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Abstract—The smart grid vision is to build an intelligent power
network with an unprecedented level of situational awareness and
controllability over its services and infrastructure. This paper
advocates statistical inference methods to robustify power moni-
toring tasks against the outlier effects owing to faulty readings and
malicious attacks, as well as against missing data due to privacy
concerns and communication errors. In this context, a novel load
cleansing and imputation scheme is developed leveraging the low
intrinsic-dimensionality of spatiotemporal load profiles and the
sparse nature of “bad data.” A robust estimator based on principal
components pursuit (PCP) is adopted, which effects a twofold
sparsity-promoting regularization through an -norm of the
outliers, and the nuclear norm of the nominal load profiles. Upon
recasting the non-separable nuclear norm into a form amenable
to decentralized optimization, a distributed (D-) PCP algorithm is
developed to carry out the imputation and cleansing tasks using
networked devices comprising the so-termed advanced metering
infrastructure. If D-PCP converges and a qualification inequality
is satisfied, the novel distributed estimator provably attains the
performance of its centralized PCP counterpart, which has access
to all networkwide data. Computer simulations and tests with real
load curve data corroborate the convergence and effectiveness of
the novel D-PCP algorithm.

Index Terms—Advancedmetering infrastructure, distributed al-
gorithms, load curve cleansing and imputation, principal compo-
nents pursuit, smart grid.

I. INTRODUCTION

T HE U.S. power grid has been recognized as the most im-
portant engineering achievement of the 20th century [27],

yet it presently faces major challenges related to efficiency,
reliability, security, environmental impact, sustainability, and
market diversity issues [26]. The crystallizing vision of the
smart grid (SG) aspires to build a cyber-physical network that
can address these challenges by capitalizing on state-of-the-art
information technologies in sensing, control, communication,
optimization, and machine learning. Significant effort and
investment are being committed to architect the necessary
infrastructure by installing advanced metering systems, and
establishing data communication networks throughout the grid.
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Accordingly, algorithms that optimally exploit the pervasive
sensing and control capabilities of the envisioned advanced
metering infrastructure (AMI) are needed to make the necessary
breakthroughs in the key problems in power grid monitoring
and energy management. This is no easy endeavor though,
in view of the challenges posed by increasingly distributed
network operations under strict reliability requirements, also
facing malicious cyber-attacks.
Statistical inference techniques are expected to play an in-

creasingly instrumental role in power system monitoring [10],
not only to meet the anticipated “big data” deluge as the in-
stalled base of phasor measurement units (PMUs) reaches out
throughout the grid, but also to robustify the monitoring tasks
against the “outlier” effects owing to faulty readings, malicious
attacks, and communication errors, as well as against missing
data due to privacy concerns and technical anomalies [8]. In this
context, a load cleansing and imputation scheme is developed
in this paper, building on recent advances in sparsity-cognizant
information processing [12], low-rank matrix completion [9],
and large-scale distributed optimization [4].
Load curve data refers to the electric energy consumption

periodically recorded by meters at points of interest across the
power grid, e.g., end-user premises, buses, and substations. Ac-
curate load profiles are critical assets aiding operational deci-
sions in the envisioned SG system [7], and are essential for load
forecasting [25]. However, in the process of acquiring and trans-
mitting such massive volumes of information for centralized
processing, data are oftentimes corrupted or lost altogether. In
a smart monitoring context for instance, incomplete load pro-
files emerge due to three reasons: r1) PMU-instrumented buses
are few; r2) SCADA data become available at a considerably
smaller time scale than PMU data; and r3) regional operators
are not willing to share all their variables [24]. Moreover, a
major requirement for grid monitoring is robustness to outliers,
i.e., data not adhering to nominal models [1], [23]. Sources of
so-termed “bad data” include meter failures, as well as strikes,
unscheduled generator shutdowns, and extreme weather condi-
tions [7], [11]. Inconsistent data can also be due to malicious
(cyber-) attacks that induce abrupt load changes, or counterfeit
meter readings [18].
In light of the aforementioned observations, the first contribu-

tion of this paper is on modeling spatiotemporal load profiles,
accounting for the structure present to effectively impute
missing data and devise robust load curve estimators stem-
ming from convex optimization criteria (Section II). Existing
approaches to load curve cleansing have relied on separate
processing per time series [7], [11], [22], and have not capital-
ized on spatial correlations to improve performance. The aim

