TOPOLOGICAL BIAS MITIGATION VIA GRAPH REWIRING

O. Deniz Kose¹, Gonzalo Mateos², and Yanning Shen¹

UCI Samueli ¹University of California, Irvine, Dept. of Electrical Engineering and Computer Science ²University of Rochester, Dept. of Electrical and Computer Engineering

(1)

Motivation

• Connectivity era: Growing amount of data describing interconnected systems

Fairness-aware Filtering as Graph Rewiring

- Re-formulate fairness-aware filter design as a network inference problem
- Direct optimization of ρ :

$$\begin{aligned} \mathbf{A}^{f} := & \operatorname*{argmin}_{\bar{\mathbf{A}}} \quad \left\{ \| \mathbf{s}^{\top} \bar{\mathbf{A}} \|_{1} + \beta r(\bar{\mathbf{A}}, \hat{\mathbf{A}}) \right\} \\ & \textnormal{s.t.} \quad \bar{\mathbf{A}} \hat{\mathbf{A}} = \hat{\mathbf{A}} \bar{\mathbf{A}}, \quad \bar{\mathbf{A}} \in \mathcal{S}. \end{aligned}$$

• Utility consideration

Graphs are utilized to model such complex data

- - Graph nodes: users in social networks, accounts holding money
 - Graph edges: friendship between users, money transactions
 - Nodal features: education level of users, locations of accounts
- Processing & learning from graph data can provide significant advancements
 - Increasing attention towards graph signal processing & ML over graphs
 - Cross-pollination of GSP and ML over graphs provides new insights [2]
- ML algorithms propagate algorithmic bias
 - Impact of ethnicity in crime prediction
 - Impact of gender in ad recommendation

- Use of network connectivity in learning amplifies existing bias [3]
- Motivation: Consideration of bias is necessary for graph-based learning
- Limitation of current works: Task/algorithm-specific, no theoretical analysis
- Innovation: Leverage GSP tools to design a general-purpose bias mitigation strategy

Preliminaries & Problem Statement

- Focus on undirected graphs, $\mathcal{G} := (\mathcal{V}, \mathcal{E})$
- Connectivity information described via graph adjacency $\mathbf{A} \in \{0,1\}^{N \times N}$ and normalized

• Design of S provides flexibility

 $\mathcal{S} := \left\{ \bar{\mathbf{A}} \mid \bar{A}_{ij} \ge 0, \bar{\mathbf{A}} \in \mathcal{M}^N, \|\bar{\mathbf{A}}\|_{1,1} = \|\hat{\mathbf{A}}\|_{1,1} \right\}.$

 $r(\bar{\mathbf{A}}, \hat{\mathbf{A}}) := \|\bar{\mathbf{A}} - \hat{\mathbf{A}}\|_{1,1}$

- $\bar{\mathbf{A}}\hat{\mathbf{A}} = \hat{\mathbf{A}}\bar{\mathbf{A}} \rightarrow \hat{\mathbf{A}}$ and $\bar{\mathbf{A}}$ share the same set of eigenvectors
 - Filtering shapes the eigenvalues of the effective graph operator, same eigenvectors
 - Implicitly optimize h to minimize ρ without requiring a spectral decomposition
- A flexible design that can be **pre-computed once** for different learning algorithms, and can be used at different stages of learning (i.e., pre-processing, post-processing)

Experimental Settings & Results

- Datasets: Real social networks, region is sensitive attribute & job is label
- Task: Node classification, classification accuracy is reported
- Fairness metrics (lower values are desired):

- Laplacian matrices $\mathbf{L} = \mathbf{I}_N \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$
- Sensitive attributes $s \in \{-1, 1\}^N$, nodal features $X \in \mathbb{R}^{N \times F}$ and labels $y \in \{-1, 1\}^N$ for node classification
- Graph Fourier Transform of signal $z \in \mathbb{R}^N$ is $\tilde{z} = V^{\top}z$, where $L = V\Lambda V^{\top}$
- Filtering graph signal $\mathbf{z} \in \mathbb{R}^N$ via a filter with frequency response $\tilde{\mathbf{h}} := [\tilde{h}_1, \dots, \tilde{h}_N]^\top$ yields the output signal $\mathbf{z}_{out} = \mathbf{V} \operatorname{diag}(h_1, \ldots, h_N) \tilde{\mathbf{z}}$.

Problem Statement

Given \mathcal{G} and s, design of graph filters with frequency response $\tilde{\mathbf{h}} \in \mathbb{R}^N$, so that algorithmic bias sourced from graph topology can be attenuated with the application of such filters.

