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Abstract—The smart grid vision is to build an intelligent power
network with an unprecedented level of situational awareness
and controllability over its services and infrastructure. This
paper advocates statistical inference methods to robustify power
monitoring tasks against the outlier effects owing to faulty
readings and malicious attacks, as well as against missing data
due to privacy concerns and communication errors. In this
context, a novel load cleansing and imputation scheme is developed
leveraging the low intrinsic-dimensionality of spatiotemporal load
profiles and the sparse nature of “bad data.” A robust estimator
based on principal components pursuit (PCP) is adopted, which
effects a twofold sparsity-promoting regularization through an ℓ1-
norm of the outliers, and the nuclear norm of the nominal load
profiles. After recasting the non-separable nuclear norm into a
form amenable to distributed optimization, a distributed (D-) PCP
algorithm is developed to carry out the imputation and cleansing
tasks using a network of interconnected smart meters. Computer
simulations and tests with real load curve data corroborate the
convergence and effectiveness of the novel D-PCP algorithm.

I. INTRODUCTION

The US power infrastructure has been recognized as the

most important engineering achievement of the 20th cen-

tury [18], yet it presently faces major challenges related to

efficiency, reliability, security, environmental impact, sustain-

ability, and market diversity issues [17]. The crystallizing

vision of the smart grid (SG) aspires to build a cyber-physical

network that can address such challenges by capitalizing on

state-of-the-art information technologies in sensing, control,

communication, optimization, and machine learning. Signifi-

cant effort and investment have been committed to architect the

necessary infrastructure by installing advanced metering sys-

tems, and establishing data communication networks through-

out the grid. Accordingly, algorithms that optimally exploit

such pervasive sensing and control capabilities are needed

to make the necessary breakthroughs in the key problems

in power grid monitoring and energy management. This is

no easy endeavor though, in view of the challenges posed

by increasingly distributed network operations under strict

reliability requirements, also facing malicious cyber-attacks.

Statistical inference techniques are expected to play an

increasingly instrumental role in power system monitoring,

not only to meet the anticipated “big data” deluge as the in-

stalled base of phasor measurement units (PMUs) reaches out

throughout the network, but also to robustify the monitoring

tasks against “outlier” effects owing to faulty readings, ma-

licious attacks, and communication errors, as well as against

missing data due to privacy concerns and technical anomalies.

In this context, a novel load cleansing and imputation scheme

is developed in this paper, building on recent advances in

sparsity-cognizant signal processing, low-rank matrix comple-

tion, and large-scale distributed optimization.

Load curve data refers to the electric energy consumption

periodically recorded by meters at points of interest across the

electric grid, e.g., end-user premises, buses, and substations.

Accurate load profiles are critical assets aiding operational

decisions in the envisioned SG system [5]. However, in the

process of acquiring and transmitting such massive volumes of

information, data are oftentimes corrupted or lost altogether.

In a smart monitoring context for instance, incomplete load

profiles emerge due to three reasons: (r1) PMU-instrumented

buses are few; (r2) SCADA data become available at a con-

siderably smaller time scale than PMU data; and (r3) regional

operators are not willing to share all their variables [15].

In addition to dealing with missing data, a major require-

ment for grid monitoring is robustness to outliers, i.e., data

not adhering to nominal models. Sources of so-termed “bad

data” include meter failures, as well as strikes, unscheduled

generator shutdowns, and extreme weather conditions [5]. In-

consistent data can also come from malicious (cyber-)attacks,

or counterfeit meter readings [9].

