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Abstract. What do real communities in social networks look like? Com-
munity detection plays a key role in understanding the structure of real-
life graphs with impact on recommendation systems, load balancing and
routing. Previous community detection methods look for uniform blocks
in adjacency matrices. However, after studying four real networks with
ground-truth communities, we provide empirical evidence that commu-
nities are best represented as having an hyperbolic structure. We detail
HyCoM - the Hyperbolic Community Model - as a better representation
of communities and the relationships between their members, and show
improvements in compression compared to standard methods.

We also introduce HyCoM-FIT, a fast, parameter free algorithm to
detect communities with hyperbolic structure. We show that our method
is effective in finding communities with a similar structure to self-declared
ones. We report findings in real social networks, including a community
in a blogging platform with over 34 million edges in which more than
1000 users established over 300 000 relations.

1 Introduction

Given a large social network, what do real communities look like? How does their
size affect their structure, shape, and density3 of connections? Are the communi-
ties’ degree distributions uniform as implied by traditional community detection
algorithms that look for quasi-cliques (i.e., dense rectangles or blocks of uniform
density in the adjacency matrix)? One would intuitively expect that larger com-
munities exhibit similar relational patterns to the whole graph. Accordingly, do
the communities’ degree distributions obey power laws?

The present paper deals with the following problems: what is the structure
of communities in large, real social networks and what are suitable models to
describe them? Moreover, how can one find these communities in an effective and
scalable way by leveraging this particular structure and without any user-defined

3 Density equals the number of edges divided by the number of nodes squared.
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Fig. 1. Motivation for our work: Real
ground-truth community
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Fig. 2. Result of our work: Commu-
nity found by HyCoM-FIT

parameters? We analyze four real-world social networks with ground-truth com-
munities and provide empirical evidence that communities exhibit power law
degree distributions. As such, they are typically best represented as having an
hyperbolic structure in the adjacency matrix, rather than rectangular (uniform)
structure. We detail HyCoM - the Hyperbolic Community Model - as a bet-
ter representation of communities and the relationships between their members,
and introduce HyCoM-FIT as a scalable algorithm to detect communities with
hyperbolic structure. To illustrate our model and algorithm, Figure 1 represents
the adjacency matrix of a real (ground-truth) community externally provided
when nodes are ordered by degree, and Figure 2 shows the adjacency matrix of
an exemplary community found by our algorithm. Clearly, both communities do
not show uniform density. In a nutshell, the main contributions of our work are:

– Introduction of the Hyperbolic Community Model: We provide empiri-
cal evidence that communities in large, real social graphs are better modeled
using an hyperbolic model. We also show that this model is better from a
compression perspective than previous models.

– Scalability: We develop HyCoM-FIT, an algorithm for the detection of
hyperbolic communities that scales linearly with the number of edges.

– No user-defined parameters: HyCoM-FIT detects communities in a
parameter-free fashion, transparent to the end-user.

– Effectiveness: We applied HyCoM-FIT on real data where we discovered
communities that agree with intuition.

– Generality: HyCoM includes uniform block communities used by other
algorithms as a special case.

2 Background and Related Work

Nodes in real-world networks organize into communities or clusters, which tend
to exhibit a higher degree of ‘cohesiveness’ with respect to the underlying rela-
tional patterns. Group formation is natural in social networks as people organize
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in families, clubs and political organizations; see e.g., [19]. Communities also
emerge in protein-protein interaction or gene-regulatory networks whereby genes
associated to a common metabolic function tend to be more densely connected
[16], or in the World Wide Web where hyperlinks between theme-related web-
sites are more prevalent [6]. In this context, an important problem is to identify
these groups of nodes from given (unlabeled) graph data.

Formally, unveiling communities in networks can be cast as a graph parti-
tioning or clustering problem, e.g., [13]. While a fairly large number of standard
methods have been proposed to this end [7], network community detection nev-
ertheless remains a very active area of research – arguably an indicator of the
problem’s inherent difficulty. As discussed in [21], the threefold challenge faced
is due to (c1) a lack of consensus on the structural definition of network com-
munity; (c2) the fact that node subset selection overlaid to the combinatorial
structure of graphs typically leads to intractable formulations; and (c3) the lack
of ground-truth to carry out an objective validation on real data.