• Novel unsupervised bias measure: $\rho := \|\mathbf{s}^{\top} \mathbf{A}^{f}\|_{2}$, can be manipulated via filter design

 $-\Delta_{SP} = |P(\hat{y} = 1 \mid s = 0) - P(\hat{y} = 1 \mid s = 1)|$ $-\Delta_{EO} = |P(\hat{y} = 1 \mid y = 1, s = 0) - P(\hat{y} = 1 \mid y = 1, s = 1)|$

• Comparative results

	NBA			SPokec-n			SPokec-z		
	Accuracy (%)	Δ_{SP} (%)	Δ_{EO} (%)	Accuracy (%)	Δ_{SP} (%)	Δ_{EO} (%)	Accuracy (%)	Δ_{SP} (%)	Δ_{EO} (%)
GNN	61.72 ± 6.2	9.24 ± 5.2	10.66 ± 11.1	76.57 ± 2.4	10.63 ± 6.2	6.64 ± 4.1	72.79 ± 3.8	3.91 ± 4.6	10.77 ± 5.6
Adversarial	61.94 ± 4.0	4.93 ± 2.3	7.20 ± 7.7	76.57 ± 2.7	8.95 ± 5.8	5.11 ± 2.0	70.63 ± 2.8	9.56 ± 5.6	7.96 ± 7.9
EDITS	65.38 ± 2.8	6.49 ± 4.6	10.31 ± 6.4	75.37 ± 3.0	3.70 ± 3.9	3.10 ± 1.9	71.53 ± 4.8	6.04 ± 4.2	7.63 ± 4.7
$ ilde{\mathbf{h}}^{ ext{fair}} + ext{GNN}$ [1]	60.43 ± 6.8	5.89 ± 4.4	10.74 ± 10.5	75.67 ± 1.7	5.43 ± 2.6	4.91 ± 1.8	72.07 ± 3.4	4.14 ± 4.1	7.23 ± 7.8
\mathbf{A}^{f}	68.39 ± 6.9	$\textbf{3.28} \pm 1.6$	6.61 ± 4.8	78.51 ± 3.0	6.27 ± 4.1	3.09 ± 2.6	72.97 ± 1.1	3.04 ± 4.5	2.49 ± 3.8

- Similar utility performance compared to fairness-agnostic GNN model
- Better fairness, utility compared to SOTA fairness-aware baselines
- Direct ρ optimization provides better fairness enhancement
- A possible explanation for effective bias mitigation:

Figure 1: Distribution of intra- (green) and inter-(red)edges in the effective network topology before (left)/ after (right) applying $\hat{\mathbf{h}}^{\text{fair}}$.

Conclusions

• Proposition: Bias metric ρ , can be upper bounded by:

 $\rho \le \sqrt{N} \sum_{i=1}^{N} |\tilde{s}_i| |(1-\lambda_i)| |\tilde{h}_i|.$

• Define $\mathbf{m} \in \mathbb{R}^N$, where $m_i := |\tilde{s}_i| |(1 - \lambda_i)|, \forall i = 1, ..., N$. Let $\boldsymbol{\alpha} := \operatorname{argsort}(-\mathbf{m})$.

• Optimal fairness-aware filter design:

$$\begin{split} \tilde{\mathbf{h}}^{\mathsf{fair}} &:= \underset{\tilde{\mathbf{h}}}{\operatorname{argmin}} \mathbf{m}^{\top} \tilde{\mathbf{h}} \\ & \mathbf{s. to} \ \sum_{i=1}^{N} \tilde{h}_i \geq N\tau, \ 0 \leq \tilde{h}_i \leq 1, \forall i \in \{1, \dots, N\}. \\ \bullet \text{ Closed-form solution: } (\tilde{h}^{\mathsf{fair}})_{\alpha_i} &= \left[1 - \left[N(1-\tau) - \sum_{j=1}^{i-1} \left(1 - (\tilde{h}^{\mathsf{fair}})_{\alpha_j}\right)\right]_+\right]_+. \end{split}$$

• A novel, unsupervised bias measure

• Two alternative optimal graph filter designs:

- Theory-based surrogate loss with a closed-form solution, allowing efficient graph filter design
- Filtering as graph rewiring: Implicit filter design via direct minimization of ρ , without spectral decomposition
- Versatile use and pre-trained computation
- Verified effectiveness on real-world social networks
- Future work: Non-linear relations between s and graph topology as a bias measure

[1] O. D. Kose, G. Mateos and Y. Shen, "Fairness-aware optimal graph filter design," *IEEE Journal of Selected Topics in Signal Processing*, 2024. [2] F. Gama et al., "Stability properties of graph neural networks", IEEE Transactions on Signal Processing, 2020. [3] E. Dai and S. Wang, "Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information." *Proc. ACM International* Conference on Web Search and Data Mining, 2021. Work in this paper was supported in part by the Google Research Scholar Award, and the NSF awards CCF-1750428 and CCF-1934962.