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Abstract—This letter deals with noncooperative localization of a
single target using censored binary observations acquired by spa-
tially distributed sensors. An ideal, noise-free setting is considered
whereby each sensor can perfectly detect if the target is in its close
proximity or not. Only those detecting sensors communicate their
decisions and locations to a fusion center (FC), which subsequently
forms the desired location estimator based on censored observa-
tions. Because a maximum-likelihood estimator (MLE) does not
exist in this setting, current approaches have relied on heuris-
tic, centrality-based geometric estimators such as the center of
a minimum enclosing circle (CMEC). A smooth surrogate to the
likelihood function is proposed here, whose maximizer is shown to
approach the CMEC asymptotically as the likelihood approxima-
tion error vanishes. This provides rigorous analytical justification
as to why the CMEC estimator outperforms other heuristics for
this problem, as empirically observed in prior studies. Since the
Cramér-Rao Bound does not exist either, an upshot of the results
in this letter is that the CMEC performance can be adopted as
a benchmark in this ideal setting and also for comparison with
other more pragmatic binary localization methods in the presence
of uncertainty.

Index Terms—Centrality estimators, ideal binary detectors,
noncooperative localization, performance analysis.

I. INTRODUCTION

L OCALIZATION of a transmitter using distributed wire-
less sensors is a fundamental signal processing task that

has received significant attention, see e.g., [1]–[3]. Typically,
sensor observations either comprise measurements of angle of
arrival (AoA) [4], [5], time difference of arrival (TDoA) [6],
or received signal strength (RSS) [7]–[10]. The first two alter-
natives require sophisticated sensors, therefore not adhering to
the stringent energy and complexity constraints imposed by
wireless sensor networks (WSNs) [7], [11]. Binary observa-
tions based on thresholded RSS measurements are often pre-
ferred, because their communication to a fusion center (FC) is
bandwidth efficient [3], [11]–[17]. A noncooperative scenario
is considered here, where the target does not assist the FC
with the localization process. Noteworthy application domains
include primary user identification in cognitive radio networks
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[12], spectrum sensing [18], spectrum cartography [19], and
localization of jammers in the battlefield [20].

In this WSN context, consider an ideal, noise-free setting
described in Section II, whereby each sensor can perfectly
detect if the target is in its close proximity or not, see, e.g.,
[21] for target tracking. These binary indicators are then
communicated to a FC tasked with forming an estimator of
the target’s location [11]–[15]. Only those sensors detecting
proximity to the target will communicate their decisions
and locations to the FC [12], [13], [22]. This is motivated
by savings in communication and processing cost, although
part of the information might be lost as a result of such
censoring [23]. This ideal scenario can be approximated in
practice when sensors mitigate noise by, e.g., averaging the
RSS measurements over a sufficiently long time period [15].
Moreover, study of this setting can shed valuable insights
on the fundamental performance limits attainable by WSN
localization algorithms based on censored observations in the
presence of uncertainty such as noise and Rayleigh fading.

Interestingly, it is shown in Section III that the likelihood
of the censored observations reduces to an indicator function
over a convex region. Hence, a maximum-likelihood estimator
(MLE) of the target location cannot be defined because there is
no unique maximizer. For this reason, most existing approaches
have cast the localization problem in this censored setting as a
centrality problem, proposing heuristic estimators and compar-
ing their performance [12], [13]. When the propagation model
or transmission power are known, well-defined estimators have
been proposed in [3], [21]. In lieu of such knowledge, empirical
studies in [12] and [13] suggest that the center of a minimum
enclosing circle (CMEC) outperforms other heuristic estimators
for this problem. However, since theoretical analysis of CMEC
performance is so far lacking, there is no formal explanation as
to why it outperforms other competing alternatives.

Toward addressing this issue, a smooth surrogate to the orig-
inal discontinuous likelihood function is proposed here, whose
maximizer is shown to approach the CMEC asymptotically as
the likelihood approximation error vanishes (Section IV). This
in addition to maximum likelihood (ML) being an efficient
estimator (asymptotically in the number of sensors) provides
rigorous analytical justification as to why the CMEC estimator
outperforms other heuristics for this problem, as empirically
observed in [12] and [13]. A parametric family of near-optimal
convex estimators is obtained as a byproduct, which approaches
the CMEC as the parameter goes to infinity. Since the Cramér–
Rao bound does not exist either, an upshot of the results in this
letter is that the CMEC performance can be used as a bench-
mark in this ideal setting, and also for comparison with other
more pragmatic binary localization methods in the presence of
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uncertainty. Smoothing of the likelihood function defined over
a grid of potential target locations has been studied in [24].
For simplicity in exposition the discussion henceforth focuses
on two-dimensional Euclidean space, although the proofs and
deductions extend to R

3 by considering minimum enclosing
ball-based estimators instead of the CMEC. Numerical tests
in Section V corroborate the analytical findings of this letter,
while concluding remarks are given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a noncooperative target located in st ∈ R
2 that

transmits power isotropically in two-dimensional Euclidean
space. Suppose that N wireless sensors are scattered uniformly
at random over a region A of area A := |A|, with density ρ sen-
sors per unit area so that N = �ρA�. Sensor i, say, is located at
position si ∈ R