The widespread notion of cohesiveness used to group nodes has typically re-
flected that community members are (i) well connected among themselves, while
they are (ii) relatively well separated from the remaining nodes. Building on this
intuition, methods based on adaptations of hierarchical and spectral clustering
have been proposed [9, 11], in addition to those relying on block-modeling [19],
co-clustering or cross-associations [3]. Generative model-based approaches have
been also proposed [20], while traditional methods rely on optimization of ju-
dicious criteria such as conductance and normalized cut [17], as well as mod-
ularity [14], to name a few. Similar to the proposed method, model selection
approaches based on Minimum Description Length (MDL) were put forth in [2,
8, 18]. MDL-based algorithms are attractive since they are devoid of user-defined
parameters. For a comprehensive tutorial on community detection methods and
their multiple variants, the reader is referred to [7].

All previous community detection methods have been either explicitly or
implicitly aimed at extracting areas of high and/or uniform density in the adja-
cency matrix (e.g., near cliques in the corresponding graphs). In this paper, we
argue that communities in real networks do not show such a density profile but
are better represented by using a hyperbolic model.

3 Empirical Observations

The goal of this section is to provide empirical evidence that real communities are
not blocks of uniform density and are best represented as hyperbolic structures.
We examined a collection of four real networks (Table 1) previously used in the
literature [20, 21] with significantly different ground-truth definitions, available
in the Stanford Network Analysis Project (SNAP) collection. These datasets
have externally provided community labels for a number of communities and, in
the following, we analyze the meaning of these different community definitions
and explore their underlying structure.
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Networks with ground-truth communities Network with node labels

Dataset Amazon DBLP YouTube LiveJournal Wikipedia

Nodes 334 863 317 081 1 134 890 3 997 962 143 508

Edges 1 851 744 2 099 732 5 975 248 34 681 889 3 753 156

Table 1. Summary of real-world networks used.

The YouTube and LiveJournal datasets are standard friendship net-
works. Each node represents a user of the website and friendship relations estab-
lish links between them. In these websites, users are also able to form groups that
others can join. We consider each of these groups as a ground-truth community.

The DBLP dataset is a computer science co-authorship network: two authors
(nodes) are connected if they published at least one paper together. Publica-
tion venues (i.e. specific journal or conference series like ECML/PKDD) define
ground-truth communities. In this case, ground-truth communities roughly cor-
respond to scientific fields.

The Amazon dataset was collected by crawling the Amazon website and is
based on the “customers who bought this item also bought” feature. Each indi-
vidual node corresponds to a product and an edge exists if products i and j are
frequently co-purchased. Products are organized hierarchically in categories and
we view products in the same category as forming a ground-truth community.
In this scenario, communities represent product similarity.

Observations. Exploring the communities in these networks allows for a better
understanding of common community structures.
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Fig. 3. Big communities are sparse:
Community size vs density.

Density. Firstly, in Figure 3 we see
that community size impacts edge den-
sity (here plotted for the DBLP data).
While small communities might have any
density, big communities are consistently
less dense. These simple observations al-
ready indicate that blocks of uniform
density are not the appropriate represen-
tation for a wide range of communities:
small communities might go from small
stars to full-cliques and big communities are usually not dense enough for a uni-
form block representation to be the most suitable. We hypothesize that nodes
in big communities might play different roles and have different characteristics,
in a process analogous to the differences between nodes in the global graph.

Power-law degrees. One well documented relationship in real networks is the
power-law between the degree of a node and its rank (i.e. position in decreasing
order of degree) [5], which means the degree of a node i can be approximated as
di = K ·pαi , where α is the power-law exponent, K is the scaling factor correlated
with number of edges and pi the rank of node i.
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Fig. 4. Big ground-truth communities are hyperbolic (× indicates good fit).
Community size vs α.

Our first hypothesis is that big communities follow a similar degree distri-
bution. Figure 4 shows the calculated α values for different ground-truth com-
munities in the 4 datasets. Communities have been marked according to their
coefficient of determination (r2) when we approximate the degree distribution
within each community with a power-law. The power-law was approximated
using a linear-regression in the log-log data and the coefficient was calculated
using the same transformation (more details can be found in Section 5.1). It
can be seen, agreeing with intuition, that power-law degree distributions repre-
sent big communities fairly well. In fact, most of the ground-truth communities
do not show uniform degree distribution (which would be α = 0) but strongly
skewed ones. Interestingly, α appears to decrease with community size (note the
differences in the x-axis) and to be between -0.6 and -1.5 for communities with
thousands of elements. Furthermore, as the frequently used uniform block model
for communities indirectly assumes a uniform degree distribution, the power-law
model necessarily achieves a better fit – the uniform model is a special case of
the power-law model where α = 0.