1949-3053 © 2013 IEEE



2348 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013

is for minimal-rank cleansed load data, while also exploiting
outlier sparsity across buses and time. An estimator tailored
to these specifications is principal components pursuit (PCP)
[5], [6], [29], which is outlined in Section III. PCP minimizes
a tradeoff between the least-squares (LS) model fitting error
and a twofold sparsity-promoting regularization, implemented
through an -norm of the outliers and the nuclear norm of the
nominal load profiles. While PCP has been widely adopted in
computer vision [5], for voice separation in music [13], and
unveiling network anomalies [20], its benefits to power systems
engineering and monitoring remains so far largely unexplored.
The second contribution pertains to developing a distributed
(D-) PCP algorithm, to carry out the imputation and cleansing
task using a network of interconnected devices as part of the
AMI (Section IV). This is possible by leveraging a general
algorithmic framework for sparsity-regularized rank mini-
mization put forth in [20]. Upon recasting the (non-separable)
nuclear norm present in the PCP cost into a form amenable
to decentralized optimization (Section IV-A), the D-PCP
iterations are obtained in Section IV-C via the multi-block
alternating-directions method of multipliers (ADMM) solver
[3], [4]. In a nutshell, per iteration each smart meter exchanges
simple messages with its (directly connected) neighbors in the
network, and then solves its own optimization problem to refine
its current estimate of the cleansed load profile. In the context of
power systems, the ADMM has been recently adopted to carry
out dynamic network energy management [16], and distributed
robust state estimation [14].
Computer simulations corroborate the convergence and

optimality of the novel D-PCP algorithm, and demonstrate its
effectiveness in cleansing and imputing real load curve data
(Section V). Concluding remarks and directions for future
research are outlined in Section VI, while a few algorithmic
details are deferred to the Appendix.

II. MODELING AND PROBLEM STATEMENT

This section introduces the model for (possibly) incomplete
and grossly corrupted load curvemeasurements, acquired by ge-
ographically-distributed metering devices monitoring the power
grid. The communication network model needed to account for
exchanges of information among smart meters is described as
well. Lastly, the task of load curve cleansing and imputation is
formally stated.

A. Spatiotemporal Load Curve Data Model

Let the vector ( stands
for transposition) collect the spatial load profiles measured by
smart meters monitoring network nodes (buses, residential
premises), at a given discrete-time instant . Consider
the matrix of observations .
The -th row of is the time series of energy con-
sumption (load curve) measurements at node , while the -th
column of represents a snapshot of the networkwide
loads taken at time . To model missing data, consider the set

of index pairs defining a
sampling of the entries of . Introducing the matrix sampling
operator , which sets the entries of its matrix argument
not indexed by to zero and leaves the rest unchanged, the

(possibly) incomplete spatiotemporal load curve data in the
presence of outliers can be modeled as

(1)

where , and denote the nominal load profiles, the out-
liers, and small measurement errors, respectively. For nominal
observations , one has .
Remark 1 (Model Under-Determinacy): The model is inher-

ently under-determined, since even for the (most favorable) case
of full data, i.e., , there are twice
as many unknowns in and as there is data in . Esti-
mating and becomes even more challenging when data
are missing, since the number of unknowns remains the same,
but the amount of data is reduced.
In any case, estimation of from is an ill-

posed problem unless one introduces extra structural assump-
tions on the model components to reduce the effective degrees
of freedom. To this end, two cardinal properties of and will
prove instrumental. First, common temporal patterns among the
energy consumption of a few broad classes of loads (e.g., in-
dustrial, residential, seasonal) in addition to their (almost) pe-
riodic behaviors render most rows and columns of linearly
dependent, and thus typically has low-rank. Second, outliers
(or attacks) only occur sporadically in time and affect only a
few buses, yielding a sparsematrix . Smoothness of the nom-
inal load curves is related to the low-rank property of , which
was adopted in [7] to motivate a smoothing splines-based algo-
rithm for cleansing. However, while in [7] smoothness was en-
forced per load profile time-series, i.e., per row of ; the
low-rank property of also captures the spatial dependencies
introduced by the network. Approaches capitalizing on outlier-
and “bad data-” sparsity can be found in, e.g., [15], [14] and
[22].

B. Communication Network Model

Suppose that on top of the energy measurement functionality,
the networked smart meters are capable of performing simple
local computations, as well as exchanging messages among di-
rectly connected neighbors. Single-hop communication models
are appealing due to their simplicity, since one does not have to
incur the routing overhead. The AMI network is naturally ab-
stracted to an undirected graph , where the vertex set

corresponds to the network nodes, and the
edges (links) in represent pairs of nodes that are connected
via a physical communication channel. Node communi-
cates with its single-hop neighboring peers in , and the size of
the neighborhood will be henceforth denoted by . The graph
is assumed connected, i.e., there exists a (possibly multihop)

path that joins any pair of nodes in the network. This require-
ment ensures that the network is devoid of multiple isolated
(connected) components, and allows for the data collected by,
e.g., smart meter , namely the -th row of , to eventu-
ally reach every other node in the network. This way, even when
only local interactions are allowed, the flow of information can
percolate the network.
The importance of the network model will become apparent

in Section IV.
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C. Load Curve Cleansing and Imputation

