

Fast Topology Identification from Smooth Graph Signals

S. Saman Saboksayr, Gonzalo Mateos, and Mujdat Cetin

Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/

Ack.: NSF Awards CCF-1750428, ECCS-1809356, CCF-1934962

Novi Sad, Serbia, September 20-22, 2021

- Learning graphs from nodal observations
- Ex: Central to network neuroscience
 - \Rightarrow Functional network from fMRI signals

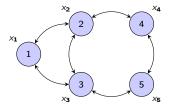
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Learning graphs from nodal observations
- Ex: Central to network neuroscience
 - \Rightarrow Functional network from fMRI signals

- ▶ Most GSP works: how known graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ affects signals and filters
 - Feasible for e.g., physical or infrastructure networks
 - Links are tangible and directly observable
- ▶ Still, acquisition of updated topology information is challenging
 ⇒ Sheer size, reconfiguration, privacy and security
- ► Here, reverse path: how to use GSP to infer the graph topology?
- ► Goal: fast, scalable algorithm with convergence rate guarantees

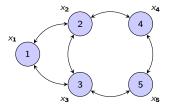
Graph signal processing (GSP)

- ► Graph G with adjacency matrix $\mathbf{W} \in \mathbb{R}^{N \times N}$ $\Rightarrow W_{ij} = \text{proximity between } i \text{ and } j$
- ► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{signal value at node } i \in \mathcal{V}$



Graph signal processing (GSP)

- ► Graph G with adjacency matrix $\mathbf{W} \in \mathbb{R}^{N \times N}$ $\Rightarrow W_{ij} = \text{proximity between } i \text{ and } j$
- ► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{signal value at node } i \in \mathcal{V}$



3

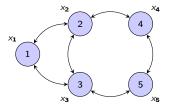
▶ Total variation of signal **x** with respect to Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{W}$

$$\mathsf{TV}(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i \neq j} W_{ij} (x_i - x_j)^2$$

Fast Topology Identification from Smooth Graph Signals

Graph signal processing (GSP)

- ▶ Graph G with adjacency matrix W ∈ ℝ^{N×N}
 ⇒ W_{ij} = proximity between i and j
- ► Define a signal $\mathbf{x} \in \mathbb{R}^N$ on top of the graph $\Rightarrow x_i = \text{signal value at node } i \in \mathcal{V}$



▶ Total variation of signal **x** with respect to Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{W}$

$$\mathsf{TV}(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i \neq j} W_{ij} (x_i - x_j)^2$$

► Graph Signal Processing \rightarrow Exploit structure encoded in L to process x \Rightarrow Use GSP to learn the underlying G or a meaningful network model

Problem formulation

Rationale

- Seek graphs on which data admit certain regularities
 - Nearest-neighbor prediction (a.k.a. graph smoothing)
 - Semi-supervised learning
 - Efficient information-processing transforms
- ► Many real-world graph signals are smooth (i.e., TV(x) is small)
 - Graphs based on similarities among vertex attributes
 - Network formation driven by homophily, proximity in latent space

Problem formulation

Rationale

- Seek graphs on which data admit certain regularities
 - Nearest-neighbor prediction (a.k.a. graph smoothing)
 - Semi-supervised learning
 - Efficient information-processing transforms
- ► Many real-world graph signals are smooth (i.e., TV(x) is small)
 - Graphs based on similarities among vertex attributes
 - Network formation driven by homophily, proximity in latent space

Problem statement

Given observations $\mathcal{X} := \{\mathbf{x}_p\}_{p=1}^p$, identify a graph \mathcal{G} such that signals in \mathcal{X} are smooth on \mathcal{G} .

