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What is this talk about?

» Learning graphs from nodal observations

» Ex: Central to network neuroscience

= Functional network from fMRI signals
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What is this talk about?

» Learning graphs from nodal observations

» Ex: Central to network neuroscience

= Functional network from fMRI signals

» Most GSP works: how known graph G(V, &) affects signals and filters

» Feasible for e.g., physical or infrastructure networks
> Links are tangible and directly observable

» Still, acquisition of updated topology information is challenging

= Sheer size, reconfiguration, privacy and security
» Here, reverse path: how to use GSP to infer the graph topology?

» Goal: fast, scalable algorithm with convergence rate guarantees
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Graph signal processing (GSP)

X2 Xa
» Graph G with adjacency matrix W € RV*N
= Wj; = proximity between i and j xa
» Define a signal x € R" on top of the graph
= x; = signal value at node i € V
X3 X5
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Graph signal processing (GSP)

X2 Xa
» Graph G with adjacency matrix W € RV*N
= Wj; = proximity between i and j xa
» Define a signal x € R" on top of the graph
= x; = signal value at node i € V
X3 X5

» Total variation of signal x with respect to LaplacianL=D — W

1
TV(x) = x"Lx = 5 ; Wi(x: — x;)?
7]
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Graph signal processing (GSP)

X2 Xa
» Graph G with adjacency matrix W € RV*N
= Wj; = proximity between i and j xa
» Define a signal x € R" on top of the graph
= x; = signal value at node i € V
X3 X5

» Total variation of signal x with respect to LaplacianL=D — W

1
TV(x) = x"Lx = 5 ; Wi(x: — x;)?
7]

» Graph Signal Processing — Exploit structure encoded in L to process x
= Use GSP to learn the underlying G or a meaningful network model
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Problem formulation

Rationale

» Seek graphs on which data admit certain regularities

> Nearest-neighbor prediction
» Semi-supervised learning
» Efficient information-processing transforms

» Many real-world graph signals are smooth (i.e., TV(x) is small)

» Graphs based on similarities among vertex attributes
» Network formation driven by homophily, proximity in latent space
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Problem formulation

Rationale

» Seek graphs on which data admit certain regularities

> Nearest-neighbor prediction
» Semi-supervised learning
» Efficient information-processing transforms

» Many real-world graph signals are smooth (i.e., TV(x) is small)

» Graphs based on similarities among vertex attributes
» Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X := {x,}}_;, identify a graph G such that
signals in X' are smooth on .
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Signal smoothness meets edge sparsity

» Form X = [x1,...,xp] € RV*P let x| € R1*P denote its i-th row

= Euclidean distance matrix E € RY*N, where E; := ||%; — %;|2
> Neat trick: link between smoothness and sparsity [Kalofolias'16]
& 1
D TV(x,) = trace(X LX) = 5IW o Els
p=1

= Sparse £ when data come from a smooth manifold

= Favor candidate edges (i, ) associated with small Ej

» Shows that edge sparsity on top of smoothness is redundant
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Signal smoothness meets edge sparsity

» Form X = [x1,...,xp] € RV*P let x| € R1*P denote its i-th row

= Euclidean distance matrix E € RY*N, where E; := ||%; — %;|2
> Neat trick: link between smoothness and sparsity [Kalofolias'16]
& 1
D TV(x,) = trace(X LX) = 5IW o Els
p=1

= Sparse £ when data come from a smooth manifold

= Favor candidate edges (i, ) associated with small Ej
» Shows that edge sparsity on top of smoothness is redundant

» Parameterize graph learning problems in terms of W (instead of L)

= Advantageous since constraints on W are decoupled
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Scalable topology identification framework

» General purpose graph-learning framework

min {nw o Ells — a1 log(W1) + ﬁnw%}
s to diag(W) =0, W= W; >0, i#]

= Logarithmic barrier forces positive degrees d = W1

= Penalize large edge-weights to control sparsity

» Efficient algorithms incurring O(N?) cost
= Primal-dual (PD) [Kalofolias'16] and ADMM [Wang et al'21]

» Cost has no Lipschitz gradient — No convergence rates
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Equivalent reformulation

» Handle constraints on entries of W

» Hollow and symmetric — Retain w := vec[triu[W]] € Rﬁ(’vfl)/z

> Non-negative — I{w >0} =0ifw = 0, else [{w > 0} = o0
» Equivalent unconstrained, non-differentiable reformulation

min {]I{w =0} +2w'e+ B||w|2 —al' log (Sw) }

=f(w) =—g(Sw)

= S maps edge weights to nodal degrees, i.e., d = Sw
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Equivalent reformulation

» Handle constraints on entries of W

» Hollow and symmetric — Retain w := vec[triu[W]] € Rﬁ(’vfl)/z

> Non-negative — I{w >0} =0ifw = 0, else [{w > 0} = o0
» Equivalent unconstrained, non-differentiable reformulation

min {]I{w =0} +2w'e+ B||w|2 —al' log (Sw) }

=f(w) =—g(Sw)