The load curve cleansing and imputation problem studied
here entails identification and removal of outliers (or “bad
data”), in addition to completion of the missing entries from
the nominal load matrix, and denoising of the observed ones.
To some extent, it is a joint estimation-interpolation (predic-
tion)-detection problem. With reference to (1), given generally
incomplete, noisy and outlier-contaminated spatiotemporal
load data , the cleansing and imputation tasks amount to
estimating the nominal load profiles and the outliers , by
leveraging the low-rank property of and the sparsity in .
Collaboration between metering devices (collecting network-
wide data) is considered here, rather than local processing of
load curves per bus.
Note that load cleansing and imputation are different from

load forecasting [25], which amounts to predicting future load
demand based on historical data of energy consumption and the
weather conditions. Actually, cleansing and imputation are crit-
ical preprocessing tasks utilized to enhance the quality of load
data, that would be subsequently used for load forecasting and
optimum power flow [2].

III. PRINICIPAL COMPONENTS PURSUIT

An estimator matching nicely the specifications of the load
curve cleansing and imputation problem stated in Section II-C,
is the so-termed (stable) principal components pursuit (PCP)
[5], [6], [29], that will be outlined here for completeness. PCP
seeks estimates as the minimizers of

where the -norm and the nuclear norm
( denotes the -th singular value of

) are utilized to promote sparsity in the number of outliers
(nonzero entries) in , and the low rank of , respectively. The
nuclear and -norms are the closest convex surrogates to the
rank and cardinality functions, which albeit the most natural cri-
teria they are in general NP-hard to optimize. The tuning param-
eters control the tradeoff between fitting error, rank,
and sparsity level of the solution. When an estimate of the
observation noise variance is available, guidelines for selecting
and have been proposed in [29]. The location of nonzero

entries in reveals “bad data” across both buses and time, while
their amplitudes quantify themagnitude of the anomalous event.
Thus, identification of outliers is critical not only to cleanse load
profiles and enhance the performance of load forecasting algo-
rithms, but also to, e.g., identify faulty meters, and out of the
ordinary load consumptions that may deserve special treatment.
Clearly, it does not make sense to flag outliers in data that has
not been observed, namely for . In those cases (P1)
yields since both the Frobenious and -norms are sep-
arable across the entries of their matrix arguments.
Being convex (P1) is computationally appealing, and it has

been shown to attain good performance in theory and prac-
tice. For instance, in the absence of noise and when there is
no missing data, identifiability and exact recovery conditions
were reported in [5] and [6]. Even when data are missing, it is
possible to recover the low-rank component under some tech-

nical assumptions [5]. Theoretical performance guarantees in
the presence of noise are also available [29].
Remark 2 (Online Processing for Dynamic GridMonitoring):

Problem (P1) offers a batch estimator for cleansing and impu-
tation of load curve data, which are collected over a horizon
of time instants and only processed a posteriori. In dynamic
environments, real-time adaptive algorithms are desirable since
they are capable of efficiently processing meter measurements
and identifying outliers “on the fly.” Online processing enables
tracking of “bad data” in nonstationary environments, typically
arising due to, e.g., network topology changes and missing data.
An online variant of (P1) was puth forth in [21], along with an
efficient real-time algorithm with performance guarantees.
Regarding batch algorithms, a PCP solver based on the accel-

erated proximal gradient method was put forth in [17], while the
ADMM was employed in [28]. Implementing these centralized
algorithms presumes that networked metering devices continu-
ously communicate their local load measurements to a cen-
tral monitoring and data analytics station, which uses their ag-
gregation in to reject outliers and impute missing data.
While for the most part this is the prevailing operational par-
adigm nowadays, there are limitations associated with this ar-
chitecture. For instance, collecting all this information centrally
may lead to excessive overhead in the communication network,
especially when the rate of data acquisition is high at the meters.
Moreover, minimizing (or avoiding altogether) the exchanges of
raw measurements may be desirable for privacy and cyber-se-
curity reasons, as well as to reduce unavoidable communication
errors that translate tomissing data. Performing the optimization
in a centralized fashion raises robustness concerns as well, since
the central data analytics station represents an isolated point of
failure. These reasons motivate devising fully-distributed itera-
tive algorithms for PCP, embedding the load cleansing and im-
putation functionality to the AMI. This is the subject of the next
section.

