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Accelerated Graph Learning From Smooth Signals
Seyed Saman Saboksayr, Student Member, IEEE, and Gonzalo Mateos , Senior Member, IEEE

Abstract—We consider network topology identification subject
to a signal smoothness prior on the nodal observations. A fast
dual-based proximal gradient algorithm is developed to efficiently
tackle a strongly convex, smoothness-regularized network inverse
problem known to yield high-quality graph solutions. Unlike ex-
isting solvers, the novel iterations come with global convergence
rate guarantees and do not require additional step-size tuning.
Reproducible simulated tests demonstrate the effectiveness of the
proposed method in accurately recovering random and real-world
graphs, markedly faster than state-of-the-art alternatives and with-
out incurring an extra computational burden.

Index Terms—Graph learning, graph signal processing, fast
gradient methods, signal smoothness, topology identification.

I. INTRODUCTION

N ETWORK-AWARE signal and information processing is
having a major impact in technology and the biobehav-

ioral sciences; see e.g, [1, Ch. 1]. In this context, graph signal
processing (GSP) builds on a graph-theoretic substrate to effec-
tively model signals with complex relational structures [2]–[4].
However, the required connectivity information is oftentimes
not explicitly available. This motivates the prerequisite step
of using signals (e.g., brain activity traces, distributed sensor
measurements) to unveil latent network structure, or, to construct
discriminative graph representations to facilitate downstream
learning tasks. As graph data grow in size and complexity,
there is an increasing need to develop customized, fast and
computationally-efficient graph learning algorithms.

Given nodal measurements (known as graph signals in the
GSP parlance), the network topology inference problem is to
search for a graph within a model class that is optimal in some
application-specific sense, e.g., [1, Ch. 7]. The adopted criterion
is naturally tied to the signal model relating the observations to
the sought network, which can include constraints motivated
by physical laws, statistical priors, or, explainability goals.
Workhorse probabilistic graphical models include Gaussian
Markov random fields, and topology identification arises with
so-termed high-dimensional graphical model selection [5]–[11].
Other recent approaches embrace a signal representation per-
spective to reveal parsimonious data signatures with respect
to the underlying graph. These include stationarity induced
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via linear network diffusion [12]–[14] and smoothness (i.e.,
bandlimitedness) [15]–[23]. The interested reader is referred
to [24]–[26] for comprehensive tutorial treatments of network
topology inference advances.

In this short letter, we develop a fast and scalable algorithm
to estimate graphs subject to a smoothness prior (Section II
outlines the required background and formally states the prob-
lem). Adopting the well-appreciated graph learning framework
of [15], [18], in Section III we bring to bear the fast proximal-
gradient (PG) iterations in [27] to solve the resulting strongly
convex, signal smoothness-regularized optimization problem in
the dual domain. There are noteworthy recent scalable solvers
for this problem that rely on the primal-dual (PD) method [15],
PG [28], or, the linearized alternating-direction method of mul-
tipliers (ADMM) [29]. Unlike these algorithms, the novel itera-
tions come with global convergence rate guarantees and do not
require additional step-size tuning. Borrowing results from [27],
we show that a (possibly infeasible) primal sequence generated
from the accelerated graph learning algorithm converges to a
globally optimal solution at a rate of O(1/k). To the best of our
knowledge, this is the first work that establishes the convergence
rate of topology inference algorithms subject to smoothness
priors. Computer simulations in Section IV showcase the fa-
vorable convergence properties of the proposed approach when
recovering a wide variety of graphs. In the interest of repro-
ducible research, the code used to generate all figures in this
letter is publicly available. Conclusions are in Section V. Due
to page contraints, proofs are deferred to the accompanying
Supplementary Material.

II. GRAPH LEARNING FROM SMOOTH SIGNALS

Let G(V, E ,W) be an undirected graph, where V are the
nodes (or vertices) with |V| = N , E ⊆ V × V are the edges,
and W ∈ RN×N

+ is the symmetric adjacency matrix collect-
ing the edge weights. For (i, j) /∈ E we have Wij = 0. We
exclude the possibility of self-loops, so W is hollow meaning
Wii = 0, for all i ∈ V . We acquire graph signal observations
x = [x1, . . . , xN ]� ∈ RN , where xi denotes the signal value at
vertex i ∈ V . More general graphs capturing directionality are
important [30], but beyond the scope of this letter.