2, and compares the received signal power from
the target with a prescribed detection threshold τ . This way sen-
sor i can make a binary decision di ∈ {0, 1} about the presence
(di = 1) or absence (di = 0) of the target in its vicinity. An
ideal scenario is considered here, where sensors are assumed
capable of noise-free target detection in the absence of Rayleigh
fading. Assuming an isotropic pathloss model, the local detec-
tion problems boil down to whether sensors are located within
a detecting radius R from the target or not. The value of R
naturally depends on the pathloss model and threshold value
τ , both assumed fixed and given. This ideal scenario can be
approximated in practice by averaging the received power over
a sufficiently long period of time before comparing it with τ .

Only those sensors that detect the target is present (i.e.,
di = 1) will communicate their own location and decision to
the FC, while the remaining ones transmit nothing to save
energy. Given these censored data, the goal is to localize the
target and to this end the FC forms a judicious estimate of
st. Under the adopted noncooperative setting, the transmitted
power and propagation model are unknown to the FC.

III. CENTRALITY-BASED ESTIMATORS

In this section, we briefly describe the challenges facing
a likelihood-based approach to localization in the setting of
Section II, and outline the heuristic centrality-based geometric
estimators that have been proposed in lieu of a MLE.

Recall that the per-sensor detection problems translate to
whether sensors are located within distance R from the target or
not. Thus, treating st and R as unknown parameters, the degen-
erate probability of detection of the ith sensor conditioned on
its location si is

P (di = 1 | si; st, R ) = I {‖si − st‖2 ≤ R} (1)

where I {X} is the indicator function of the event X . Because
sensors are deployed uniformly at random, the probability den-
sity function (pdf) that a detecting sensor is located at si
becomes

f(si|di = 1; st, R) =
1

πR2
I {‖si − st‖2 ≤ R} . (2)

Without loss of generality suppose that the indices of the detect-
ing sensors are M = {1, . . . ,M}, and let S = {si : i ∈ M}

Fig. 1. Shown in red is the smallest enclosing circle of those detecting sensors,
which are depicted in yellow. The CMEC (shown with a ×) is an estimate of
the location of the target indicated by a square.

represent the collection of location vectors of those sensors
reporting observations to the FC (whose decisions are all one).
Then, the likelihood function of a given observation S is

L(S; st, R) =

(
1

πR2

)M ∏
i∈M

I {‖si − st‖2 ≤ R} . (3)

Note that for a specific observation the number of detecting
sensors M , is a known parameter. Moreover, upon defining the
possible target region as [25], [26]

T (S) =
⋂
i∈M

BR(si)

where BR(si) denotes the disk of radius R centered at si, it
follows that the likelihood function can be rewritten as

L(S; st, R) =

(
1

πR2

)M

I {st ∈ T (S)} . (4)

Thus, the binary-valued L(S; st, R) is maximized for all
st ∈ T (S), while it is zero when st /∈ T (S). All in all, the
conclusion is that a MLE cannot be defined for this model.

In lieu of an MLE, heuristic centrality-based estimators were
introduced in [12], [13], and [27], and are outlined here for
completeness. For instance, the mean estimator simply adopts
the centroid or barycenter of the detecting sensors [27], while
the center of minimum enclosing rectangle (CMER) is the cen-
ter of the smallest rectangle containing the sensors in M [12].
As CMER is dependent on the choice of axis, the Steiner center
is a variant that averages the CMER over a π/2 axis rotation
to remove that dependency [12], [28]. Finally, the center of
the minimum enclosing circle (CMEC) is the solution to the
following optimization problem [12], [13]:

ŝCMEC = argmin
s

(
max
i∈M

‖si − s‖2
)

(5)

and several algorithms exist in the literature to find ŝCMEC [29],
see also Fig. 1. Empirical studies in [12] and [13] suggest that
the CMEC outperforms other aforementioned heuristic esti-
mators for this problem. However, there is so far no formal
explanation as to why this is the case, and we seek to provide
an answer in the sequel.

IV. LIKELIHOOD FUNCTION SMOOTHING

In this section, we propose a smooth surrogate to the original
discontinuous likelihood L(S; st, R), whose well-defined max-
imizer approaches the CMEC asymptotically as the likelihood
approximation error vanishes (cf., Proposition 1). This result
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Fig. 2. Sensor detection probabilities versus distance from the target for R = 1
for the ideal [cf., (1)] and nonideal [cf., (6)] scenarios. As λ → ∞, the smooth
approximation approaches (1).

formally justifies why the CMEC outperforms other centrality-
based estimators in this ideal target-localization setting.

A. Smooth Detection Probability Approximation

Consider now an auxiliary nonideal scenario where the prob-
ability of target detection Pλ (di = 1|si; st, R) 1) is modeled as
a continuous function of the sensor distance from the target and
2) is parameterized by a constant λ that controls the pointwise
approximation error to P (di = 1|si; st, R) in the ideal setting
[cf., (1)]. Interestingly, it is shown that the approximation is
tight as λ → ∞.