In light of the aforementioned observations, the first contri-

bution of this paper is on modeling spatiotemporal load pro-

files, accounting for the structure present to effectively impute

missing data and devise robust load curve estimators stemming

from convex optimization criteria (Section II). The aim is

for minimal-rank cleansed load data, while also exploiting

outlier sparsity across buses and time. An estimator tailored to

these specifications is principal components pursuit (PCP, also

known as robust principal component analysis) [3], [4], [20],

which is outlined in Section III. While PCP has been widely

adopted in computer vision, for voice separation in music, and

unveiling network anomalies, its benefits to power systems

engineering and monitoring remains largely unexplored. The

second contribution pertains to developing a distributed PCP

algorithm, to carry out the imputation and cleansing task using

a network of interconnected smart meters (Section IV). This

is possible by leveraging a general algorithmic framework for

sparsity-regularized rank minimization put forth in [10].
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II. MODELING AND PROBLEM STATEMENT

This section introduces the fundamental model for (pos-

sibly) incomplete and grossly corrupted load curve measure-

ments, acquired by geographically-distributed meters monitor-

ing the power grid. The communication network model needed

to account for exchanges of information among smart meters is

described as well. Lastly, the problem of load curve cleansing

and imputation is formally stated.

A. Spatiotemporal load curve data model

Let the N × 1 vector y(t) := [y1,t, . . . , yN,t]
′ (′ stands

for transposition) collect the spatial load profiles measured by

smart meters monitoring N network nodes (buses or residen-

tial premises), at a given discrete-time instant t ∈ [1, T ]. Con-

sider the N×T matrix of observations Y := [y(1), . . . ,y(T )].
The n-th row of Y is the time series of energy consumption

(load curve) measurements at node n, while the t-th col-

umn of Y represents a snapshot of the networkwide loads

taken at time t. To model missing data, consider the set

Ω ⊆ {1, . . . , N} × {1, . . . , T } of index pairs (n, t) defining a

sampling of the entries of Y. Introducing the matrix sampling

operator PΩ(·), which sets the entries of its matrix argument

not indexed by Ω to zero and leaves the rest unchanged, the

(possibly) incomplete spatiotemporal load curve data in the

presence of outliers can be modeled as

PΩ(Y) = PΩ(X+O+E) (1)

where X, O, and E denote the nominal load profiles, the out-

liers, and small measurement errors, respectively. For nominal

observations yn,t = xn,t+en,t, one has on,t = 0. Note that the

model is inherently under-determined, since even for the (most

favorable) case of full data, i.e., Ω ≡ {1, . . . , N}×{1, . . . , T },

there are twice as many unknowns in X and O as there is data

in Y. Estimating X and O becomes even more challenging

when data are missing, since the number of unknowns remains

the same, but the amount of data is reduced. In any case,

estimation of {X,O} from PΩ(Y) is an ill-posed problem

unless one introduces extra structural assumptions on the

model components to reduce the effective degrees of freedom.

Two cardinal properties of X and O are worth noting. First,

common temporal patterns among the energy consumption

of a few broad classes of loads (e.g., industrial, residential,

seasonal) in addition to their (almost) periodic behaviors

render most rows and columns of X linearly dependent, and

thus X typically has low-rank. Second, outliers (or attacks)

only occur sporadically in time and affect only a few buses,

yielding a sparse matrix O. Smoothness of the nominal load

curves is a structural assumption somehow related to the low-

rank property of X, which was adopted in [5] to motivate a

smoothing splines-based algorithm for cleansing. Approaches

capitalizing on outlier- and “bad data-” sparsity can be found

in e.g., [7] and [11].

B. Communication network model

Suppose that on top of the energy measurement functional-

ity, the N networked smart meters are capable of performing

simple local computations, as well as exchanging messages

among directly connected neighbors. Single-hop communica-

tion models are appealing due to their simplicity, since one

does not have to account for the routing. The network is

naturally abstracted to an undirected graph G(N ,L), where

the vertex set N := {1, . . . , N} corresponds to the network

nodes, and the edges (links) in L represent pairs of nodes that

are connected via a physical communication channel. Node

n ∈ N communicates with its single-hop neighboring peers

in Jn, and the size of the neighborhood will be henceforth

denoted by |Jn|. The graph G is assumed connected, i.e., there

exists a (possibly multihop) path that joins any pair of nodes

in the network. This requirement ensures that the network

is devoid of multiple isolated (connected) components, and

allows for the data collected by e.g., smart meter n, namely

the n-th row (yn)
′ of Y, to eventually reach every other node

in the network. This way, even when only local interactions are

allowed, the flow of information can propagate and eventually

impact global network behaviors.