A. Graph Signal Smoothness

For undirected graphs one typically adopts the LaplacianL :=
diag(d)−W as descriptor of graph structure, where d = W1
collects the vertex degrees. As the central object in spectral
graph theory, L is instrumental in formalizing the notion of
smooth (i.e., low-pass bandlimited) signals on graphs [2], [31].
Specifically, the total variation (TV) of the graph signal x with
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respect to G is given by the quadratic form

TV(x) := x�Lx =
1

2

∑
i�=j

Wij (xi − xj)
2 . (1)

We interpret TV(x) as a smoothness measure for graph sig-
nals, which gauges the extent to whichxvaries acrossG. Accord-
ingly, we say a signal is smooth if it has a small total variation. For
reference, 0 ≤ TV(x) ≤ λmax, where λmax is the spectral radius
of L. The lower bound is attained by constant signals. The ubiq-
uity of smooth network data has been well-documented, with
examples spanning sensor measurements [19], protein function
annotations [1], and product ratings [32]. These empirical find-
ings motivate adopting smoothness as the criterion to search for
graphs on which measurements exhibit desirable parsimony or
regularity.

B. Problem Statement

We study the following graph learning problem.
Problem 1: Given a set X := {xp}Pp=1 of graph signal ob-

servations, the goal is to learn an undirected graph G(V, E ,W)
such that the observations in X are smooth on G.

We now briefly review the method proposed in [15], [18] to
tackle Problem 1, from which we henceforth build on to develop
a fast graph learning algorithm.

Consider the matrix X = [x1, . . . ,xP ] ∈ RN×P , whose
columns xp are the observations in X . The rows, denoted by
x̄�
i ∈ R1×P , collect all P measurements at vertex i. Define

then the nodal Euclidean-distance matrix E ∈ RN×N
+ , where

Eij := ‖x̄i − x̄j‖22, i, j ∈ V . Using these notions, the signal
smoothness measure over X can be equivalently written as

P∑
p=1

TV(xp) = trace(X�LX) =
1

2
‖W ◦E‖1, (2)

where ◦ denotes element-wise product [15]. Smoothness min-
imization as criterion in Problem 1 has the following intuitive
interpretation: when pairwise nodal distances in E are sampled
from a smooth manifold, the learnt topology W tends to be
sparse, preferentially choosing edges (i, j)whose corresponding
Eij are smaller [cf. the weighted �1-norm in (2)].

Leveraging this neat link between signal smoothness and edge
sparsity, a fairly general graph-learning framework was put forth
in [15]. The idea therein is to solve the following convex inverse
problem

min
W

{
‖W ◦E‖1 − α1� log (W1) +

β

2
‖W‖2F

}

s. to diag(W) = 0, Wij = Wji ≥ 0, i �= j (3)

where α, β > 0 are tunable regularization parameters. Different
from [16], the logarithmic barrier on the vertex degreesd = W1
excludes the possibility of having (often undesirable) isolated
vertices in the estimated graph. Through β, the Frobenius-norm
penalty offers a handle on the graphs’ edge sparsity level. Among
the parameterized familiy of solutions to (3), the sparsest graph
is obtained when β = 0.

Arguably, the most important upshot of identity (2) is compu-
tational. It facilitates formulating (3) as a search over adjacency
matrices, and the resulting constraints (null diagonal, symmetry

and non-negativity) are separable across the variables Wij . This
does not hold for the Laplacian L. Exploting this favorable
structure of (3), efficient solvers were developed based on
PD iterations [15], the PG method [28], or the ADMM [29].
However, none of these graph learning methods come with
convergence rate guarantees because the objective function of
(3) lacks a Lipschitz continuous gradient. To close this gap,
next we develop a markedly faster first-order algorithm using an
accelerated dual-based PG method [27].