IV. DISTRIBUTED CLEANSING AND IMPUTATION

A distributed (D-)PCP algorithm to solve (P1) using a net-
work of smart meters (modeled as in Section II-B) should be
understood as an iterative method, whereby each node carries
out simple local (optimization) tasks per iteration ,
and exchanges messages only with its directly connected neigh-
bors. The ultimate goal is for each node to form local estimates

and that coincide with the -th rows of and as
, where is the solution of (P1) obtained when

all data are centrally available. Attaining the centralized
performance with distributed data is impossible if the network
is disconnected.
To facilitate reducing the computational complexity and

memory storage requirements of the D-PCP algorithm sought,
it is henceforth assumed that an upper bound is
a priori available [recall is the estimated low-rank cleansed
load profile obtained via (P1)]. As argued next, the smaller the
value of , the more efficient the algorithm becomes. Small
values of are well motivated due to the low intrinsic dimen-
sionality of the spatiotemporal load profiles (cf. Section II-A).
Because , (P1)’s search space is effectively re-
duced and one can factorize the decision variable as ,
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where and are and matrices, respectively.
Adopting this reparametrization of in (P1) and making
explicit the distributed nature of the data (cf. Section II-B), one
arrives at an equivalent optimization problem

which is non-convex due to the bilinear term , and where
. The number of variables is reduced from

in (P1), to in (P2). The savings can be
significant when is small, and both and are large. Note
that the dominant -term in the variable count of (P2) is due
to , which is sparse and can be efficiently handled even when
both and are large.
Remark 3 (Challenges Facing Distributed Implementation):

Problem (P2) is still not amenable for distributed implemen-
tation due to: c1) the non-separable nuclear norm present in
the cost function; and c2) the global variable coupling the
per-node summands.
Challenges c1)–c2) are dealt with in the ensuing sections.

A. A Separable Low-Rank Regularization

To address c1), consider the following alternative characteri-
zation of the nuclear norm (see, e.g., [20])

(2)

The optimization (2) is over all possible bilinear factorizations
of , so that the number of columns of and is also a
variable. Leveraging (2), the following reformulation of (P2)
provides an important first step towards obtaining the D-PCP
algorithm:

As asserted in [20], adopting the separable Frobenius-norm reg-
ularization in (P3) comes with no loss of optimality relative to
(P1), provided . By finding the global minimum of
(P3) [which could have considerably less variables than (P1)],
one can recover the optimal solution of (P1). This could be chal-
lenging however, since (P3) is non-convex and it may have sta-
tionary points which need not be globally optimum.
Interestingly, it is possible to certify global optimality of a sta-

tionary point of (P3). Specifically, one can establish
that if , then
is the globally optimal solution of (P1) ([20], Prop. 1). The qual-
ification condition captures tacitly
the role of . In particular, for sufficiently small the residual

becomes large and consequently the con-
dition is violated [unless is large enough, in which case a suf-

ficiently low-rank solution to (P1) is expected]. The condition
on the residual also implicitly enforces , which is
necessary for the equivalence between (P1) and (P3).

B. Local Variables and Consensus Constraints

To decompose the cost in (P3), in which summands inside the
square brackets are coupled through the global variable [cf.
c2) under Remark 3], introduce auxiliary variables
representing local estimates of per smart meter . To obtain
a separable PCP formulation, use these estimates along with
consensus constraints

Notice that (P3) and (P4) are equivalent optimization problems,
since the network graph is connected by assumption.
Even though consensus is a fortiori imposed only within neigh-
borhoods, it extends to the whole (connected) network and local
estimates agree on the global solution of (P3). To arrive at the
desired D-PCP algorithm, it is convenient to reparametrize the
consensus constraints in (P4) as

(3)

where , are auxiliary optimization variables that
will be eventually eliminated (cf. Remark 4).

C. The D-PCP Algorithm

To tackle (P4), associate Lagrange multipliers and
with the first pair of consensus constraints in (3). Introduce the
quadratically augmented Lagrangian function [3]

(4)

where is a penalty parameter, and the primal variables are
split into three groups and

. For notational brevity, collect all
Lagrange multipliers in . Note that the
remaining constraints in (3), namely

, have not been dualized.
To minimize (P4) in a distributed fashion, (a multi-block

variant of) the ADMM will be adopted here. The ADMM is an
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iterative augmented Lagrangian method especially well suited
for parallel processing [3], [4], which has been proven suc-
cessful to tackle the optimization tasks stemming from general
distributed estimators of deterministic and (non-)stationary
random signals; see, e.g., [14], [20] and references therein. The
proposed solver entails an iterative procedure comprising four
steps per iteration , [ in (5)–(6)]
[S1] Update dual variables:

(5)

(6)

[S2] Update first group of primal variables:

(7)

[S3] Update second group of primal variables:

(8)

[S4] Update third group of primal variables:

(9)

which amount to a block-coordinate descent method cycling
over to minimize , and dual variable updates
[3]. At each step while minimizing the augmented Lagrangian,
the variable groups not being updated are treated as fixed, and
are substituted with their most up to date values. Different from
the standard two-block ADMM [3], [4], the multi-block variant
here cycles over three groups of primal variables [19].
Reformulating the estimator (P1) to its equivalent form (P4)

renders the augmented Lagrangian in (4) highly decomposable.
The separability comes in two flavors, both with respect to the
variable groups , as well as across the network nodes

. This leads to highly parallelized, simplified recur-
sions to be run by the networked smart meters. Specifically, it is
shown in the Appendix that the aforementioned ADMM steps
[S1]–[S4] give rise to the D-PCP iterations tabulated under Al-
gorithm 1. Per iteration, each device updates: [S1] a local matrix
of dual prices ; [S2]–[S3] local cleansed load estimates

and obtained as solutions to respective
unconstrained quadratic problems (QPs); and [S4] its local out-
lier vector, through a sparsity-promoting soft-thresholding op-
eration. The -st iteration is concluded after smart meter
transmits to its single-hop neighbors in .
By inspection of Algorithm 1, one realizes that the required

memory space per smart meter is only
scalars, to store , and , respectively. This
number of scalars can be upper bounded by , which will be
typically smaller that required by a centralized solver to
store the data . (Note that is typically small due to the low
rank assumption, while will be large in pragmatic networks.)
Regarding communication cost, is a matrix and
its transmission does not incur significant overhead for small
. Observe also that need not be exchanged which is
desirable to preserve data secrecy, and the communication cost
is independent of .

Algorithm 1: D-PCP at smart meter

input and .

initialize , and at random.

for do

Receive from neighbors .

[S1] Update local dual variables:

[S2] Update first group of local primal variables:

[S3] Update second group of local primal variables:

[S4] Update third group of local primal variables:

Transmit to neighbors .

end for

return .

Before moving on, a clarification on the notation used in Al-
gorithm 1 is due. To define matrix in [S2]–[S4], observe first
that the local sampling operator can be expressed as

, where denotes Hadamard product, and the binary
masking vector has entries equal to 1 if the cor-
responding entry of is observed, and 0 otherwise. It is then
apparent that the Hadamard product can be replaced with the
usual matrix-vector product as , where

. Operators and denote Kronecker product
and matrix vectorization, respectively. Finally, the soft-thresh-
olding operator is .
Remark 4 (Elimination of Redundant Variables): Careful

inspection of Algorithm 1 reveals that the redundant auxiliary
variables have been eliminated. Each
smart meter, say the -th, does not need to separately keep
track of all its non-redundant multipliers , but only
update their respective sums .
When employed to solve non-convex problems such as

(P4), ADMM so far offers no convergence guarantees. How-
ever, there is ample experimental evidence in the literature
which supports convergence of ADMM, especially when the
non-convex problem at hand exhibits “favorable” structure [4].
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For instance, (P4) is bi-convex and gives rise to the strictly
convex optimization subproblems each time is minimized
with respect to one of the group variables, which admit
unique closed-form solutions per iteration [cf. (7)–(9)]. This
observation and the linearity of the constraints suggest good
convergence properties for the D-PCP algorithm. Extensive
numerical tests including those presented in Section V demon-
strate that this is indeed the case. While a formal convergence
proof is the subject of ongoing investigation, the following
proposition asserts that upon convergence, the D-PCP algo-
rithm attains consensus and global optimality. For a proof
(omitted here due to space limitations), see ([20], Appendix C).
Proposition 1: Suppose iterates

generated by Algorithm 1 converge to . If
is the optimal solution of (P1), then
. Also, if , then

.

V. NUMERICAL TESTS

This section corroborates convergence and gauges perfor-
mance of the D-PCP algorithm, when tested using synthetic and
real load curve data.

A. Synthetic Data Tests

A network of smart meters is generated as a real-
ization of the random geometric graph model, meaning nodes
are randomly placed on the unit square and two nodes commu-
nicate with each other if their Euclidean distance is less than a
prescribed communication range of ; see Fig. 1. The
time horizon is . Entries of are independent and
identically distributed (i.i.d.), zero-mean, Gaussian with vari-
ance ; i.e., . Low-rank spatiotem-
poral load profiles with rank are generated from the bi-
linear factorizationmodel , where and are
and matrices with i.i.d. entries drawn from Gaussian dis-
tributions and , respectively. Every
entry of is randomly drawn from the set with

. To simulate
missing data, a sampling matrix is generated
with i.i.d. Bernoulli distributed entries (30%
missing data on average). Finally, measurements are generated
as [cf. (1)], and smart meter
has available the -th row of .
To experimentally corroborate the convergence and op-

timality (as per Proposition 1) of the D-PCP algorithm,
Algorithm 1 is run with and compared with the cen-
tralized benchmark (P1), obtained using the solver in [28].
Parameters and are chosen as sug-
gested in [29]. For both schemes, Fig. 2 shows the evolution
of the global estimation errors
and . It is apparent that the
D-PCP algorithm converges to the centralized estimator, and as
expected convergence slows down due to the delay associated
with the information flow throughout the network. The test is
also repeated for network sizes of and 35 devices,
to illustrate that the time till convergence scales gracefully
as the network size increases. Finally, for and with

Fig. 1. A simulated network graph with nodes.