The importance of the network model will become apparent

in Section IV.

C. Load curve cleansing and imputation

The load curve cleansing and imputation problem studied

here entails identification and removal of outliers (or “bad

data”), in addition to completion of the missing entries from

the nominal load matrix, and denoising of the observed

ones. To some extent, it is a joint estimation-interpolation

(prediction)-detection problem. With reference to (1), given

generally incomplete, noisy and outlier-contaminated spa-

tiotemporal load data PΩ(Y), the cleansing and imputation

tasks amount to estimating the nominal load profiles X and

the outliers O, by leveraging the low-rank property of X and

the sparsity in O.

Note that load cleansing and imputation are different from

load forecasting [16], which amounts to predicting future load

demand based on historical data of energy consumption and

the weather conditions. Actually, cleansing and imputation are

critical preprocessing tasks utilized to enhance the quality of

load data, that would be subsequently used for load forecasting

and optimum power flow [1].

III. PRINICIPAL COMPONENTS PURSUIT

An estimator matching nicely the specifications of the load

curve cleansing and imputation problem stated in Section

II-C, is the so-termed (stable) principal components pursuit

(PCP) [3], [4], [20], that will be outlined here for complete-

ness. PCP seeks the estimates {X̂, Ô} as the minimizers of

(P1) min
{X,O}

1

2
‖PΩ(Y −X−O)‖2F + λ∗ ‖X‖∗ + λ1 ‖O‖

1

where the ℓ1-norm ‖O‖1 :=
∑

n,t |on,t| and the nuclear

norm ‖X‖∗ :=
∑

i σi(X) (σi(X) denotes the i-th singular

value of X) are utilized to promote sparsity in the number

of anomalies (nonzero entries) in O, and the low rank of X,

respectively. The nuclear norm and ℓ1-norm are the closest
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convex surrogates to the rank and cardinality functions, which

albeit the most natural criteria they are in general NP-hard to

optimize [13], [6]. The tuning parameters λ1, λ∗ ≥ 0 control

the tradeoff between fitting error, rank, and sparsity level of

the solution. When an estimate σ̂2
v of the observation noise

variance is available, guidelines for selecting λ∗ and λ1 have

been proposed in [20]. The nonzero entries in Ô reveal “bad

data” across both buses and time.

Being convex (P1) is computationally appealing, and it

has been demonstrated to attain good performance in theory

and practice. For instance, in the absence of noise and when

there is no missing data, remarkable exact recovery results

were reported in [3] and [4]. Even when data are missing,

it is possible to recover the low-rank component under some

technical assumptions [3]. Theoretical performance guarantees

in the presence of noise are also available [20].

Regarding algorithms, a PCP solver based on the accelerated

proximal gradient method was put forth in [8], while the

alternating-directions method of multipliers was employed

in [19]. Implementing these centralized algorithms presumes

that networked metering devices continuously communicate

their local load measurements yn,t to a central monitoring and

data analytics station, which uses their aggregation in PΩ(Y)
to reject outliers and impute missing data. While for the most

part this is the prevailing operational paradigm nowadays, it is

fair to say there are limitations associated with this architec-

ture. For instance, collecting all this information centrally may

lead to excessive overhead in the communication network, es-

pecially when the rate of data acquisition is high at the meters.

Moreover, minimizing the exchanges of raw measurements

may be desirable to reduce unavoidable communication errors

that translate to missing data. Performing the optimization in

a centralized fashion raises robustness concerns as well, since

the central data analytics station represents an isolated point

of failure. These reasons motivate devising fully-distributed

iterative algorithms for PCP, embedding the load cleansing

and imputation functionality to the smart meters. This is the

subject of the next section.

IV. IN-NETWORK CLEANSING AND IMPUTATION

A distributed (D-)PCP algorithm to solve (P1) using a

network of smart meters (modeled as in Section II-B) should

be understood as an iterative method, whereby each node

carries out simple local (optimization) tasks per iteration

k = 1, 2, . . ., and exchanges messages only with its directly

connected neighbors. The ultimate goal is for each node to

form local estimates xn[k] and on[k] that coincide with the n-

th rows of X̂ and Ô as k → ∞, where {X̂, Ô} is the solution

of (P1) obtained when all data PΩ(Y) are centrally available.