III. FAST DUAL PROXIMAL GRADIENT ALGORITHM

Because W is hollow and symmetric, the optimization vari-
ables in (3) are effectively the, say, upper-triangular elements
[W]ij , j > i. Thus, it suffices to retain only those entries in the

vector w := vec[triu[W]] ∈ RN(N−1)/2
+ , were we have adopted

convenient Matlab notation. To impose that edge weights are
non-negative, we penalize the cost with the indicator function
I{w 
 0} = 0 if w 
 0, else I{w 
 0} = ∞ [15]. This way,
we equivalently reformulate (3) as the unconstrained, non-
differentiable problem

min
w

⎧⎪⎨
⎪⎩I {w 
 0}+ 2w�e+ β‖w‖22︸ ︷︷ ︸

:=f(w)

−α1� log (Sw)︸ ︷︷ ︸
:=−g(Sw)

⎫⎪⎬
⎪⎭ ,

(4)
where e := vec[triu[E]] and S ∈ {0, 1}N×N(N−1)/2 maps edge
weights to nodal degrees, i.e., d = Sw. The non-smooth func-
tion f(w) := I{w 
 0}+ 2w�e+ β‖w‖22 is strongly convex
with strong convexity parameter 2β (details are in the Supple-
mentary Material), while g(w) := −α1� log(w) is a (strictly)
convex function for all w � 0. Under the aforementioned prop-
erties of f and g, the composite problem (4) has a unique optimal
solution w�; see e.g., [27] and [29].

A fast dual-based PG algorithm was developed in [27] to
solve the non-smooth, strictly convex optimization problem
minw{f(w) + g(Sw)} of which (4) is a particular instance.
In the remainder of this section we will bring to bear this opti-
mization framework to develop a novel graph learning algorithm
with global rate of convergence guarantees.

A. The Dual Problem

The structure of (4) lends itself naturally to variable-splitting
via the equivalent linearly-constrained form

min
w,d

{f(w) + g(d)} , s. to d = Sw. (5)

Attaching Lagrange multipliers λ ∈ RN to the equality con-
straints and minimizing the Lagrangian function L(w,d,λ) =
f(w) + g(d)− 〈λ,Sw − d〉w.r.t. the primal variables {w,d},
one arrives at the (minimization form) dual problem [27]

min
λ

{F (λ) +G(λ)} , (6)

where

F (λ) := max
w

{〈S�λ,w〉 − f(w)
}
, (7)

G(λ) := max
d

{〈−λ,d〉 − g(d)} . (8)

Interestingly, the strong convexity off induces useful smooth-
ness properties for F (namely, the composition of Sw with the
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Fenchel conjugate of f ), that we summarize next. The result
is adapted from [27, Lemma 3.1] and the additional proof
arguments can be found in the Supplementary Material.

Lemma 1: Function F (λ) in (7) is smooth, and the gradient
∇F (λ) is Lipschitz continuous with constant L := N−1

β .
This additional structure of (6) makes it feasible to apply

accelerated PG algorithms [33] (such as FISTA [34]), to solve
the dual problem.

B. Accelerated Dual Proximal Gradient Algorithm

The FISTA algorithm applied to the dual problem (6) yields
the following iterations (initialized as ω1 = λ0 ∈ RN and t1 =
1, henceforth k = 1, 2, . . . denotes the iteration index)

λk = proxL−1G

(
ωk − 1

L
∇F (ωk)

)
, (9)

tk+1 =
1 +

√
1 + 4t2k
2

, (10)

ωk+1 = λk +

(
tk − 1

tk+1

)
[λk − λk−1] , (11)

where the proximal operator of a proper, lower semi-continuous
convex function h is (see e.g., [35])

proxh(x) = argminu

{
h(u) +

1

2
‖u− x‖22

}
. (12)

An adaptation of the result in [27, Lemma 3.2] – stated as
Proposition 1 below – yields the novel graph learning iterations
tabulated under Algorithm 1. Again, due to page constraints the
proof details are deferred to the Supplementary Material.

Proposition 1: The dual variable update iteration in (9) can
be equivalently rewritten as λk = ωk − L−1(Sw̄k − uk), with

w̄k = max

(
0,

S�ωk − 2e

2β

)
, (13)

uk =
Sw̄k − Lωk +

√
(Sw̄k − Lωk)2 + 4αL1

2
, (14)

where max(·, ·) in (13) as well as both (·)2 and
√

(·) in (14) are
element-wise operations on their vector arguments.

The updates in Proposition 1 are fully expressible in terms
of parameters from the original graph learning problem, namely
N , α, β, S and the data in e. This is to be contrasted with (9),
which necessitates the conjugate functions F and G.