Some variations between the datasets are yet to be explained but can most
likely be attributed to the different community definitions. For example, some
communities with uniform degree distribution in the DBLP dataset are due
to anomalies such as venues with a single paper creating artificial cliques (e.g.
recording errors, conference proceedings with a single entry, workshops, etc.).

Again, we want to highlight that the observations made above are based on
the communities which were externally provided for these datasets (“ground-
truth communities”) – not based on the results of a specific algorithm.
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4 Hyperbolic Community Model

The previous analysis shows that, in order to detect big communities with re-
alistic properties, models must be able to represent non-uniform degree distri-
butions. In this section, we first propose HyCoM, a community model that
assumes communities to have a power-law degree distribution. We then detail
the MDL-based formalization that will guide the community discovery process
and that is used as a metric for community quality.

4.1 Community Definition

We are given an undirected network consisting of nodes N and edges E . We
represent this network as an adjacency matrix M ∈ {0, 1}|N |×|N|. As an abbre-
viation, we use N = |N |. The goal is to detect Hyperbolic Communities:

Definition 1. Hyperbolic Community
A hyperbolic community is a triplet C = (S, α, τ) with S = [S1, .., S|S|], Si ∈ N
and Si 6= Sj if i 6= j, representing an ordered list of nodes, α ≤ 0 being the
exponent when the degree distribution of the nodes is approximated by a power-
law, and 0 ≤ τ ≤ 1 a threshold that determines the number of edges represented
by the community.
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α = -0.5, τ = 0.1, 380 edges 

Fig. 5. Adjacency Matrix of a syn-
thetic Hyperbolic Community.

Given the above triplet, and knowing that
the nodes in S are sorted by degree in the
community, the degree of a node is di ∝ iα.
If we assume conditional independence given
the community (i.e. we assume edge indepen-
dence when we know both nodes belong to the
current community), then the probability pi,j
that the edge between nodes i and j is part of
the community is also proportional to iα · jα.
Therefore, we can define the edges of an hy-
perbolic community to be the most probable
edges given exponent α and threshold τ :

E(C) = {(Si, Sj) ∈ S × S : iα · jα > τ}.

Figure 5 illustrates the adjacency matrix induced by the set E(C) given a
certain degree distribution and value of τ . Its characteristic shape, an hyperbola,
gave name to this model.

We propose to measure the importance of a community via the principle of
compression, i.e. by its ability to compress the matrix M: if most edges of E(C)
are in fact part of M, then we can compress this community easily. Finding the
most important communities will lead to the best compression of M.

More specifically, we use the MDL principle [10]. We aim to minimize the
number of bits required to simultaneously encode the communities (i.e. the
model) and the data (effects not captured by the model, e.g. missing edges),
in a trade off between model complexity and goodness of fit. In the following,
we provide details on how to compute the description cost in this setting.
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4.2 MDL Description Cost.

The first part of the description cost accounts for encoding the detected com-
munities C = {C1, . . . , Cn} (where n is part of the optimization and not a priori
given). Each community Ci = (Si, αi, τi) can be described by the list Si, the
number of bits used for αi, denoted as kαi

4, and by the number of edges |E(C)|
in the community. Please note that we actually do not need to encode the real-
valued variable τ , but it is sufficient to encode the natural number |E(C)|. The
coding cost for a pattern Ci is

L1(Ci) = logN + |Si| · logN + kαi + log(|Si|2).

The first two terms encode the list of nodes, there are up to N elements in the
community and we can encode each element using logN bits. The second term
encodes αi and the last term encodes the number of edges in the community.
Since the number of edges is bounded by |Si|2, we can encode it with log(|Si|2)
bits. Similarly, the set of patterns C = {C1, . . . , Cl} can be encoded by the
following number of bits:

L2(C) = log∗ |C|+
∑
C∈C

L1(C).