★@> ★ E> ★ E> = E

- ► Form $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_P] \in \mathbb{R}^{N \times P}$, let $\mathbf{\bar{x}}_i^\top \in \mathbb{R}^{1 \times P}$ denote its *i*-th row ⇒ Euclidean distance matrix $\mathbf{E} \in \mathbb{R}^{N \times N}_+$, where $E_{ij} := \|\mathbf{\bar{x}}_i - \mathbf{\bar{x}}_j\|^2$
- ▶ Neat trick: link between smoothness and sparsity [Kalofolias'16]

$$\sum_{\rho=1}^{P} \mathsf{TV}(\mathbf{x}_{\rho}) = \mathsf{trace}(\mathbf{X}^{\top} \mathbf{L} \mathbf{X}) = \frac{1}{2} \| \mathbf{W} \circ \mathbf{E} \|_{1}$$

⇒ Sparse \mathcal{E} when data come from a smooth manifold ⇒ Favor candidate edges (i, j) associated with small E_{ij}

Shows that edge sparsity on top of smoothness is redundant

同 * * ヨ * * ヨ * ・ ヨ ・ ・ の (へ

- ► Form $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_P] \in \mathbb{R}^{N \times P}$, let $\mathbf{\bar{x}}_i^\top \in \mathbb{R}^{1 \times P}$ denote its *i*-th row ⇒ Euclidean distance matrix $\mathbf{E} \in \mathbb{R}_+^{N \times N}$, where $E_{ij} := \|\mathbf{\bar{x}}_i - \mathbf{\bar{x}}_j\|^2$
- ▶ Neat trick: link between smoothness and sparsity [Kalofolias'16]

$$\sum_{\rho=1}^{P} \mathsf{TV}(\mathbf{x}_{\rho}) = \mathsf{trace}(\mathbf{X}^{\top} \mathbf{L} \mathbf{X}) = \frac{1}{2} \| \mathbf{W} \circ \mathbf{E} \|_{1}$$

⇒ Sparse \mathcal{E} when data come from a smooth manifold ⇒ Favor candidate edges (i, j) associated with small E_{ii}

- Shows that edge sparsity on top of smoothness is redundant
- ▶ Parameterize graph learning problems in terms of W (instead of L)
 ⇒ Advantageous since constraints on W are decoupled

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへの

General purpose graph-learning framework

$$\begin{split} \min_{\mathbf{W}} & \left\{ \|\mathbf{W} \circ \mathbf{E}\|_1 - \alpha \mathbf{1}^\top \log(\mathbf{W}\mathbf{1}) + \frac{\beta}{2} \|\mathbf{W}\|_F^2 \right\} \\ \text{s. to} \quad \text{diag}(\mathbf{W}) = \mathbf{0}, \ W_{ij} = W_{ji} \geq 0, \ i \neq j \end{split}$$

 \Rightarrow Logarithmic barrier forces positive degrees **d** = **W1** \Rightarrow Penalize large edge-weights to control sparsity

- ▶ Efficient algorithms incurring O(N²) cost
 ⇒ Primal-dual (PD) [Kalofolias'16] and ADMM [Wang et al'21]
- \blacktriangleright Cost has no Lipschitz gradient \rightarrow No convergence rates

V. Kalofolias, "How to learn a graph from smooth signals," AISTATS, 2016

Equivalent reformulation

- Handle constraints on entries of W
 - Hollow and symmetric \rightarrow Retain $\mathbf{w} := \operatorname{vec}[\operatorname{triu}[\mathbf{W}]] \in \mathbb{R}^{N(N-1)/2}_+$
 - ▶ Non-negative $\rightarrow \mathbb{I} \{ \mathbf{w} \succeq \mathbf{0} \} = 0$ if $\mathbf{w} \succeq \mathbf{0}$, else $\mathbb{I} \{ \mathbf{w} \succeq \mathbf{0} \} = \infty$

Equivalent unconstrained, non-differentiable reformulation

$$\min_{\mathbf{w}} \left\{ \underbrace{\mathbb{I}\left\{\mathbf{w} \succeq \mathbf{0}\right\} + 2\mathbf{w}^{\top}\mathbf{e} + \beta \|\mathbf{w}\|_{2}^{2}}_{:=f(\mathbf{w})} - \underbrace{\alpha \mathbf{1}^{\top} \log\left(\mathbf{S}\mathbf{w}\right)}_{:=-g(\mathbf{S}\mathbf{w})} \right\}$$

 \Rightarrow S maps edge weights to nodal degrees, i.e., d=Sw

(母) (日) (日) (日) (日) (日)

