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Abstract—We consider network topology identification under
a signal smoothness prior. We address said graph learning
problem by developing a fast dual-based proximal gradient
(FDPG) algorithm that can handle large-scale graphs efficiently.
Preliminary results demonstrate the effectiveness of the proposed
method in learning graphs accurately and fast.

Index Terms—Graph signal processing, smooth signals, net-
work topology inference, accelerated gradient methods.

I. INTRODUCTION

In various fields of science and engineering, adopting a
network-centric vantage point can be instrumental to extract
actionable knowledge from relational datasets. Graph signal
processing (GSP) proved to be a suitable tool to this end [1].
However, GSP algorithms necessitate a graph representation
of complex structures in data, which may be unavailable and
has to be inferred from nodal observations [2], [3], [4], [5],
[6], [7].

Consider a network described by a weighted and undirected
graph G (V, E ,W), where V = {1, . . . , N} represents the
node set of cardinality N , E ⊆ V × V the set of edges, and
W ∈ RN×N+ is the symmetric adjacency matrix. Next, we
instroduce graph signals x = [x1, . . . , xN ]

> ∈ RN over G,
where xi is the signal value at node i ∈ V .
Signal smoothness with respect to G. The adjacency matrix
W is the descriptor of the graph structure. Accordingly, the
combinatorial graph Laplacian L := diag (d) −W, where
d ∈ RN is a vector of nodal degrees, can play a central role in
defining a measure of signal variability [8]. The total variation
(TV) of the graph signal x with respect to the Laplacian L
(also known as Dirichlet energy) is defined as the following
quadratic form

TV(x) := x>Lx =
1

2

∑
i 6=j

Wij (xi − xj)2 . (1)

The TV(·) is a smoothness measure, quantifying how much the
graph signal x changes with respect to G’s topology. Smaller
values of TV(·) are indicative of limited signal variability.
Contributions in context of related prior work. In this
paper, we develop an algorithmic framework to identify net-
work topology under smoothness priors. Revisiting the general
graph learning framework in [6], we adopt a fast dual proximal
gradient (FDPG) method to solve the resulting smoothness-
regularized optimization problem. It can be shown that the
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proposed FDPG method has a convergence guarantee [9].
Recent works on graph learning from observations of smooth
signals have developed different approaches to solve the said
optimization problem [6], [10], [11], [12]. The primal-dual
(PD) techniques have been exploited in [6]. PD methods
are known to efficiently handle high-dimensional problems.
The convergent proximal-gradient (PG) method is introduced
in [11] where is amenable to online scenarios. Moreover, the
alternating direction method of multipliers (ADMM) is pro-
posed to solve the graph learning optimization problem [12].
Numerical tests using synthetic data indicate the efficiency
and effectiveness of the proposed FDPG algorithm in solving
the convex minimization. A longer version of this paper with
full algorithmic details and convergence analysis along with
publicly-available code can be found in [13].

II. GRAPH LEARNING FROM SMOOTH SIGNALS

Given the data matrix X = [x1, . . . ,xT ] ∈ RN×T , and
let x̄>i ∈ R1×T denote its i-th row collecting those T
measurements at vertex i. Following [6] we can establish a
link between smoothness and sparsity, namely

T∑
t=1

TV(xt) = trace(X>LX) =
1

2
‖W ◦ Z‖1, (2)

where ◦ stands for the Hadamard (element-wise) product
and the Euclidean-distance matrix Z ∈ RN×N+ has entries
Zij := ‖x̄i − x̄j‖2, i, j ∈ V . The intuition is that when
the given distances in Z come from a smooth manifold, the
corresponding graph has a sparse edge set, with preference
given to edges (i, j) associated with smaller distances Zij .