Algorithm 1’s overall computational complexity is dominated
by the update (13), which incurs a per iteration cost of O(N2).
The remaining updates are also given in closed form, through
simple operations of vectors living in the dual N -dimensional
domain of nodal degrees [cf. the N(N − 1)/2-dimensional
primal variables w̄k]. The overall complexity ofO(N2) is in par
with state-of-the-art PD and linearized ADMM algorithms [29],
which have been shown to scale well to large networks with N
in the order of thousands. The computational cost can be further
reduced by constraining a priori the space of possible edges;
see [18] for examples where this approach is warranted. For
a given problem instance, there are no step-size parameters to
tune here (on top of α and β) since we can explicitly compute
the Lipschitz constant L in Lemma 1. On the other hand, the
linearized ADMM algorithm in [29] necessitates tuning two

Algorithm 1: Topology inference via fast dual PG (FDPG).

Input parameters α, β, data e, set L = N−1
β .

Initialize t1 = 1 and ω1 = λ0 at random.
for k = 1, 2, . . . , do

w̄k = max(0, S�ωk−2e
2β )

uk =
Sw̄k−Lωk+

√
(Sw̄k−Lωk)2+4αL1

2

λk = ωk − L−1(Sw̄k − uk)

tk+1 =
1+

√
1+4t2k
2

ωk+1 = λk + ( tk−1
tk+1

)[λk − λk−1]

end
Output graph estimate ŵk = max(0, S�λk−2e

2β )

step-sizes and the penalty parameter defining the augmented
Lagrangian.

The distinctive feature of the proposed accelerated dual PG
algorithm is that it comes with global convergence rate guaran-
tees. These results are outlined in the ensuing section.

C. Convergence Rate Analysis

Moving on to convergence properties, when k → ∞ the it-
erates λk generated by Algorithm 1 provably approach a dual
optimal solution λ� that minimizes ϕ(λ) := F (λ) +G(λ) in
(6); see e.g., [34]. The celebrated FISTA rate of convergence for
the dual cost function is stated next.

Theorem 1: [34, Theorem 4.4] For all k ≥ 1, dual iterates λk

stemming from Algorithm 1 are such that

ϕ(λk)− ϕ(λ�) ≤ 2(N − 1)‖λ0 − λ�‖22
βk2

. (15)

This well-documented O(1/k2) global convergence rate of
accelerated PG algorithms implies an O(1/

√
ε) iteration com-

plexity to return an ε-optimal dual solution measured in terms
of ϕ values; see also [36], [37] for potential transient speedups.

We now consider a primal sequence generated from the iter-
ates of Algorithm 1, and borrow the results from [27] to show
the sequence is globally convergent to w� at a rate of O(1/k).
To this end, suppose that for all k ≥ 1 we are given dual up-
dates λk generated from the accelerated dual PG algorithm. We
can construct a primal sequence as ŵk = argminwL(w,d,λk),
namely [cf. (7)]

ŵk = argmaxw

{〈S�λk,w〉 − f(w)
}

= max

(
0,

S�λk − 2e

2β

)
. (16)

As noted in [29], this primal sequence may be infeasible in the
sense that resulting nodal degrees d̂k := Sŵk are not guaranteed
to lie in the domain of g. The promised O(1/k) rate of converge
result for ŵk is stated next.

Theorem 2: [27, Theorem 4.1] For all k ≥ 1, the primal
sequence (16) defined in terms of dual iterates λk generated
by Algorithm 1 satisfies

‖ŵk −w�‖2 ≤
√

2(N − 1)‖λ0 − λ�‖2
βk

. (17)
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Fig. 1. Convergence performance in terms of primal variable error ‖ŵk −w�‖2 when recovering different synthetic and real graphs. (a) ER graphs withN = 200
(top-left) and N = 400 nodes (top-right); SBM graphs with N = 200 (bottom-left), and N = 400 nodes (bottom-right). (b) Four representative structural brain
graphs with N = 66 ROIs; Subject 1 (top-left), Subject 2 (top-right), Subject 4 (bottom-left), and Subject 6 (bottom-right). (c) Minnesota road network with
N = 2642 intersections. In all cases, the proposed FDPG method converges faster to w� than state-of-the-art graph learning algorithms.