Fig. 2. Convergence of the D-PCP algorithm for different network sizes.
D-PCP attains the same estimation error as the centralized solver.

Fig. 3. Evolution of the consensus error.

, Fig. 3 depicts the consensus error
for three representative

smart metering devices. In all cases the error decays rapidly to
zero, showing that networkwide agreement is attained on the
estimates .
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Fig. 4. Normalized singular values of the 5 336 load profile matrix. A rank-
three approximant will retain most of its energy.

B. Real Load Curve Data Test

Here, the D-PCP algorithm is tested on real load curve data.
The dataset consists of power consumption measurements (in
kW) for a government building, a grocery store, and three
schools collected every fifteen minutes during a
period of more than five years, ranging from July 2005 to
October 2010. Data is downsampled by a factor of four, to
yield one measurement per hour. For the present experiment,
only a subset of the whole data is utilized for concreteness,
where was chosen corresponding to 336 hour periods.
The normalized singular values of the 5 336 data matrix
are 1,0.41,0.29,0.06,0.03; see also Fig. 4. Hence, a rank-three
approximant to the data matrix will retain most of its energy.
This observation motivates the proposed approach to cleansing
and imputation, which capitalizes on the low-rank property of
the spatio-temporal load profiles.
For the government building case, a snapshot of the available

load curve data spanning the studied two-week period is shown
in blue, e.g., in Fig. 5 (bottom). Weekday activity patterns can
be clearly discerned from those corresponding to weekends, as
expected for most government buildings; but different, e.g., for
the load profile of the grocery store in Fig. 6 (bottom).
To run the D-PCP algorithm, an underlying communication

graph was generated as in Section V-A. A randomly chosen
subset of 30% of the measurements was removed to model
missing data. For one of the schools and the government
building data, Fig. 5 depicts the cleansed load curves that
closely follow the measurements, but are smooth enough to
avoid overfitting the abnormal energy peaks on the so-termed
“building operational shoulders.” Indeed, these peaks are in
most cases identified as outliers. The effectiveness in terms of
imputation of missing data is illustrated in Fig. 6 (identified
outliers are not shown here); note how the cleansed (gray) load
curve goes through the (red) missing data points. The relative
error in predicting missing data is around 6%, and degrades to
8% when the amount of missing data increases to 50%.

Fig. 5. School and government building load curve data cleansing.

Fig. 6. Government building and grocery store load curve imputation, when
30% of the data are missing.

VI. CONCLUSION

A novel robust load curve cleansing and imputation method
is developed in this paper, rooted at the crossroads of sparsity-
cognizant statistical inference, low-rank matrix completion, and
large-scale distributed optimization. The adopted PCP estimator
jointly leverages the low-intrinsic dimensionality of spatiotem-
poral load profiles, and the sparse (that is, sporadic) nature of
outlying measurements. A separable reformulation of PCP is
shown to be efficiently minimized using the ADMM, and gives
rise to fully-decentralized iterations which can be run by a net-
work of smart-metering devices. Comprehensive tests with syn-
thetic and real load curve data demonstrate the effectiveness of
the novel load cleansing and imputation approach, and corrob-
orate the convergence and global optimality of the D-PCP algo-
rithm.
An interesting future direction is to devise distributed real-

time cleansing and imputation algorithms capable of processing
load curve data acquired sequentially in time, and analyze their
performance. In addition, it is of interest to rigorously establish



2354 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013

convergence of the D-PCP algorithm. Such results could signif-
icantly broaden the applicability of ADMM for large-scale op-
timization over networks, even in the presence of non-convex
but highly structured and separable cost functions.