= S maps edge weights to nodal degrees, i.e., d = Sw

» Non-differentiable f(w) is strongly convex, g(d) is strictly convex

> Problem miny{f(w) + g(Sw)} has a unique optimal solution w*
» Amenable to fast dual-based proximal gradient (FDPG) solver
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Dual problem and its properties

» Variable splitting: miny, 4 {f(w)+ g(d)}, s. to d = Sw
» Attach Lagrange multipliers A € R" to equality constraints
> Lagrangian L(w,d, ) = f(w) + g(d) — (A, Sw — d)
» (Minimization form) dual problem is miny {F(A) + G(A)}, where
F(A) := max {(STA,w) — f(w)},
G(A) 1= max {(~.d) — g(d))
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Dual problem and its properties

» Variable splitting: miny, 4 {f(w) + g(d)}, s. to d = Sw
» Attach Lagrange multipliers A € R" to equality constraints
> Lagrangian L(w,d, ) = f(w) + g(d) — (A, Sw — d)
» (Minimization form) dual problem is miny {F(A) + G(A)}, where
F(A) := max {(STA,w) — f(w)},
G(A) 1= max {(~.d) — g(d))

» Strong convexity of f implies a Lipschitz gradient property for F

Lemma. Function F(\) is smooth, and the gradient VF(X) is

Lipschitz continuous with constant L := %
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Fast dual-based proximal gradient method

1
Ak = prox,—ig (wk - ZVF(WI()) )

1+ /1+422
2 b

tit1 =

tk — 1
wk+1=)\k+< ktk -
4

) [Ak = Aka]
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Fast dual-based proximal gradient method

1
Ak = prox,—ig (wk - ZVF(WI()) )

1+ +/1+4t2
2 )

tit1 =

tk — 1
wk+1=)\k+<ktk -
4

) [Ak = Aka]

» Rewrite in terms of problem parameters L, «, 3, S, signals in e

Proposition. The dual variable update iteration can be equiva-
lently rewritten as Ay = wyi — L~1(SWx — uy), with

Wy = max Oiskaf2e
k — a ’ 2ﬁ )
u Swy — Lwy + \/(SV_Vk = ka)z +4all
k =
2
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Algorithm summary

Algorithm 1: Topology inference via fast dual PG (FDPG)

Input parameters «, 8, data e, set L = %

Initialize t; = 1 and w1 = Ao at random.
for k=1,2,... do

W, = max (0, ST‘gigfze)

u, = Sty Lo+ (Sg'k—ka)2+4aL1
Ak = wi — LTSy — uy)

tky1 = w

Wi+l = Ak + (ttkk:) [Ak — Ak—1]

end

-
Output graph estimate Wy, = max (0, 5272_%)

» Complexity of O(N?) in par with state-of-the-art algorithms
> Non-accelerated dual proximal gradient (DPG) method for tx, =1, k > 1
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Convergence rate analysis

» Let A* be a minimizer of the dual cost () := F(A) + G(A). Then

2(N —1)[IX0 — A*|3
Bk?

= Celebrated O(1/k?) rate for FISTA [Beck-Teboulle’09]

P(Ak) — (A7) <
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rgence rate analysis

» Let A* be a minimizer of the dual cost () := F(A) + G(A). Then

2(N —1)[IX0 — A*|3
Bk?

= Celebrated O(1/k?) rate for FISTA [Beck-Teboulle’09]

P(Ak) — (A7) <

» Construct a primal sequence Wy = argmin,, £(w, d, A)

ST —2e>

W, = argmax {(STAk,w> - f(w)} = max (O7 —25

Theorem. For all k > 1, the primal sequence w/ defined in terms
of dual iterates Ay generated by Algorithm 1 satistifies

V2(N = 1)[[Ado — X2
Bk '

[ — w* |2 <
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Convergence performa nce

» Recovery of random and real-world graphs from simulated signals
» Networks: (a) SBM, N = 400; (b) brain, N = 66; (c) MN road, N = 2642
» Signals: P = 1000 i.i.d. smooth signals x, ~ A(0,L" +10721y)
» Examine evolution of primal variable error ||W, — w*||2

ADMM DPG |

ik —

i — w0

=
S,
)

Y 10
0 100 200 300 400 500 0 500 1000 1500 2000 0 0 1000 2000 3000 4000 5000
Number of iterations Number of iterations Number of iterations
(a) (b) (c)

» FDPG converges markedly faster, uniformly across graph classes
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Closing remarks

» Network topology inference cornerstone problem in Network Science

» Most GSP works analyze how G affect signals and filters
> Here, reverse path: How to use GSP to infer the graph topology?

> Novel algorithm to learn graphs from observations of smooth signals
= Cardinal property of many real-world graph signals

= Ex: sensor measurements, movie ratings, protein annotations
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Closing remarks

» Network topology inference cornerstone problem in Network Science

» Most GSP works analyze how G affect signals and filters
> Here, reverse path: How to use GSP to infer the graph topology?

> Novel algorithm to learn graphs from observations of smooth signals
= Cardinal property of many real-world graph signals

= Ex: sensor measurements, movie ratings, protein annotations

» Fast dual-based proximal gradient (FDPG) iterations
= Optimization method so far unexplored for graph learning
= Markedly faster than state-of-the-art algorithms
= Comes with convergence rate guarantees
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