Attaining the centralized performance with distributed data is

impossible if the network is disconnected.

To facilitate reduction of the computational complexity and

memory storage requirements of the D-PCP algorithm sought,

it is henceforth assumed that an upper bound rank(X̂) ≤ ρ
is a priori available [recall X̂ is the estimated low-rank

cleansed load profile obtained via (P1)]. As argued next,

the smaller the value of ρ, the more efficient the algorithm

becomes. Small values of ρ are well motivated due to the low

intrinsic dimensionality of the spatiotemporal load profiles (cf.

Section II-A). Because rank(X̂) ≤ ρ, (P1)’s search space is

effectively reduced and one can factorize the decision variable

as X = PQ′, where P and Q are N × ρ and T × ρ matrices,

respectively. Adopting this reparametrization of X in (P1) and

making explicit the distributed nature of the data (cf. Section

II-B), one arrives at an equivalent optimization problem

(P2) min
{P,Q,O}

N
∑

n=1

[

1

2
‖PΩn

(yn −Qpn − on)‖
2

2

+
λ∗

N
‖PQ′‖∗ + λ1‖on‖1

]

which is non-convex due to the bilinear term PQ′, and where

P := [p1, . . . ,pN ]′. The number of variables is reduced from

2NT in (P1), to ρ(N + T ) + NT in (P2). The savings can

be significant when ρ is small, and both N and T are large.

Note that the dominant NT -term in the variable count of (P2)

is due to O, which is sparse and can be efficiently handled

even when both N and T are large.

Problem (P2) is still not amenable for distributed implemen-

tation due to: (c1) the non-separable nuclear norm present in

the cost function; and (c2) the global variable Q coupling the

per-node summands. These two challenges are dealt with in

the ensuing sub-sections.

A. A separable low-rank regularization

To address (c1), consider the following alternative charac-

terization of the nuclear norm (see e.g. [14])

‖X‖∗ := min
{P,Q}

1

2

(

‖P‖2F + ‖Q‖2F
)

, s. to X = PQ′.

(2)

The optimization (2) is over all possible bilinear factorizations

of X, so that the number of columns ρ of L and Q is also a

variable. Leveraging (2), the following reformulation of (P2)

provides an important first step towards obtaining the D-PCP

algorithm:

(P3) min
{P,Q,O}

N
∑

n=1

[

1

2
‖PΩn

(yn −Qpn − on)‖
2

2 + λ1‖on‖1

+
λ∗

2N

(

N‖pn‖
2

2 + ‖Q‖2F
)

]

.

As asserted in [10, Lemma 1], adopting the separable

Frobenius-norm regularization in (P3) comes with no loss of

optimality relative to (P1), provided rank(X̂) ≤ ρ. By finding

the global minimum of (P3) [which could have considerably

less variables than (P1)], one can recover the optimal so-

lution of (P1). However, since (P3) is non-convex, it may

have stationary points which need not be globally optimum.

Interestingly, the next proposition shows that under relatively

mild assumptions on rank(X̂) every stationary point of (P3)

is globally optimum for (P1). For a proof (omitted here due

to space limitations), see [10, App. A].

655



Proposition 1: Let {P̄, Q̄, Ō} be a stationary point of (P3).

If ‖PΩ(Y− P̄Q̄′ − Ō)‖ < λ∗, then {X̂ := P̄Q̄′, Ô := Ō} is

the globally optimal solution of (P1).

The qualification condition ‖PΩ(Y − P̄Q̄′ − Ō)‖ < λ∗

captures tacitly the role of ρ. In particular, for sufficiently

small ρ the residual ‖PΩ(Y − P̄Q̄′ − Ō)‖ becomes large

and consequently the condition is violated [unless λ∗ is large

enough, in which case a sufficiently low-rank solution to (P1)

is expected]. The condition on the residual also implicitly

enforces rank(X̂) ≤ ρ, which is necessary for the equivalence

between (P1) and (P3).

