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What is this talk about?

I Learning graphs from nodal observations

I Ex: Central to network neuroscience
⇒ Functional network from fMRI signals

I Most GSP works: how known graph G(V, E) affects signals and filters
I Feasible for e.g., physical or infrastructure networks
I Links are tangible and directly observable

I Still, acquisition of updated topology information is challenging
⇒ Sheer size, reconfiguration, privacy and security

I Here, reverse path: how to use GSP to infer the graph topology?

I Goal: fast, scalable algorithm with convergence rate guarantees
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Graph signal processing (GSP)

I Graph G with adjacency matrix W ∈ RN×N

⇒ Wij = proximity between i and j

I Define a signal x ∈ RN on top of the graph
⇒ xi = signal value at node i ∈ V
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I Total variation of signal x with respect to Laplacian L = D−W

TV(x) = x>Lx =
1
2

∑
i 6=j

Wij(xi − xj)
2

I Graph Signal Processing → Exploit structure encoded in L to process x
⇒ Use GSP to learn the underlying G or a meaningful network model
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Problem formulation

Rationale
I Seek graphs on which data admit certain regularities

I Nearest-neighbor prediction (a.k.a. graph smoothing)
I Semi-supervised learning
I Efficient information-processing transforms

I Many real-world graph signals are smooth (i.e., TV(x) is small)
I Graphs based on similarities among vertex attributes
I Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X := {xp}Pp=1, identify a graph G such that
signals in X are smooth on G.
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Signal smoothness meets edge sparsity

I Form X = [x1, . . . , xP ] ∈ RN×P , let x̄>i ∈ R1×P denote its i-th row
⇒ Euclidean distance matrix E ∈ RN×N

+ , where Eij := ‖x̄i − x̄j‖2

I Neat trick: link between smoothness and sparsity [Kalofolias’16]

P∑
p=1

TV(xp) = trace(X>LX) =
1
2
‖W ◦ E‖1

⇒ Sparse E when data come from a smooth manifold
⇒ Favor candidate edges (i , j) associated with small Eij

I Shows that edge sparsity on top of smoothness is redundant

I Parameterize graph learning problems in terms of W (instead of L)
⇒ Advantageous since constraints on W are decoupled
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Scalable topology identification framework

I General purpose graph-learning framework

min
W

{
‖W ◦ E‖1 − α1> log(W1) +

β

2
‖W‖2F

}
s. to diag(W) = 0, Wij = Wji ≥ 0, i 6= j

⇒ Logarithmic barrier forces positive degrees d = W1
⇒ Penalize large edge-weights to control sparsity

I Efficient algorithms incurring O(N2) cost
⇒ Primal-dual (PD) [Kalofolias’16] and ADMM [Wang et al’21]

I Cost has no Lipschitz gradient → No convergence rates

V. Kalofolias, “How to learn a graph from smooth signals,” AISTATS, 2016
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Equivalent reformulation

I Handle constraints on entries of W
I Hollow and symmetric → Retain w := vec[triu[W]] ∈ RN(N−1)/2

+
I Non-negative → I {w � 0} = 0 if w � 0, else I {w � 0} =∞

I Equivalent unconstrained, non-differentiable reformulation

min
w

{
I {w � 0}+ 2w>e + β‖w‖22︸ ︷︷ ︸

:=f (w)

−α1> log (Sw)︸ ︷︷ ︸
:=−g(Sw)

}

⇒ S maps edge weights to nodal degrees, i.e., d = Sw

I Non-differentiable f (w) is strongly convex, g(d) is strictly convex
I Problem minw{f (w) + g(Sw)} has a unique optimal solution w?
I Amenable to fast dual-based proximal gradient (FDPG) solver

A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for
convex minimization and applications,” Oper. Res. Lett., 2014
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Dual problem and its properties

I Variable splitting: minw,d {f (w) + g(d)}, s. to d = Sw
I Attach Lagrange multipliers λ ∈ RN to equality constraints
I Lagrangian L(w, d,λ) = f (w) + g(d)− 〈λ,Sw − d〉

