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Motivation

• Connectivity era: Growing amount of data describing interconnected systems

• Graphs are utilized to model such complex data

– Graph nodes: users in social networks, accounts holding money

– Graph edges: friendship between users, money transactions

– Nodal features: education level of users, locations of accounts

• Processing & learning from graph data can provide significant advancements

– Increasing attention towards graph signal processing & ML over graphs

– Cross-pollination of GSP and ML over graphs provides new insights [2]

• ML algorithms propagate algorithmic bias

– Impact of ethnicity in crime prediction

– Impact of gender in ad recommendation

• Use of network connectivity in learning amplifies existing bias [3]

• Motivation: Consideration of bias is necessary for graph-based learning

• Limitation of current works: Task/algorithm-specific, no theoretical analysis

• Innovation: Leverage GSP tools to design a general-purpose bias mitigation strategy

Preliminaries & Problem Statement

• Focus on undirected graphs, G := (V , E)

• Connectivity information described via graph adjacency A ∈ {0, 1}N×N and normalized
Laplacian matrices L = IN −D−1
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• Sensitive attributes s ∈ {−1, 1}N , nodal features X ∈ RN×F and labels y ∈ {−1, 1}N for
node classification

• Graph Fourier Transform of signal z ∈ RN is z̃ = V⊤z, where L = VΛV⊤

• Filtering graph signal z ∈ RN via a filter with frequency response h̃ := [h̃1, . . . , h̃N ]⊤

yields the output signal zout = V diag(h̃1, . . . , h̃N )z̃.

Problem Statement
Given G and s, design of graph filters with frequency response h̃ ∈ RN , so that algorithmic
bias sourced from graph topology can be attenuated with the application of such filters.

Bias Metric

• Aggregation over graph G

Rf = ÂVdiag(h̃)V⊤X

= AfX,

Af := V(IN −Λ)diag(h̃)V⊤

• Novel unsupervised bias measure: ρ := ∥s⊤Af∥2, can be manipulated via filter design

Linear Programming-based Optimal Filter Design

• Proposition: Bias metric ρ, can be upper bounded by:

ρ ≤
√
N

N∑
i=1

|s̃i||(1− λi)||h̃i|.

• Define m ∈ RN , where mi := |s̃i||(1− λi)|,∀i = 1, . . . , N . Let α := argsort(−m).

• Optimal fairness-aware filter design:

h̃fair := argmin
h̃

m⊤h̃

s. to
N∑
i=1

h̃i ≥ Nτ, 0 ≤ h̃i ≤ 1,∀i ∈ {1, . . . , N}.

• Closed-form solution: (h̃fair)αi =
[
1−

[
N(1− τ )−

∑i−1
j=1

(
1− (h̃fair)αj

)]
+

]
+

.

Fairness-aware Filtering as Graph Rewiring

• Re-formulate fairness-aware filter design as a network inference problem

• Direct optimization of ρ:

Af :=argmin
Ā

{
∥s⊤Ā∥1 + βr(Ā, Â)

}
,

s.t. ĀÂ = ÂĀ, Ā ∈ S.

• Utility consideration
r(Ā, Â) := ∥Ā− Â∥1,1 (1)

• Design of S provides flexibility

S :=
{
Ā | Āij ≥ 0, Ā ∈ MN , ∥Ā∥1,1 = ∥Â∥1,1

}
.

• ĀÂ = ÂĀ → Â and Ā share the same set of eigenvectors

– Filtering shapes the eigenvalues of the effective graph operator, same eigenvectors

– Implicitly optimize h̃ to minimize ρ without requiring a spectral decomposition

• A flexible design that can be pre-computed once for different learning algorithms, and
can be used at different stages of learning (i.e., pre-processing, post-processing)

Experimental Settings & Results

G: Input Graph
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• Datasets: Real social networks, region is sensitive attribute & job is label

• Task: Node classification, classification accuracy is reported

• Fairness metrics (lower values are desired):

– ∆SP = |P (ŷ = 1 | s = 0)− P (ŷ = 1 | s = 1)|
– ∆EO = |P (ŷ = 1 | y = 1, s = 0)− P (ŷ = 1 | y = 1, s = 1)|

• Comparative results

• Similar utility performance compared to fairness-agnostic GNN model

• Better fairness, utility compared to SOTA fairness-aware baselines

• Direct ρ optimization provides better fairness enhancement

• A possible explanation for effective bias mitigation:

Figure 1: Distribution of intra- (green) and inter-(red)edges in the effective network topology before (left)/ after (right) applying h̃fair.

Conclusions

• A novel, unsupervised bias measure

• Two alternative optimal graph filter designs:

– Theory-based surrogate loss with a closed-form solution, allowing efficient graph
filter design

– Filtering as graph rewiring:Implicit filter design via direct minimization of ρ, without
spectral decomposition

• Versatile use and pre-trained computation

• Verified effectiveness on real-world social networks

• Future work: Non-linear relations between s and graph topology as a bias measure
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