Since the cardinality of C is not known a priori, we encode it via the function
log∗ using the universal code length for integers [15].

The second part of the description cost accounts for encoding the actual data
given the detected communities. Since one might expect to find overlapping
communities, we refer to the principle of Boolean Algebra and patterns are
combined by a logical disjunction: if an edge occurs in at least one of the patterns,
it is also present in the reconstructed data. More formally, we reconstruct the
given matrix by:

Definition 2. Matrix reconstruction
Given a community C, we define an indicator matrix IC ∈ {0, 1}N×N (using the
same ordering of nodes as imposed by M) that represents the edges of the graph
encoded by community C, i.e. ICx,y = 1⇔ (x, y) ∈ E(C).

Given a set of communities C, the reconstructed network MC
r is defined as

MC
r =

∨
C∈C IC where ∨ denotes the element-wise disjunction.

Since MDL requires a lossless reconstruction of the network, the matrix MC
r ,

however, likely does not perfectly reconstruct the data, the second part of the
description cost encodes the data given the model. Here, an ‘error’ might be
either an edge appearing in MC

r but not in M or vice versa. As we are considering
binary matrices, the number of errors can be computed based on the squared

Frobenius norm of the residual matrix, i.e.
∥∥M−MC

r

∥∥2
F

.

4 The number of bits does not affect the results as the previous term is significantly
bigger. We use 32 bits in our experiments.
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Finally, as ‘errors’ correspond to edges in the graph, the description cost of
the data can be computed as

L3(M|C) = log∗
∥∥M−MC

r

∥∥2
F

+ 2 ·
∥∥M−MC

r

∥∥2
F
· logN.

Overall model. Given the functions L2 and L3, we are now able to define the
communities that minimize the overall number of bits required to describe the
model and the data:

Definition 3. Finding hyperbolic communities
Given a matrix M ∈ {0, 1}N×N , the problem of finding hyperbolic communities
is defined as finding a set of patterns C∗ ⊆ (P(N )× R× R) such that

C∗ = arg min
C

[L2(C) + L3(M|C)].

Computing the optimal solution to this problem is NP-hard, given that the
column reordering problem in two dimensions is NP-hard as well [12]. In the next
section we present an approximate but scalable solution based on an iterative
processing scheme.

5 HyCoM-FIT: Fitting Hyperbolic Communities

In this section, we introduce HyCoM-FIT, a scalable and efficient algorithm
that approximates the optimal solution via an iterative method of sequentially
detecting important communities. The general idea is to find in each step a
single community Ci that contributes the most to the MDL-compression based
on local evaluation. That is, given the already detected communities Ci−1 =
{C1, . . . , Ci−1}, we are interested in finding a novel community Ci which mini-
mizes L2({Ci}∪Ci−1)+L3(M|{Ci}∪Ci−1). Since Ci−1 is given, this is equivalent
to minimizing

L1(Ci) + L3(M|{Ci} ∪ Ci−1). (1)

Obviously, enumerating all possible communities is infeasible. Therefore, to
detect a single community Ci, the following steps are performed:

– Step 1: Community candidates: We spot candidate nodes by performing
a rank-1 approximation of the matrix M. This step provides a normalized
vector with the score of each node.

– Step 2: Community construction: The scores from the previous step are
used in a hill climbing search as a bias for connectivity, while minimizing
the MDL costs is used as the objective function for determining the correct
community size.

– Step 3: Matrix deflation: Based on the current community detected, we
deflate the matrix so that the rank-1 approximation is steered to find novel
communities in later iterations.
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In the following, we will discuss each step of the iterative procedure.

Community candidates. As mentioned, exhaustively enumerating all pos-
sible communities is infeasible. Therefore we propose to iteratively let the com-
munities grow. The challenge, however, is how to spot nodes which should be
added to a community. For this purpose, we refer to the idea of matrix decompo-
sition. Given the matrix M (or as we will explain in step 3, the deflated matrix
M(i)), we compute a vector a such that a · aT ≈ M. The vector a reflects the
community structure in the data and we treat the elements ai as an indication
of the importance of node i to this community.