B. Local variables and consensus constraints

To decompose the cost in (P3), in which summands inside

the square brackets are coupled through the global variable Q

[cf. (c2) at the beginning of Section IV], introduce auxiliary

variables {Qn}Nn=1 representing local estimates of Q, one per

smart meter n. To obtain a separable PCP formulation, use

these estimates along with consensus constraints, that is

(P4) min
{Pn,Qn,O}

N
∑

n=1

[

1

2
‖PΩn

(yn −Qnpn − on)‖
2

2

+λ1‖on‖1 +
λ∗

2N

(

N‖pn‖
2

2 + ‖Qn‖
2

F

)

]

s. to Qn = Qm, m ∈ Jn, n ∈ N .

Notice that (P3) and (P4) are equivalent optimization prob-

lems, since the network graph G(N ,L) is connected by

assumption. Even though consensus is a fortiori imposed

within neighborhoods, it extends to the whole (connected)

network and local estimates agree on the global solution of

(P3). To arrive at the desired D-PCP algorithm, it is convenient

to reparametrize the consensus constraints in (P4) as

Qn = F̄m
n , Qm = F̃m

n , and F̄m
n = F̃m

n , m ∈ Jn, n ∈ N
(3)

where {F̄m
n , F̃m

n }n∈N , are auxiliary optimization variables

that will be eventually eliminated (cf. Remark 1).

C. The D-PCP algorithm

To tackle (P4), associate Lagrange multipliers M̄m
n and M̃m

n

with the first pair of consensus constraints in (3). Introduce the

quadratically augmented Lagrangian function [2]

Lc (V1,V2,V3,M) =

N
∑

n=1

[

1

2
‖PΩn

(yn −Qnpn − on)‖
2

2

+λ1‖on‖1 +
λ∗

2N

(

N‖pn‖
2

2 + ‖Qn‖
2

F

)

]

+

N
∑

n=1

∑

m∈Jn

(

〈M̄m
n ,Qn − F̄m

n 〉+ 〈M̃m
n ,Qm − F̃m

n 〉
)

+
c

2

N
∑

n=1

∑

m∈Jn

(

‖Qn − F̄m
n ‖2F + ‖Qm − F̃m

n ‖2F ‖
2

F

)

(4)

where c > 0 is a penalty parameter, and the primal variables

are split into groups V1 := {Qn}Nn=1, V2 := {pn}Nn=1 and

V3 := {on, F̄
m
n , F̃m

n }m∈Jn

n∈N . For notational brevity, collect

all Lagrange multipliers in M := {M̄m
n , M̃m

n }m∈Jn

n∈N . Note

that the remaining constraints in (3), namely CV := {F̄m
n =

F̃m
n , m ∈ Jn, n ∈ N}, have not been dualized.

To minimize (P4) in a distributed fashion, the alternating-

direction method of multipliers (AD-MoM) will be adopted

here. The AD-MoM is an iterative augmented Lagrangian

method especially well suited for parallel processing [2],

which has been proven successful to handle optimization tasks

stemming from general distributed estimators of deterministic

and (non-)stationary random signals; see e.g., [12]. The pro-

posed solver entails an iterative procedure comprising four

steps per iteration k = 1, 2, . . ., which amount to a block-

coordinate descent method cycling over V1 → V2 → V3

to minimize Lc, and dual variable updates [10]. At each

step while minimizing the augmented Lagrangian, the vari-

able groups not being updated are treated as fixed, and are

substituted with their most up to date values.

Reformulating the estimator (P1) to its equivalent form (P4)

renders the augmented Lagrangian in (4) highly decomposable.