Equivalent reformulation

- Handle constraints on entries of W
 - Hollow and symmetric \rightarrow Retain $\mathbf{w} := \operatorname{vec}[\operatorname{triu}[\mathbf{W}]] \in \mathbb{R}^{N(N-1)/2}_+$
 - ▶ Non-negative $\rightarrow \mathbb{I} \{ \mathbf{w} \succeq \mathbf{0} \} = 0$ if $\mathbf{w} \succeq \mathbf{0}$, else $\mathbb{I} \{ \mathbf{w} \succeq \mathbf{0} \} = \infty$
- Equivalent unconstrained, non-differentiable reformulation

$$\min_{\mathbf{w}} \left\{ \underbrace{\mathbb{I}\left\{\mathbf{w} \succeq \mathbf{0}\right\} + 2\mathbf{w}^{\top}\mathbf{e} + \beta \|\mathbf{w}\|_{2}^{2}}_{:=f(\mathbf{w})} - \underbrace{\alpha \mathbf{1}^{\top} \log\left(\mathbf{Sw}\right)}_{:=-g(\mathbf{Sw})} \right\}$$

 \Rightarrow S maps edge weights to nodal degrees, i.e., d=Sw

- ▶ Non-differentiable $f(\mathbf{w})$ is strongly convex, $g(\mathbf{d})$ is strictly convex
 - ► Problem min_w{f(w) + g(Sw)} has a unique optimal solution w^{*}
 - Amenable to fast dual-based proximal gradient (FDPG) solver

A. Beck and M. Teboulle, "A fast dual proximal gradient algorithm for convex minimization and applications," *Oper. Res. Lett.*, 2014

(過) (正) (正) (正)

- ▶ Variable splitting: $\min_{w,d} \{f(w) + g(d)\}$, s. to d = Sw
 - Attach Lagrange multipliers $oldsymbol{\lambda} \in \mathbb{R}^N$ to equality constraints
 - ► Lagrangian $\mathcal{L}(\mathsf{w},\mathsf{d},\lambda) = f(\mathsf{w}) + g(\mathsf{d}) \langle \lambda, \mathsf{Sw} \mathsf{d} \rangle$
- (Minimization form) dual problem is $\min_{\lambda} \{F(\lambda) + G(\lambda)\}$, where

$$\begin{split} F(\boldsymbol{\lambda}) &:= \max_{\mathbf{w}} \left\{ \langle \mathbf{S}^{\top} \boldsymbol{\lambda}, \mathbf{w} \rangle - f(\mathbf{w}) \right\}, \\ G(\boldsymbol{\lambda}) &:= \max_{\mathbf{d}} \left\{ \langle -\boldsymbol{\lambda}, \mathbf{d} \rangle - g(\mathbf{d}) \right\} \end{split}$$

◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○○ ●

- ▶ Variable splitting: $\min_{w,d} \{f(w) + g(d)\}$, s. to d = Sw
 - Attach Lagrange multipliers $oldsymbol{\lambda} \in \mathbb{R}^N$ to equality constraints
 - ► Lagrangian $\mathcal{L}(\mathbf{w}, \mathbf{d}, \lambda) = f(\mathbf{w}) + g(\mathbf{d}) \langle \lambda, \mathbf{Sw} \mathbf{d} \rangle$
- (Minimization form) dual problem is $\min_{\lambda} \{F(\lambda) + G(\lambda)\}$, where

$$\begin{split} F(\boldsymbol{\lambda}) &:= \max_{\mathbf{w}} \left\{ \langle \mathbf{S}^\top \boldsymbol{\lambda}, \mathbf{w} \rangle - f(\mathbf{w}) \right\}, \\ G(\boldsymbol{\lambda}) &:= \max_{\mathbf{d}} \left\{ \langle -\boldsymbol{\lambda}, \mathbf{d} \rangle - g(\mathbf{d}) \right\} \end{split}$$

Strong convexity of f implies a Lipschitz gradient property for F

Lemma. Function $F(\lambda)$ is smooth, and the gradient $\nabla F(\lambda)$ is Lipschitz continuous with constant $L := \frac{N-1}{\beta}$.