Community construction. Given the vector a, we construct a new com-
munity. Algorithm 1 shows an overview of this step. We start by selecting an
initial seed S = {v1, v2} of two connected nodes with high score in a.5 We then
let the community grow incrementally: We randomly select a neighbor vi that
is not currently part of the community, where the score vector a is used as the
sampling bias. That is, given the current nodes S, we sample according to

vi ∝

{
ai vi /∈ S ∧ ∃v′ ∈ S : (vi, v

′) ∈ E
0 else

.

If the MDL score (cf. Equation 1) of the new community, i.e. using the vertices
S∪{vi}, is smaller than the MDL score using the previous community, the vertex
vi is accepted. Otherwise, a new sample is generated. This process is repeated
until ∆ consecutive rejections have been observed. Since the probability that an
element that should have been included in the community but which was not
sampled, i.e. P (“i not selected”|“i should have been selected”), decreases expo-
nentially as a function of ∆ and of its initial score, i.e. it can be bounded by a∆i ,
a small value of ∆ is sufficient. In our experimental analysis, a value of ∆ = 50
has proven to be sufficient; we consider this parameter to be general and it does
not need to be defined by the user of the algorithm.

After growing the community, we then try to remove elements from the com-
munity, once again checking the change in the description cost. This alternating
process is repeated until the community stabilizes. This process is guaranteed to
converge as the description cost of matrix M is strictly decreasing.

Matrix deflation. While the first two steps build a single community Ci,
the objective of this step is to transform the matrix so that the process can be
iterated in such a way that we don’t get the same community repeatedly. In
particular, we aim at steering the rank-1 decomposition to novel solutions.

To solve this problem we propose the principle of matrix deflation. Starting
with the original matrix M =: M(1), we remove after each iteration those edges
which are already described by the detected community. That is, we obtain the
recursion

M(i+1) := M(i) − ICi ◦M(i) [ = M−MCi
r ◦M ]

5 We tested different methods with no significant differences found in the results.
Selecting the edge (i, j) with highest min(ai, aj) provides a good initial seed.
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Algorithm 1 HyCoM-FIT- Community Construction

function CommunityConstruction(ScoreVector a)
S ← initialSeed(a)
repeat

t← 0
while t < ∆ do

vi ← newBiasedNode(S, a)
if MDL(S ∪ {vi}) < MDL(S) then S ← S ∪ {vi} , t← 0
else t← t+ 1

end while
for all nodes n in S do

if MDL(S\{n}) < MDL(S) then S ← S\{n}
end for

until S has converged
return S

where ◦ denotes the Hadamard product. As seen, the matrix M(i+1) incorporates
all communities detected so far. Using the deflated matrix, our objective in
Equation 1 is replaced by

L1(Ci) + L3(M(i)|{Ci}). (2)

Overall, the algorithm might either terminate when the matrix is fully de-
flated, or when a pre-defined number of communities has been found, or when
some other measure of community quality (i.e. size) has not been achieved in
the most recent communities.

5.1 Fast MDL calculation

The key task of Algorithm 1 is to compute the MDL score (Equation 2) based
on the current set of nodes S. Besides the set S, estimating the number of bits
requires to determine the value of α, to specify a value for τ (or |E(C)|), and to
count the number of errors made by the model. Since the MDL score is computed
several times, we propose an efficient approximation for these tasks:

Approximating the exponent of the degree distribution. Exhaustive
test of different approximation methods is beyond the scope of this paper; for
an in-depth analysis on power-law exponent estimation from empirical data we
refer the reader to the review by Aaron Clauset et al. [4]. The method chosen has
to be robust in degenerate situations (e.g. uniform distributions) and efficient.
We opted for a linear regression of the log-log data, as it not only respects
both requirements, but also because it is known to over fit to the tail of the
distribution and edges between high degree nodes are already expected under
the independence assumption.

Number of edges and value of τ . The value of |E(C)| is selected as the
number of edges between the nodes in S, i.e. |(S × S) ∩ E|, since this value
can efficiently be obtained by an incremental computation each time a node is
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added/removed from the current community. Efficiency is ensured by indexing
the edges in M by node.

