Fast topology identification from smooth graph signals
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Abstract—We consider network topology identification under
a signal smoothness prior. We address said graph learning
problem by developing a fast dual-based proximal gradient
(FDPG) algorithm that can handle large-scale graphs efficiently.
Preliminary results demonstrate the effectiveness of the proposed
method in learning graphs accurately and fast.

Index Terms—Graph signal processing, smooth signals, net-
work topology inference, accelerated gradient methods.

I. INTRODUCTION

In various fields of science and engineering, adopting a
network-centric vantage point can be instrumental to extract
actionable knowledge from relational datasets. Graph signal
processing (GSP) proved to be a suitable tool to this end [1].
However, GSP algorithms necessitate a graph representation
of complex structures in data, which may be unavailable and
has to be inferred from nodal observations [2], [3], [4], [5],
(61, [71.

Consider a network described by a weighted and undirected

graph G (V,E, W), where V = {1,...,N} represents the
node set of cardinality N, £ C V x V the set of edges, and
W ¢ Rf *N'is the symmetric adjacency matrix. Next, we
instroduce graph signals x = [xl,...,xN}T € RY over G,
where z; is the signal value at node ¢ € V.
Signal smoothness with respect to G. The adjacency matrix
W is the descriptor of the graph structure. Accordingly, the
combinatorial graph Laplacian L := diag (d) — W, where
d € RY is a vector of nodal degrees, can play a central role in
defining a measure of signal variability [8]. The total variation
(TV) of the graph signal x with respect to the Laplacian L
(also known as Dirichlet energy) is defined as the following
quadratic form

TV(x) :=x'Lx = % Z Wij (x; — xj)2 . (1)
i#]

The TV(+) is a smoothness measure, quantifying how much the
graph signal x changes with respect to G’s topology. Smaller
values of TV(-) are indicative of limited signal variability.
Contributions in context of related prior work. In this
paper, we develop an algorithmic framework to identify net-
work topology under smoothness priors. Revisiting the general
graph learning framework in [6], we adopt a fast dual proximal
gradient (FDPG) method to solve the resulting smoothness-
regularized optimization problem. It can be shown that the
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proposed FDPG method has a convergence guarantee [9].
Recent works on graph learning from observations of smooth
signals have developed different approaches to solve the said
optimization problem [6], [10], [11], [12]. The primal-dual
(PD) techniques have been exploited in [6]. PD methods
are known to efficiently handle high-dimensional problems.
The convergent proximal-gradient (PG) method is introduced
in [11] where is amenable to online scenarios. Moreover, the
alternating direction method of multipliers (ADMM) is pro-
posed to solve the graph learning optimization problem [12].
Numerical tests using synthetic data indicate the efficiency
and effectiveness of the proposed FDPG algorithm in solving
the convex minimization. A longer version of this paper with
full algorithmic details and convergence analysis along with
publicly-available code can be found in [13].

II. GRAPH LEARNING FROM SMOOTH SIGNALS

Given the data matrix X = [xq,...,x7] € RV*T, and
let x] € RY™T denote its i-th row collecting those T
measurements at vertex ¢. Following [6] we can establish a
link between smoothness and sparsity, namely

T

3 TV(x,) = trace(X LX) = %IIW oZll, (@)

t=1
where o stands for the Hadamard (element-wise) product
and the Euclidean-distance matrix Z € Rf *N has entries
Zij = ||%i — %j||%, i,j € V. The intuition is that when
the given distances in Z come from a smooth manifold, the
corresponding graph has a sparse edge set, with preference
given to edges (i,j) associated with smaller distances Z;;.

Leveraging (2) a general graph-learning framework was put

forth in [6], which advocates solving the convex smoothness-
regularized inverse problem

min [W o Z[|; — a1 log(W1) + 8[W[7 ()

S. t. dlag(W) =0, Wi]‘ = Wji >0,1%#7j.

where 1 and O are vectors of all ones and zeros. Note that
«, B > 0 are tuning parameters for controlling the sparsity
pattern and scale of the solution [6]. In order to adopt a
FDPG method for solving (3), recall first that the adjacency
matrix W is symmetric with diagonal elements equal to zero.
Thus, the independent decision variables are effectively the
upper-triangular elements [W/];;, j > 4, which we collect
in the vector w € Rf(Nfl)/ 2 Second, it will prove con-
venient to enforce the non-negativity constraints via a penalty
function augmenting the original objective. Just like [6] we
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Fig. 1. Convergence performance on (a) ER graph with 100 nodes, (b) ER graph with 250 nodes, and (c) BA graph with 250 nodes.

add an indicator function I{w >0} = 0 if w > 0, and
I{w »= 0} = oo otherwise. The superiority performance of
(3) has already been shown when compared to other state-of-
the-art objective functions [6]. The FDPG method is derived
by applying well-known FISTA approach to the dual problem.
The FDPG actually does not add any extra computational cost
to the problem [9]. The FDPG method can efficiently solve
the following minimization problem
min f(x) + g(Sx) )

where f(-) is a strongly convex function with strong convexity
parameter o and g(-) is a convex function [9]. The FDPG
method is well-suited for large-scale problems since it enjoys
a fast rate of convergence. Interestingly, if we consider the
convergence rate of the dual objective function as O(1/k?),
the primal sequence convergence rate is at O(1/k) [9].

Given these definitions, we recast the objective in (3) as
the function of a vector variable and write the equivalent
composite, non-smooth optimization problem

f(w)
minl{w > 0} + 2w 'z + 3||w|* —a1 T log (Sw). (5)
w —_—

g(w)

where z is a vector containing the upper-triangular entries of
Z, and S € {0, 1}V*N(N=1/2 ig such that d = W1 = Sw.
As a part of FDPG algorithm we have to first compute the
following components [9]
STu-—2z
0, ———— 6
(o.5222)

X + /%2 + dap ™
2 b

argmax (x,S'u) — f(x) = max

prox,,, (x)

where max(+) in (6) and all operations in (7) are element-wise
operations. The resulting iterations based on [9] are tabulated
as Algorithm 1. Note that, by choosing a constant step size
w= @ = N1 the FDPG algorithm is proven to converge;
see e.g., [9] and [13] for details.

oﬁm‘z

Algorithm 1: Topology identification via FDPG

Input parameters «, 8, p, initial u; =y =0, t; = 1.
for k=1,2,..., do

W) = max (()7 7ST‘;’CB*22

Vi = proxﬂg(ka — Luy)

Vi =g — p(Swi — i)

thp1 = 0.5(1 4+ /1 + 4¢3)

Upy1 = Yi + (i’;;l) Yk — Yk-1)
end

III. PRELIMINARY NUMERICAL RESULTS

To assess the performance of the proposed graph learning
algorithm, we test it on simulated data. For sake of evaluation,
we compare Algorithm 1 to other state-of-the-art methods such
as PD [6], PG [11], and ADMM [12]. Throughout, we perform
a grid search to determine the best regularization parameters
«, (B in terms of graph recovery. Also, the ADMM parameters
and PD step size are best-tuned for obtaining the best possible
convergence rate. We generate three different graphs namely
Erd6s-Rényi (ER) graphs (edge formation probability p = 0.2)
with N = 100 and N = 250 nodes, and Barabdsi-Albert
(BA) graph by adding a new node to the graph each time,
connecting to 15 existing nodes in the graph. We simulate 5000
i.i.d. samples that are drawn from a Gaussian distribution x ~

N (0, LI + JEI N), where o, represents the noise level; see

e.g., [7]. As shown in Fig. 1, the proposed method outperforms
the other methods in terms of convergence rate.
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