Leveraging (2) a general graph-learning framework was put
forth in [6], which advocates solving the convex smoothness-
regularized inverse problem

min
W
‖W ◦ Z‖1 − α1> log(W1) + β‖W‖2F (3)

s. t. diag(W) = 0, Wij = Wji ≥ 0, i 6= j.

where 1 and 0 are vectors of all ones and zeros. Note that
α, β > 0 are tuning parameters for controlling the sparsity
pattern and scale of the solution [6]. In order to adopt a
FDPG method for solving (3), recall first that the adjacency
matrix W is symmetric with diagonal elements equal to zero.
Thus, the independent decision variables are effectively the
upper-triangular elements [W]ij , j > i, which we collect
in the vector w ∈ RN(N−1)/2

+ . Second, it will prove con-
venient to enforce the non-negativity constraints via a penalty
function augmenting the original objective. Just like [6] we
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Fig. 1. Convergence performance on (a) ER graph with 100 nodes, (b) ER graph with 250 nodes, and (c) BA graph with 250 nodes.

add an indicator function I {w � 0} = 0 if w � 0, and
I {w � 0} = ∞ otherwise. The superiority performance of
(3) has already been shown when compared to other state-of-
the-art objective functions [6]. The FDPG method is derived
by applying well-known FISTA approach to the dual problem.
The FDPG actually does not add any extra computational cost
to the problem [9]. The FDPG method can efficiently solve
the following minimization problem

min f(x) + g(Sx) (4)

where f(·) is a strongly convex function with strong convexity
parameter σ and g(·) is a convex function [9]. The FDPG
method is well-suited for large-scale problems since it enjoys
a fast rate of convergence. Interestingly, if we consider the
convergence rate of the dual objective function as O(1/k2),
the primal sequence convergence rate is at O(1/k) [9].

Given these definitions, we recast the objective in (3) as
the function of a vector variable and write the equivalent
composite, non-smooth optimization problem

min
w

f(w)︷ ︸︸ ︷
I {w � 0}+ 2w>z + β‖w‖2 −α1> log (Sw) .︸ ︷︷ ︸

g(w)

(5)

where z is a vector containing the upper-triangular entries of
Z, and S ∈ {0, 1}N×N(N−1)/2 is such that d = W1 = Sw.
As a part of FDPG algorithm we have to first compute the
following components [9]

argmax
x

〈x,S>u〉 − f(x) = max

(
0,

S>u− 2z

2β

)
, (6)

proxµg(x) =
x +

√
x2 + 4αµ

2
, (7)

where max(·) in (6) and all operations in (7) are element-wise
operations. The resulting iterations based on [9] are tabulated
as Algorithm 1. Note that, by choosing a constant step size
µ = ‖S‖2

σ = N−1
β , the FDPG algorithm is proven to converge;

see e.g., [9] and [13] for details.

Algorithm 1: Topology identification via FDPG
Input parameters α, β, µ, initial u1 = y0 = 0, t1 = 1.
for k = 1, 2, . . . , do

wk = max
(
0, S

>uk−2z
2β

)
vk = proxµg(Swk − Luk)
yk = uk − µ−1(Swk − vk)
tk+1 = 0.5(1 +

√
1 + 4t2k)

uk+1 = yk +
(
tk−1
tk+1

)
(yk − yk−1)

end

III. PRELIMINARY NUMERICAL RESULTS

To assess the performance of the proposed graph learning
algorithm, we test it on simulated data. For sake of evaluation,
we compare Algorithm 1 to other state-of-the-art methods such
as PD [6], PG [11], and ADMM [12]. Throughout, we perform
a grid search to determine the best regularization parameters
α, β in terms of graph recovery. Also, the ADMM parameters
and PD step size are best-tuned for obtaining the best possible
convergence rate. We generate three different graphs namely
Erdős-Rényi (ER) graphs (edge formation probability p = 0.2)
with N = 100 and N = 250 nodes, and Barabási-Albert
(BA) graph by adding a new node to the graph each time,
connecting to 15 existing nodes in the graph. We simulate 5000
i.i.d. samples that are drawn from a Gaussian distribution x ∼
N
(
0,L†t + σ2

eIN

)
, where σe represents the noise level; see

e.g., [7]. As shown in Fig. 1, the proposed method outperforms
the other methods in terms of convergence rate.
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