The separability comes in two flavors, both with respect to the

variable groups V1-V3, as well as across the network nodes

n ∈ N . This leads to highly parallelized, simplified recursions

to be run by the networked smart meters. Specifically, it is

shown in [10, App. B] that application of AD-MoM yields the

D-PCP algorithm tabulated as Algorithm 1. Per iteration, each

smart meter updates: [S1] a local matrix of dual prices Sn[k];
[S2]-[S3] local cleansed load estimates Qn[k+1] and pn[k+
1] obtained as solutions to respective unconstrained quadratic

problems; and [S4] its local outlier vector, through a sparsity-

promoting soft-thresholding operation. The (k+1)-st iteration

is concluded after smart meter n transmits Qn[k + 1] to its

single-hop neighbors in Jn. Regarding communication cost,

Qn[k+1] is a T×ρ matrix and its transmission does not incur

significant overhead for small values of ρ. Observe that the

dual variables need not be exchanged, and the communication

cost does not depend on the size of the network N .

Before moving on, a clarification on the notation used in

Algorithm 1 is due. To define matrix Ωn in [S2]-[S4], observe

first that the local sampling operator can be expressed as

PΩn
(z) = ωn ⊙ z, where ⊙ denotes Hadamard product, and

the binary masking vector ωn ∈ {0, 1}T has entries equal to

1 if the corresponding entry of z is observed, and 0 otherwise.

It is then apparent that the Hadamard product can be replaced

with the usual matrix-vector product as PΩn
(z) = Ωnz, where

Ωn := diag(ωn). Operators ⊗ and vec[·] denote Kronecker

product and matrix vectorization, respectively. Finally, the

soft-thresholding operator is Sλ1
(·) := sign(·)max(|·|−λ1, 0).

Remark 1 (Elimination of redundant variables): Careful

inspection of Algorithm 1 reveals that the redundant auxiliary

variables {F̄m
n , F̃m

n , M̃m
n }m∈Jn

n∈N have been eliminated. Each

smart meter, say the n-th, does not need to separately keep

track of all its non-redundant multipliers {M̄m
n }m∈Jn

, but

only update their respective (scaled) sums Sn[k] := 2
∑

m∈Jn
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Algorithm 1 : D-PCP at smart meter n ∈ N
input yn,Ωn, λ∗, λ1, and c.
initialize S[0] = 0T×ρ, and Qn[1], pn[1] at random.
for k = 1, 2,. . . do

Receive {Qm[k]} from neighbors m ∈ Jn.
[S1] Update local dual variables:

Sn[k] = Sn[k − 1] + c
∑

m∈Jn

(Qn[k]−Qm[k]).
[S2] Update first group of local primal variables:

Qn[k + 1] = unvec
(

{(pn[k]p
′
n[k])⊗Ωn + (λ∗/N + 2c|Jn|)IρT }

−1

×
{

(pn[k]⊗Ωn)(yn − on[k]) − vec(Sn[k]) + vec(c
∑

m∈Jn

(Qn[k] +Qm[k]))
})

.

[S3] Update second group of local primal variables:

pn[k + 1] = {Q′
n[k + 1]ΩnQn[k + 1] + Iρ}

−1
Q′

n[k + 1](yn − on[k]).
[S4] Update third group of local primal variables:

on[k + 1] = Sλ1
(Ωn(yn −Qn[k + 1]pn[k + 1])).

Transmit Qn[k + 1] to neighbors m ∈ Jn.
end for
return Qn[∞],pn[∞], on[∞].

M̄m
n [k].
When employed to solve non-convex problems such as

(P4), AD-MoM offers no convergence guarantees. However,

there is ample experimental evidence in the literature which

supports convergence of AD-MoM, especially when the non-

convex problem at hand exhibits “favorable” structure. For

instance, (P4) is bi-convex and gives rise to the strictly convex

optimization subproblems each time Lc is minimized with

respect to one of the group variables, which admit unique

closed-form solutions per iteration (cf. [S2]-[S4] in Algorithm

1). This observation and the linearity of the constraints suggest

good convergence properties for the D-PCP algorithm – ex-

tensive numerical tests including those presented in Section V

demonstrate that this is indeed the case. While a formal conver-

gence proof is subject of ongoing investigation, the following

proposition proved in [10] asserts that upon convergence, the

D-PCP algorithm attains consensus and global optimality.