APPENDIX
ALGORITHMIC CONSTRUCTION

The goal is to show that [S1]–[S4] can be simplified to the
iterations tabulated under Algorithm 1. Focusing first on [S3],
(8) decomposes into ridge-regression sub-problems

which admit the closed-form solutions shown in Algorithm 1.
Moving on to [S4], from the decomposable structure of the

augmented Lagrangian [cf. (4)] (9) decouples into per-node
scalar Lasso subtasks (note that )

and additional unconstrained QPs

(10)

which admit the closed-form solutions

(11)

Note that in formulating (10), was eliminated using the con-
straints defining . Using (11) to eliminate
and from (5) and (6) respectively, a simple induction ar-
gument establishes that if the initial Lagrange multipliers obey

, then for all
, where and . The set of mul-

tipliers has been shown redundant, and (11) readily simplifies
to

(12)

It then follows that for all , an identity
that will be used later on. By plugging (12) in (5), the (non-
redundant) multiplier updates become

(13)

If , then the structure of (13) reveals
that for all , where and

.
The minimization (9) in [S4] also decouples in simpler

sub-problems, namely

(14)

where in deriving (14) it was used that: i)
which follows from the identities
and established earlier; ii) the def-
inition ; and iii) the identity

which allows one to merge the identical
quadratic penalty terms and eliminate both and
using (12). Problem (14) is again an unconstrained QP, which
is readily solved in closed form by, e.g., vectorizing and
examining the first-order condition for optimality.
Finally, note that upon scaling by two the recursions (13) and

summing them over , the update recursion for in
Algorithm 1 follows readily.

ACKNOWLEDGMENT

The authors would like to thank NorthWrite Energy Group
and Prof. Vladimir Cherkassky (Dept. of ECE, University of
Minnesota) for providing the data analyzed in Section V-B.

REFERENCES
[1] A. Abur and A. Gomez-Exposito, Power System State Estimation:

Theory and Implementation. New York: Marcel Dekker, 2004.
[2] A. R. Bergen and V. Vittal, Power System Analysis. Upper Saddle

River, NJ, USA: Prentice-Hall, 2000.
[3] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:

Numerical Methods. Belmont, MA, USA: Athena-Scientific, 1999.
[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-

timization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, pp. 1–122, 2010.

[5] E. J. Candes, X. Li, Y.Ma, and J.Wright, “Robust principal component
analysis?,” J. ACM, vol. 58, no. 1, pp. 1–37, 2011.

[6] V. Chandrasekaran, S. Sanghavi, P. R. Parrilo, and A. S. Willsky,
“Rank-sparsity incoherence for matrix decomposition,” SIAM J.
Optim., vol. 21, no. 2, pp. 572–596, 2011.

[7] J. Chen, W. Li, A. Lau, J. Cao, and K. Wang, “Automated load curve
data cleansing in power systems,” IEEE Trans. Smart Grid, vol. 1, pp.
213–221, Sep. 2010.

[8] D. Duan, L. Yang, and L. L. Scharf, “Phasor state estimation from PMU
measurements with bad data,” in Proc. IEEE Workshop Comp. Adv.
Multi-Sensor Adaptive Proc., San Juan, Puerto Rico, Dec. 2011.

[9] M. Fazel, “Matrix rank minimization with applications,” Ph.D. disser-
tation, Electrical Eng. Dept., Stanford University, Stanford, CA, USA,
2002.



MATEOS AND GIANNAKIS: LOAD CURVE DATA CLEANSING AND IMPUTATION VIA SPARSITY AND LOW RANK 2355

[10] H. Gharavi, A. Scaglione, M. Dohler, and X. Guan, “Technical chal-
lenges of the smart grid: From a signal processing perspective,” IEEE
Signal Process. Mag., vol. 29, no. 5, pp. 12–13, Sep. 2012.

[11] Z. Guo, W. Li, A. Lau, T. Inga-Rojas, and K. Wang, “Detecting X-out-
liers in load curve data in power systems,” IEEE Trans. Power Syst.,
vol. 27, pp. 875–884, May 2012.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. New York: Springer, 2009.

[13] P.-S. Huang, S. D. Chen, P. Smaragdis, and M. Hasegawa-Johnson,
“Singing-voice separation frommonaural recordings using robust prin-
cipal component analysis,” in Proc. Int. Conf. Acoust., Speech, Signal
Process., Kyoto, Japan, Mar. 2012, pp. 57–60.

[14] V. Kekatos and G. B. Giannakis, “Distributed robust power system
state estimation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp.
1617–1626, May. 2013.

[15] O. Kosut, L. Jia, J. Thomas, and L. Tong, “Malicious data attacks on
the smart grid,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 645–658,
Dec. 2011.

[16] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Message passing for
dynamic network energy management,” Tech. Rep., Apr. 2012.

[17] Z. Lin, A. Ganesh, J. Wright, L.Wu,M. Chen, and Y.Ma, “Fast convex
optimization algorithms for exact recovery of a corrupted low-rank ma-
trix,” UIUC Tech. Rep. UILU-ENG-09-2214, Jul. 2009.

[18] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” in Proc. Conf. Comput.
Commun. Security, Chicago, IL, USA, Nov. 2009, pp. 9–13.

