because there is no regu-
larization on the matrix , the corresponding update (30)
boils-down to a simple gradient-descent step. It follows that

, e.g., [10], [14]; so that

(31)

What remains now is to obtain expressions for the gradient of
with respect to and , which are required to form the

matrices and . To this end, note that by incorporating
the constraints and one
can simplify the expression of as

(32)

where , and have been previously defined.
It is apparent from (32) that is separable across the

trimmed row vectors , and the scalar diagonal entries
. The sought gradients are readily obtained as

Using the definitions for , and , the
gradient expressions for can be compactly ex-
pressed as

(33)

(34)

From (30)–(31) and (33)–(34), the resulting parallel ISTA iter-
ations are

(35)

(36)

(37)

(38)
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