Proposition 2: Suppose iterates {Qn[k],pn[k],on[k]}n∈N

generated by Algorithm 1 converge to {Q̄n, p̄n, ōn}n∈N . If

{X̂, Ô} is the optimal solution of (P1), then Q̄1 = Q̄2 =
. . . = Q̄N . Also, if ‖PΩ(Y − P̄Q̄′

1 − Ō)‖ < λ∗, then

{X̂ = P̄Q̄′
1, Ô = Ō}.

V. NUMERICAL TESTS

This section corroborates convergence and gauges perfor-

mance of the D-PCP algorithm, when tested using synthetic

and real load curve data.

A. Synthetic data test

A network of N = 25 smart meters is generated as a

realization of the random geometric graph model, meaning

nodes are randomly placed on the unit square and two nodes

communicate with each other if their Euclidean distance is less

than a prescribed communication range of dc = 0.4. The time

horizon is T = 600. Entries of V are independent and iden-

tically distributed (i.i.d.), zero-mean, Gaussian with variance

σ2 = 10−3; i.e., vl,t ∼ N (0, σ2). Low-rank spatiotemporal

load profiles with rank r = 3 are generated from the bilinear
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Fig. 1. Convergence of the D-PCP algorithm.

factorization model X = WZ′, where W and Z are N × r
and T×r matrices with i.i.d. entries drawn from Gaussian dis-

tributions N (0, 100/N) and N (0, 100/T ), respectively. Every

entry of O is randomly drawn from the set {−1, 0, 1} with

Pr(on,t = −1) = Pr(on,t = 1) = 5 × 10−2. To simulate

missing data, a sampling matrix Ω ∈ {0, 1}N×T is generated

with i.i.d. Bernoulli distributed entries on,t ∼ Ber(0.75) (25%

missing data on average). Finally, measurements are generated

as PΩ(Y) = Ω⊙ (X+O+V) [cf. (1)], and smart meter n
has available the n-th row of PΩ(Y).

To experimentally corroborate the convergence and optimal-

ity (as per Proposition 2) of the D-PCP algorithm, Algorithm

1 is run with c = 1 and compared with the centralized

benchmark (P1), obtained using the solver in [19]. Parameters

λ1 = 0.0141 and λ∗ = 0.346 are chosen as suggested

in [20]. For both schemes, Fig. 1 shows the evolution of

the global estimation errors eX [k] := ‖X[k] − X‖F /‖X‖F
and eO[k] := ‖O[k] − O‖F/‖O‖F . It is apparent that the

D-PCP algorithm converges to the centralized estimator, and

as expected the convergence is slower since there is a delay

associated with the information flow throughout the network.
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Fig. 2. Goverment building load curve data cleansing.

B. Real load curve data test

Next, the D-PCP algorithm is tested on real load curve data.

The dataset consists of power consumption measurements (in

kW) for a government building, a grocery store, and three

schools (N = 5) collected every fifteen minutes during a

period of more than five years, ranging from July 2005 to Oc-

tober 2010. Data is downsampled by a factor of four, to yield

one measurement per hour. For the present experiment, only

a subset of the whole data is utilized for concreteness, where

T = 470 was chosen corresponding to a 470 hour period. For

the government building case, a snapshot of the available load

curve data spanning the studied three-week period is shown

in gray in Fig. 2. Weekday activity patterns can be clearly

discerned from those corresponding to weekends, as expected

for most government buildings; but different, e.g., for the load

profile of the grocery store in Fig. 3.

To run the D-PCP algorithm, an underlying communication

graph was generated as in Section V-A. A randomly chosen

subset of 25% of the measurements was removed to model

missing data. For the government building data, Fig. 2 depicts

the cleansed load curves that closely follow the measurements,

but are smooth enough to avoid overfitting the abnormal en-

ergy peaks on the so-termed “building operational shoulders.”

Indeed, these peaks are in most cases identified as outliers.

The effectiveness in terms of imputation of missing data is

illustrated in Fig. 3 (identified outliers are not shown here);

note how the cleansed (blue) load curve goes through the (red)

missing data points. The relative error in predicting missing

data is around 7%.
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