[19] Z.-Q. Luo, “On the linear convergence of the alternating direction
method of multipliers,” Tech. Rep., Aug. 2012 [Online]. Available:
http://arxiv.org/abs/1208.3922

[20] M. Mardani, G. Mateos, and G. B. Giannakis, “Decentralized sparsity-
regularized rank minimization: Algorithms and applications,” IEEE
Trans. Signal Process., 2013 [Online]. Available: http://arxiv.org/pdf/
1211.6950.pdf, to be published

[21] M. Mardani, G. Mateos, and G. B. Giannakis, “Dynamic anomalog-
raphy: Tracking network anomalies via sparsity and low rank,” IEEE
J. Sel. Topics Signal Process., vol. 7, no. 1, pp. 50–66, Feb. 2013.

[22] G. Mateos and G. B. Giannakis, “Robust nonparametric regression via
sparsity control with application to load curve data cleansing,” IEEE
Trans. Signal Process., vol. 60, no. 4, pp. 1571–1584, Apr. 2012.

[23] L. Mili, M. G. Cheniae, and P. J. Rousseeuw, “Robust state estima-
tion of electric power systems,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 41, no. 5, pp. 349–358, May 1994.

[24] K. M. Rogers, R. D. Spadoni, and T. J. Overbye, “Identification of
power system topology from synchrophasor data,” in Proc. Power Syst.
Conf. Expo., Phoenix, AZ, USA, Mar. 2011.

[25] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric
Power Systems: Forecasting, Scheduling, and Risk Management.
New York: Wiley-IEEE Press, 2002.

[26] “The smart grid: An introduction,” 2008, U.S. Department of Energy
[Online]. Available: http://www.oe.energy.gov/SmartGridIntroduc-
tion.htm

[27] W. Wulf, “Great achievements and grand challenges,” The Brattle
Group, Freeman, Sullivan and Co., and Global Energy Partners, LLC,
Tech. Rep. 3/4, Fall 2010 [Online]. Available: http://www.great-
achievements.org/

[28] X. M. Yuan and J. Yang, “Sparse and low-rank matrix decomposition
via alternating direction methods,” Pac. J. Optim., 2012, to be pub-
lished.

[29] Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma, “Stable principal
component pursuit,” in Proc. Int. Symp. Inf. Theory, Austin, TX, USA,
Jun. 2010, pp. 1518–1522.

Gonzalo Mateos (M’12) received his B.Sc. degree
in electrical engineering from Universidad de la
República (UdelaR), Montevideo, Uruguay, in
2005 and the M.Sc. and Ph.D. degrees in electrical
and computer engineering from the University of
Minnesota, Minneapolis, MN, USA, in 2009 and
2011.
Since 2012, he has been a Postdoctoral Research

Associate with the Department of Electrical and
Computer Engineering and the Digital Technology
Center, University of Minnesota. Since 2003, he is

an Assistant with the Department of Electrical Engineering, UdelaR. From
2004 to 2006, he worked as a Systems Engineer at Asea Brown Boveri (ABB),
Uruguay. His research interests lie in the areas of communication theory, signal
processing, and networking. His current research focuses on distributed signal
processing, sparse linear regression, and statistical learning for social data
analysis and network health monitoring.

Georgios B. Giannakis (F’97) received his Diploma
in electrical engineering from the National Technical
University of Athens, Greece, 1981. From 1982 to
1986 he was with the University of Southern Cali-
fornia (USC), where he received his M.Sc. in elec-
trical engineering, 1983,M.Sc. inmathematics, 1986,
and Ph.D. in electrical engineering, 1986. Since 1999
he has been a professor with the University of Min-
nesota, Minneapolis, MN, USA, where he now holds
an ADC Chair in Wireless Telecommunications in
the ECE Department, and serves as director of the

Digital Technology Center.
His general interests span the areas of communications, networking and sta-

tistical signal processing-subjects on which he has published more than 350
journal papers, 590 conference papers, 20 book chapters, two edited books and
two research monographs (h-index 105). Current research focuses on sparsity in
signals and systems, wireless cognitive radios, mobile ad hoc networks, renew-
able energy, power grid, gene-regulatory, and social networks. He is the (co-)
inventor of 21 patents issued, and the (co-) recipient of 8 best paper awards from
the IEEE Signal Processing (SP) and Communications Societies, including the
G. Marconi Prize Paper Award in Wireless Communications. He also received
Technical Achievement Awards from the SP Society (2000), from EURASIP
(2005), a Young Faculty Teaching Award, and the G. W. Taylor Award for
Distinguished Research from the University of Minnesota. He is a Fellow of
EURASIP, and has served the IEEE in a number of posts, including that of a
Distinguished Lecturer for the IEEE-SP Society.