Fast dual-based proximal gradient method

▶ Key: apply accelerated proximal gradient method to the dual

$$egin{aligned} oldsymbol{\lambda}_k &= \mathsf{prox}_{L^{-1}G}\left(oldsymbol{\omega}_k - rac{1}{L}
abla F(oldsymbol{\omega}_k)
ight),\ t_{k+1} &= rac{1+\sqrt{1+4t_k^2}}{2},\ oldsymbol{\omega}_{k+1} &= oldsymbol{\lambda}_k + \left(rac{t_k-1}{t_{k+1}}
ight)[oldsymbol{\lambda}_k - oldsymbol{\lambda}_{k-1}] \end{aligned}$$

< □ > < □ > < □ > = □

Fast dual-based proximal gradient method

► Key: apply accelerated proximal gradient method to the dual

$$egin{aligned} oldsymbol{\lambda}_k &= \mathsf{prox}_{L^{-1}G}\left(\omega_k - rac{1}{L}
abla F(\omega_k)
ight), \ t_{k+1} &= rac{1+\sqrt{1+4t_k^2}}{2}, \ \omega_{k+1} &= oldsymbol{\lambda}_k + \left(rac{t_k-1}{t_{k+1}}
ight) [oldsymbol{\lambda}_k - oldsymbol{\lambda}_{k-1}] \end{aligned}$$

▶ Rewrite in terms of problem parameters *L*, α , β , **S**, signals in **e**

Proposition. The dual variable update iteration can be equivalently rewritten as $\lambda_k = \omega_k - L^{-1}(\mathbf{S}\bar{\mathbf{w}}_k - \mathbf{u}_k)$, with

$$\bar{\mathbf{w}}_{k} = \max\left(\mathbf{0}, \frac{\mathbf{S}^{\top}\boldsymbol{\omega}_{k} - 2\mathbf{e}}{2\beta}\right),$$
$$\mathbf{u}_{k} = \frac{\mathbf{S}\bar{\mathbf{w}}_{k} - \boldsymbol{L}\boldsymbol{\omega}_{k} + \sqrt{(\mathbf{S}\bar{\mathbf{w}}_{k} - \boldsymbol{L}\boldsymbol{\omega}_{k})^{2} + 4\alpha \boldsymbol{L}\mathbf{1}}}{2}$$

Fast Topology Identification from Smooth Graph Signals

Algorithm summary

Algorithm 1: Topology inference via fast dual PG (FDPG)

Input parameters α , β , data e, set $L = \frac{N-1}{\beta}$. Initialize $t_1 = 1$ and $\omega_1 = \lambda_0$ at random. for k = 1, 2, ..., do $\mathbf{\bar{w}}_k = \max\left(\mathbf{0}, \frac{\mathbf{S}^{\top} \omega_k - 2\mathbf{e}}{2\beta}\right)$ $\mathbf{u}_k = \frac{\mathbf{S} \bar{w}_k - L \omega_k + \sqrt{(\mathbf{S} \bar{w}_k - 2\mathbf{e})^2 + 4\alpha L 1}}{2}$ $\lambda_k = \omega_k - L^{-1} (\mathbf{S} \overline{\mathbf{w}}_k - \mathbf{u}_k)$ $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$ $\omega_{k+1} = \lambda_k + \left(\frac{t_k - 1}{t_{k+1}}\right) [\lambda_k - \lambda_{k-1}]$

end

Output graph estimate $\hat{\mathbf{w}}_k = \max\left(\mathbf{0}, \frac{\mathbf{S}^{\top} \boldsymbol{\lambda}_k - 2\mathbf{e}}{2\beta}\right)$

- Complexity of O(N²) in par with state-of-the-art algorithms
- ▶ Non-accelerated dual proximal gradient (DPG) method for $t_k \equiv 1, \ k \geq 1$

◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

• Let λ^* be a minimizer of the dual cost $\varphi(\lambda) := F(\lambda) + G(\lambda)$. Then

$$arphi(oldsymbol{\lambda}_k) - arphi(oldsymbol{\lambda}^{\star}) \leq rac{2(N-1)\|oldsymbol{\lambda}_0 - oldsymbol{\lambda}^{\star}\|_2^2}{eta k^2}$$

 \Rightarrow Celebrated $O(1/k^2)$ rate for FISTA [Beck-Teboulle'09]

<個→ < ≧→ < ≧→ = ≧ =

▶ Let λ^* be a minimizer of the dual cost $\varphi(\lambda) := F(\lambda) + G(\lambda)$. Then

$$arphi(oldsymbol{\lambda}_k) - arphi(oldsymbol{\lambda}^\star) \leq rac{2(N-1)\|oldsymbol{\lambda}_0 - oldsymbol{\lambda}^\star\|_2^2}{eta k^2}$$

 \Rightarrow Celebrated $O(1/k^2)$ rate for FISTA [Beck-Teboulle'09]

• Construct a primal sequence $\hat{\mathbf{w}}_k = \operatorname{argmin}_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{d}, \lambda_k)$

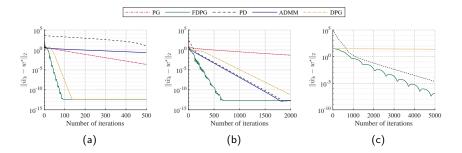
$$\hat{\mathbf{w}}_{k} = \operatorname*{argmax}_{\mathbf{w}} \left\{ \langle \mathbf{S}^{\top} \boldsymbol{\lambda}_{k}, \mathbf{w} \rangle - f(\mathbf{w}) \right\} = \max \left(\mathbf{0}, \frac{\mathbf{S}^{\top} \boldsymbol{\lambda}_{k} - 2\mathbf{e}}{2\beta} \right)$$

Theorem. For all $k \ge 1$, the primal sequence $\hat{\mathbf{w}}_k$ defined in terms of dual iterates λ_k generated by Algorithm 1 satistifies

$$\|\hat{\mathbf{w}}_k - \mathbf{w}^\star\|_2 \leq \frac{\sqrt{2(N-1)}\|\mathbf{\lambda}_0 - \mathbf{\lambda}^\star\|_2}{\beta k}$$

Convergence performance

- Recovery of random and real-world graphs from simulated signals
 - Networks: (a) SBM, N = 400; (b) brain, N = 66; (c) MN road, N = 2642
 - Signals: P = 1000 i.i.d. smooth signals $\mathbf{x}_p \sim \mathcal{N}(\mathbf{0}, \mathbf{L}^{\dagger} + 10^{-2} \mathbf{I}_N)$
 - Examine evolution of primal variable error $\|\hat{\mathbf{w}}_k \mathbf{w}^*\|_2$



► FDPG converges markedly faster, uniformly across graph classes

э

Closing remarks

- Network topology inference cornerstone problem in Network Science
 - \blacktriangleright Most GSP works analyze how ${\cal G}$ affect signals and filters
 - ► Here, reverse path: How to use GSP to infer the graph topology?
- ► Novel algorithm to learn graphs from observations of smooth signals
 - \Rightarrow Cardinal property of many real-world graph signals
 - \Rightarrow Ex: sensor measurements, movie ratings, protein annotations

「「「「」(山)」(山) (山)

Closing remarks

- Network topology inference cornerstone problem in Network Science
 - \blacktriangleright Most GSP works analyze how ${\cal G}$ affect signals and filters
 - Here, reverse path: How to use GSP to infer the graph topology?
- ► Novel algorithm to learn graphs from observations of smooth signals
 - \Rightarrow Cardinal property of many real-world graph signals
 - \Rightarrow Ex: sensor measurements, movie ratings, protein annotations
- ► Fast dual-based proximal gradient (FDPG) iterations
 - \Rightarrow Optimization method so far unexplored for graph learning
 - \Rightarrow Markedly faster than state-of-the-art algorithms
 - \Rightarrow Comes with convergence rate guarantees

Try it out! http://www.ece.rochester.edu/~gmateosb/code/FDPG.zip