Fixing the value of |E(C)|, we need to derive the value of τ leading to the
desired cardinality. For efficiency, we exploit the following approximation:

Lemma 1. The value of |E(C)| can be approximated by

|E(C)| ≈ (istart − 1) · |S|+ τ
1
α · (log(iend)− log(istart)),

where istart := max{dτ 1
α · |S|−1e, 1} and iend := min{bτ 1

α c, |S|+ 1}.
Proof. Instead of exactly counting the number of elements iα · jα > τ (cf. Fig-
ure 5), we do a continuous approximation by computing the area under the
τ -isoline (intuitively: the area shaded in Figure 5). More precisely, given a spe-
cific τ (and assuming α 6= 0), we use the isoline derived by

iα · jα = τ ⇔ j = τ
1
α · i−1 =: f(i).

Considering the integral
∫ |S|+1

1
f(i) di leads to an approximation of |E(C)|. To

achieve a more accurate approximation, we consider two further improvements:
(a) For each i with f(i) < 1, no edges are generated. Thus, we also don’t need
to consider the area under this part of the curve. It holds

f(i) ≥ 1⇒ i ≤ τ 1
α ⇒ iend := min{bτ 1

α c, |S|+ 1}.

The integration interval can end at iend.
(b) The number of edges for each node is bounded by |S|. Thus, for each i with
f(i) > S, we can restrict the function value to |S|. It holds

f(i) ≤ |S| ⇒ i ≥ τ 1
α · |S|−1 ⇒ istart := max{dτ 1

α · |S|−1e, 1}.

Thus, overall, given a specific τ , the value of |E(C)| can be approximated by∫ istart

1

|S| di+

∫ iend

istart

f(i) di = (istart − 1) · |S|+ τ
1
α · (log(iend)− log(istart)).

ut
Based on Lemma 1, we find the appropriate τ by performing a binary search

on the value of log τ until the given value of |E(C)| is (approximately) obtained.
This step can be done in time O(log |S|2).

Calculating the number of errors. Determining the number of errors can
be reduced to the problem of counting the number of existing edges in IC . In
other words, the goal is to determine how many edges (Si, Sj) ∈ (S × S) ∩ E
fulfill iα · jα > τ . Knowing this number, e.g. denoted as x, the number of errors
is given by

(M(i) − x) + (|E(C)| − x).

We have to encode all edges of M(i) as errors which are not covered by C (i.e.
M(i)−x many) and we additionally have to encode all non-existing edges which
are unnecessarily included in C (i.e. |E(C)| − x many).

Obviously, the value of x can be determined by simply iterating over all edges
(S × S) ∩ E of the community, i.e. linear in the number of edges.
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5.2 Complexity analysis

Lemma 2. HyCoM-FIT has a runtime complexity of O(K ·(|E|+|S|·(log |S|2+
E))), where K is the number of communities we obtain, |E| is the number of edges
in the network, |S| is the average size of a community and E is the number of
edges between the elements of S.

Proof. Steps 1 to 3 are repeated K times, the number of communities to be
obtained. Step 1, the rank-1 approximation, requires O(|E|) time. Step 2, the
core of the algorithm, can be executed using O(|S|) additions and removals to
the community, each with complexity O(log |S|2 +E) as detailed in the previous
sub-section. Finally, step 3, the matrix deflation, can be done in O(E) with a
single pass over the edges of the community. ut

6 Experiments on Real Data

In this section, we start by evaluating the quality of the Hyperbolic Community
Model using the datasets of Table 1. We subsequently evaluate HyCoM-FIT by
studying its scalability and its ability to obtain empirically correct communities
through the use of the node-labeled dataset.

We focus on three quality metrics: Q1) Model quality, Q2) HyCoM-FIT
scalability and Q3) Effectiveness.

Q1) Model quality

While Section 4 describes how to encode hyperbolic communities, it does not
show whether this model is preferable over simpler models such as edge lists
when encoding real communities. This aspect is not immediately clear because,
even though block communities of uniform density are a special case (α = 0) of
hyperbolic, HyCoM explicitly encodes missing edges (i.e. errors made by the
model). This observation implies that HyCoM must create dense hyperbolas to
ensure that the overall cost of encoding the errors and the model is not higher
than to the cost of simply encoding all edges in the graph. Since big communities
are usually very sparse, it is not obvious whether better compression can be
achieved by our model.