IV. NUMERICAL RESULTS

Here we test the proposed fast dual PG (FDPG) algorithm for
learning random and real-world graphs from simulated signals.
The merits of the formulation (3) in terms of recovering high-
quality graphs have been well documented; see e.g., [15], [18],
[24], [25] and references therein. For this reason, the numerical
experiments that follow will exclusively focus on algorithmic
performance, with no examination of the quality of the optimal
solution w� that defines the learnt graph. In all ensuing test
cases, we search for the best regularization parameters α, β
in terms of graph recovery performance, adopting the edge-
detection F-measure as criterion. We compare Algorithm 1 to
other state-of-the-art methods such as PD [15], PG [28], and
linearized ADMM [29]. We also consider the non-accelerated
dual PG (DPG) method that is obtained from Algorithm 1 when
tk ≡ 1 for all k ≥ 1. For FDPG we implemented customary
fixed-interval restarts of the momentum term in Algorithm 1;
see also [38] for adaptive restart rules. Moreover, the ADMM
parameters and PD step-size are tuned to yield the best possible
convergence rate. Implementation details can be found in the
publicly available code1, which can be used to generate all plots
in Fig. 1.

A. Random Graphs

We generate ground-truth graphs as draws from the Erdős-
Rényi (ER) model (edge formation probability p = 0.1) with
N = 200 and 400 nodes, as well as from the 2-block Stochastic
Block Model (SBM) with the same number of nodes, and
connection probability p1 = 0.3 for nodes in the same commu-
nity and p2 = 0.05 for nodes in different blocks. We simulate
P = 1000 i.i.d. graph signals xp ∼ N (0,L† + σ2

eIN ), where
σe = 0.1 represents the noise level and L is the Laplacian of the
ground-truth random graph. For a graph-based factor analysis
model justifying this approach to smooth signal generation, see
e.g., [16]. We compare the convergence performance of the
aforementioned methods through the evolution of the primal
variable error ‖ŵk −w�‖2. To obtain w� for the chosen α
and β, we ran the PD method for 50000 iterations. The results
of these comparisons are illustrated in Fig. 1(a). Apparently,

1http://www.ece.rochester.edu/∼gmateosb/code/FDPG.zip.

the proposed FDPG algorithm markedly outperforms all other
methods in terms of convergence rate, uniformly across graph
model classes and number of nodes. Here, convergence to the
largest graphs takes less iterations than for N = 200.

B. Brain and Road Networks

We first focus on recovering the topology of 6 unweighted
structural brain graphs [39], all with N = 66 regions of interest
(ROIs) and whose edges connect ROIs with non-trivial density
of axonal bundles; see also [40] for additional details. For a
larger-scale experiment, we adopt the Minnesota road network
which is an unweighted and undirected graph with N = 2642
intersections [41]. In both cases, we generated synthetic smooth
signals over the real topologies using the generative model in
Section IV-A. The high value of N renders the ADMM’s 3-
D parameter search a significantly time consuming operation.
Hence, for the Minnesota road network experiment, we only
focus on the proposed (F)DPG methods and the PD algorithm
in [15].

Fig. 1(b) depicts the convergence results for the structural
brain networks of 4 representative subjects. Once more, in all
cases the FDPG method is faster, but for these smaller graphs
the performance gap appears to narrow. The gains can also be
quantified in terms of wall-clock time. For instance, for Subject
6 the time in seconds for the algorithms to reach a suboptimality
of 10−8 are: 0.021 s for FDPG, 0.092 s for PD, 0.071 s for
ADMM and 0.081 s for DPG. Results for the Minnesota road
network are depicted in Fig. 1(c), where the superiority of the
proposed method is also apparent.

V. CONCLUSION

We developed a fast and scalable algorithm to learn the graph
structure of signals subject to a smoothness prior. Leveraging this
cardinal property of network data is central to various statistical
learning tasks, such as graph smoothing and semi-supervised
node classification. We brought to bear a fast dual-based PG
method to derive lightweight graph-learning iterations that come
with global convergence rate guarantees. The merits of the
proposed algorithm are showcased via experiments using several
random and real-world graphs.
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SUPPLEMENTARY MATERIAL

Proof of Lemma 1

A couple preliminary calculations are required to derive an
explicit expression for the Lipschitz constant of F (�).