I (Minimization form) dual problem is minλ {F (λ) + G (λ)}, where

F (λ) := max
w

{
〈S>λ,w〉 − f (w)

}
,

G (λ) := max
d
{〈−λ,d〉 − g(d)}

I Strong convexity of f implies a Lipschitz gradient property for F

Lemma. Function F (λ) is smooth, and the gradient ∇F (λ) is
Lipschitz continuous with constant L := N−1

β .
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Fast dual-based proximal gradient method

I Key: apply accelerated proximal gradient method to the dual

λk = proxL−1G

(
ωk −

1
L
∇F (ωk)

)
,

tk+1 =
1 +

√
1 + 4t2k
2

,

ωk+1 = λk +

(
tk − 1
tk+1

)
[λk − λk−1]

I Rewrite in terms of problem parameters L, α, β, S, signals in e

Proposition. The dual variable update iteration can be equiva-
lently rewritten as λk = ωk − L−1(Sw̄k − uk), with

w̄k = max
(

0,
S>ωk − 2e

2β

)
,

uk =
Sw̄k − Lωk +

√
(Sw̄k − Lωk)2 + 4αL1
2
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Algorithm summary

Algorithm 1: Topology inference via fast dual PG (FDPG)
Input parameters α, β, data e, set L = N−1

β
.

Initialize t1 = 1 and ω1 = λ0 at random.
for k = 1, 2, . . . , do

w̄k = max
(
0, S>ωk−2e

2β

)
uk =

Sw̄k−Lωk+
√

(Sw̄k−Lωk )2+4αL1
2

λk = ωk − L−1(Sw̄k − uk)

tk+1 =
1+
√

1+4t2
k

2

ωk+1 = λk +
(

tk−1
tk+1

)
[λk − λk−1]

end

Output graph estimate ŵk = max
(
0, S>λk−2e

2β

)
I Complexity of O(N2) in par with state-of-the-art algorithms

I Non-accelerated dual proximal gradient (DPG) method for tk ≡ 1, k ≥ 1

Fast Topology Identification from Smooth Graph Signals BalkanCom 2021 18



Convergence rate analysis

I Let λ? be a minimizer of the dual cost ϕ(λ) := F (λ) + G (λ). Then

ϕ(λk)− ϕ(λ?) ≤ 2(N − 1)‖λ0 − λ?‖22
βk2

⇒ Celebrated O(1/k2) rate for FISTA [Beck-Teboulle’09]

I Construct a primal sequence ŵk = argminw L(w,d,λk)

ŵk = argmax
w

{
〈S>λk ,w〉 − f (w)

}
= max

(
0,

S>λk − 2e
2β

)

Theorem. For all k ≥ 1, the primal sequence ŵk defined in terms
of dual iterates λk generated by Algorithm 1 satistifies

‖ŵk − w?‖2 ≤
√

2(N − 1)‖λ0 − λ?‖2
βk

.
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Convergence performance

I Recovery of random and real-world graphs from simulated signals
I Networks: (a) SBM, N = 400; (b) brain, N = 66; (c) MN road, N = 2642
I Signals: P = 1000 i.i.d. smooth signals xp ∼ N (0, L† + 10−2IN)
I Examine evolution of primal variable error ‖ŵk − w?‖2

PG FDPG PD ADMM DPG
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0 1000 2000 3000 4000 5000
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I FDPG converges markedly faster, uniformly across graph classes
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Closing remarks

I Network topology inference cornerstone problem in Network Science
I Most GSP works analyze how G affect signals and filters
I Here, reverse path: How to use GSP to infer the graph topology?

I Novel algorithm to learn graphs from observations of smooth signals
⇒ Cardinal property of many real-world graph signals
⇒ Ex: sensor measurements, movie ratings, protein annotations

I Fast dual-based proximal gradient (FDPG) iterations
⇒ Optimization method so far unexplored for graph learning
⇒ Markedly faster than state-of-the-art algorithms
⇒ Comes with convergence rate guarantees

Try it out! http://www.ece.rochester.edu/~gmateosb/code/FDPG.zip
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