Figure 6 shows the number of bits required to encode the ground-truth com-
munities using the hyperbolic model and the edge-list format. In this scenario,
the cost of each community using HyCoM can be obtained using Definition 3
when setting |C| = 1. As seen, the hyperbolic model consistently requires less
bits to represent the ground-truth communities. While for the datasets shown
in (a)-(c), the savings are substantial, the savings on the LiveJournal are
less strong. In any case, though, compression based on hyperbolic structure is
preferable.
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Fig. 6. Number of bits required to encode ground truth communities: HyCoM con-
sistently requires less bits

Q2) HyCoM-FIT scalability

We compared HyCoM-FIT to several popular community detection methods
found in the literature: the community affiliation graph model [20], clique per-
colation [1] and cross-associations [3]. We obtained realistic graphs of different
sizes by doing a weighted-snowball sampling6 in the LiveJournal dataset.

Figure 7 shows the run-time of the different algorithms using their default
parameters. [1] ran out of memory on a graph with 100 000 edges. HyCoM-
FIT was run without any special stopping criteria (i.e. until the deflation was
complete); as a consequence, bigger graphs required more communities to be
fully deflated. HyCoM-FIT shows a fully linear run-time when the required
number of communities is constant.

Q3) Effectiveness

In addition to the datasets with ground-truth communities previously used, we
also applied HyCoM-FIT to a copy of the simple-english Wikipedia pages from
March 8, 2014. In this dataset, nodes represent articles and edges represent hy-
perlinks between them. Unlike previous datasets, we don’t consider any ground-

6 In this weighted-snowball sampling, weights correspond to the number of connections
from a node to the current sample. This was done in an effort to preserve community
structure.
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Fig. 8. Anomalous community found by
HyCoM-FIT in the LiveJournal data:
HyCoM-FIT can also be used to de-
tect anomalies.

truth communities in the Wikipedia data; however, as nodes are labeled, this
dataset allows us to assert the effectiveness of HyCoM-FIT.

Detecting Hyperbolic Communities. Figures 1 and 2 presented in the
introduction illustrate both a ground-truth community and a community found
by HyCoM-FIT in the YouTube dataset. They show not only the existence
of hyperbolic communities in real data, but also the ability of our method to
successfully find them. Note the similarity in the shape of both communities.
Existing methods trying to find communities of uniform density would fail to
detect such communities.

Anomaly Detection. HyCoM-FIT is also able to detect anomalous struc-
tures in data. Figure 8 shows a detected community from the LiveJournal
dataset. We can see the adjacency matrix (here represented as an heatmap) of
suspiciously highly connected accounts. Approximately 1 000 users established
over 300 000 friendship relations forming a very dense community (compared
to a common distribution as shown in Figure 3). Clearly, also this anomalous
community shows the characteristic shape of an hyperbola.

Communities in Wikipedia. Figures 9 and 10 show two communities de-
tected in the Wikipedia dataset. Figure 9 illustrates an hyperbolic community
mostly consisting of temporal articles. The first 6 articles correspond to coun-
tries heavily mentioned in events (e.g. United States, France, Germany, etc.)
then we have articles corresponding to months (e.g. April, July), then articles
representing individual years (e.g. 2002, 1973) and finally articles corresponding
to particular dates (e.g. November 25, May 13).

Figure 10 shows HyCoM-FIT’s generality and its ability of detecting bi-
partite cores given their close resemblance to hyperbolas. In this community,
the approximately 20 articles of highest degree represent articles with lists (e.g.
“Country”, “List of countries by area”, “Members of the United Nations”) while
the remaining 140 articles are all individual countries.
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7 Conclusions

We focused on the problem of representing communities in real graph data,
and specifically on the resemblance between structure of the full graph and the
structure of big communities. The main contributions are the following:
- Hyperbolic Community Model: We provide empirical evidence that com-

munities in real data are better modeled using an hyperbolic model, termed
HyCoM. Our model includes communities of uniform density as used by other
approaches as a special case. We also show that this model is better from a
compression perspective than previous models.

- Scalability: HyCoM-FIT is a scalable algorithm for the detection of com-
munities fitting the HyCoM model. We leverage rank-1 decompositions and
the MDL principle to guide the search process.

- No user-defined parameters: HyCoM-FIT detects communities in a
parameter-free fashion, transparent to the end-user.

- Effectiveness: We applied HyCoM-FIT on various real datasets, where we
discovered communities that agree with intuition.

HyCoM-FIT is available at http://cs.cmu.edu/∼maraujo/hycom/.
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