Lemma 2 The function f(w) := I {w ⌫ 0}+2w>e+�kwk
2
2

is strongly convex with constant � := 2� > 0.

Proof: The strong convexity of f with parameter � = 2� > 0
follows because

f(w)�
�

2
kwk

2 = I {w ⌫ 0}+ 2w>e

is a convex function.

Lemma 3 Going back to (4), recall S 2 {0, 1}N⇥N(N�1)/2

defined so that d = W1 = Sw. Then, kSk2 =
p
2(N � 1).

Proof: Because S maps the upper-triangular adjacency matrix
entries in w to the degree sequence d, then S has N�1 ones in
each row while all other entries are zero. Hence, the diagonal
entries of SS> are all N � 1 and the off-diagonal entries are
equal to 1. The eigenvalues � of SS> = (N � 2)I+ 11> are
the roots of the characteristic polynomial

det
�
SS>

� �I
�
= det

�
(N � 2)I+ 11>

� �I
�

= det((N � 2� �)I| {z }
:=Q

+11>)

= det(Q) + 1>adj(Q)1

=
NY

i=1

Qii +
NX

j=1

Y

i 6=j

Qii

= (N � 2� �)N +N(N � 2� �)N�1

= (2N � 2� �)(N � 2� �)N�1 = 0.

To obtain the third equality we leveraged the Sherman-
Morrison formula, where adj(Q) stands for the adjugate matrix
of Q. From the final factorization of the polynomial, the
eigenvalues are 2(N � 1) = �1 > �2 = · · · = �N = N � 2.
Because kSk2 =

p
�1, the result follows.

Since f is strongly convex (with constant �), by
virtue of [27, Lemma 3.1] the function F (�) :=
maxw

�
hS>�,wi � f(w)

 
is continuously differentiable and

it has a Lipschitz continuous gradient with constant L := kSk2
2

� .
From the expressions for � and kSk2 in Lemmata 2 and 3,
the result follows. ⇤

Proof of Proposition 1

Leveraging the result in [27, Lemma 3.2], it follows that
for all k � 1, the dual variable update iteration in (9) can be
equivalently rewritten as �k = !k � L

�1(Sw̄k � uk), with

w̄k = argmax
w

�
hS>!k,wi � f(w)

 
, (18)

uk = proxLg (Sw̄k � L!k) . (19)
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Fig. 2. Convergence performance in terms of dual suboptimality '(�k)�
'(�?), when recovering the SBM graph with N = 200 nodes described
in Section IV-A. As expected, the FDPG graph learning algorithm converges
markedly faster than its non-accelerated counterpart.

Starting with (18), we have from the definition of f that

w̄k = argmin
w

�
I {w ⌫ 0}+ �kwk

2
2 � hS>!k � 2e,wi

 

= argmin
w

(
I {w ⌫ 0}+

1

2

����w �
S>!k � 2e

2�

����
2

2

)

= proxI{w⌫0}

✓
S>!k � 2e

2�

◆

= max

✓
0,

S>!k � 2e

2�

◆

as desired [cf. (13)]. The last equality follows from the fact
that the proximal operator of I {w ⌫ 0} is the projection onto
the non-negative orthant w ⌫ 0.

To arrive at the update of uk in (14), it suffices to start
from (19) and recall that the proximal operator of Lg(w) =
�L↵1> log (w) is given by (see e.g., [15] and [29, Proposition
2])

proxLg(w) =
w +

p
w2 + 4↵L1

2
,

where the square and square root are understood to be taken
element-wise. Evaluating the proximal operator at Sw̄k�L!k,
the result follows. ⇤

Dual suboptimality

Recall one of the test cases in Section IV-A, where the
goal was to recover a 2-block Stochastic Block Model (SBM)
with N = 200 nodes from P = 1000 synthetically-generated
smooth signals. In Fig. 2 we depict the evolution of the dual
suboptimality '(�k) � '(�?) for the FDPG (Algorithm 1)
and DPG iterations. As expected, the proposed FDPG solver
markedly outperforms its non-accelerated counterpart in terms
of convergence rate and wall-clock time; 0.049s for FDPG
and 0.113s for DPG to attain a suboptimality gap of 10�8.
Similar behavior can be observed for graphs drawn from the
Erdős-Rényi (ER) model and for different values of N and P .
The corresponding plots are not included due to lack of space.
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