Specifically, suppose the probability of detection for the ith
sensor is given by the following continuous function [cf., (1)]:

Pλ (di = 1|si; st, R) = e−
‖si−st‖λ2

Rλ . (6)

Fig. 2 shows the plot of Pλ (di = 1|si; st, R) versus distance
of the ith sensor to the target, for several increasing λ values
along with P (di = 1|si; st, R) in (1). As the figure suggests,
one can show that the approximation error vanishes as λ → ∞,
namely

lim
λ→∞

Pλ (di = 1|si; st, R) = P (di = 1|si; st, R) . (7)

Recalling that sensors are randomly deployed over a region
A, the pdf that a detecting sensor is located at si becomes

fλ(si|di = 1; st, R) =
fλ(si, di = 1; st, R)

fλ(di = 1; st, R)

=
fλ(di=1|si; st, R)f(si)∫

A fλ(di=1|si; st, R)f(si)dsi
=

1
Afλ(di=1|si; st, R)

1
A

∫
A fλ(di=1|si; st, R)dsi

(8)

where f(si) = 1/A is the uniform pdf over A. To simplify (8),
suppose the region is arbitrarily large (A → ∞) to obtain

fλ(si | di = 1; st, R ) =
e−

‖si−st‖λ2
Rλ∫∞

0

∫ 2π

0
re−

rλ

Rλ dθdr
. (9)

The normalizing constant in the denominator can be readily
calculated with a change of variable x = rλ

Rλ to yield∫ ∞

0

∫ 2π

0

re−
rλ

Rλ dθdr =
2πR2

λ
Γ

(
2

λ

)
(10)

where the gamma function is Γ(t) =
∫∞
0

xt−1e−xdx. Thus, the
desired smooth pdf approximation to (2) takes the form

fλ(si|di = 1; st, R) =
λ

2πR2Γ( 2λ )
e−

|si−st|λ
Rλ . (11)

Using (7) while noting that 2Γ( 2
λ )

λ = Γ( 2λ + 1) and Γ(1) = 1,
it follows that the approximation is asymptotically tight

lim
λ→∞

fλ(si | di = 1; st, R ) = f(si | di = 1; st, R ). (12)

Accordingly, one can for instance show that as λ → ∞, the
probability that a detecting sensor is located outside the detec-
tion region BR(st) (in the ideal scenario) vanishes.

The main usefulness of (11) is in that it allows to construct
smooth counterparts of the likelihood function L(S; st, R) in
(4), which offer well-defined MLEs as discussed next.

B. Asymptotic MLE Meets CMEC

Like in Section III, suppose that the indices of the detect-
ing sensors for the nonideal scenario are Mλ = {1, . . . ,Mλ}.
Note that from the closing arguments in the previous section,
Mλ → M as λ → ∞. In the censoring context of interest here
whereby only those sensors in Mλ communicate their location
to the FC, the smooth likelihood function for a given vector of
observations Sλ = {si : i ∈ Mλ} is given by

Lλ(Sλ; st, R) =
∏

i∈Mλ

λ

2πR2Γ( 2λ )
e−

‖si−st‖λ2
Rλ .

The log-likelihood �(Sλ; st, R) := logLλ(Sλ; st, R) is

�(Sλ; st, R) = Mλ ln
λ

2πR2Γ( 2λ )
−

∑
i∈Mλ

‖si − st‖λ2
Rλ

= Mλ ln
λ

2πΓ( 2λ )
− 2Mλ lnR−

∑
i∈Mλ

‖si − st‖λ2
Rλ

(13)

and accordingly the MLEs of the target location st and the
detection range R are

{ŝtML,λ, R̂ML,λ} = argmin
st,R

(
2Mλ lnR+

∑
i∈Mλ

‖si − st‖λ2
Rλ

)
.

(14)

It is worth noting that in (14) the minimization with respect
to st is independent of R. Thus, the joint optimization problem
(14) decouples into separable minimization tasks

ŝtML,λ = argmin
st

∑
i∈Mλ

‖si − st‖λ2 (15)

R̂ML,λ = argmin
R

(
2Mλ lnR+

∑
i∈Mλ

‖si − ŝtML,λ‖λ2
Rλ

)
.

(16)

Moreover, (15) is a convex optimization problem offer-
ing a computationally appealing family of near-optimal
target-location estimators parameterized by λ. Interestingly,
as asserted in the following proposition ŝtML,λ → ŝCMEC as
λ → ∞:
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Proposition 1: Consider the MLEs in (14). Then, as λ → ∞
the following hold:

1) The target location MLE approaches the CMEC in
(5), i.e.,

lim
λ→∞

ŝtML,λ = ŝCMEC.

2) The detection radius MLE approaches the radius of the
minimum enclosing circle of the detecting sensors in
M, i.e.,

lim
λ→∞

R̂ML,λ = max
i∈M

‖si − ŝCMEC‖2.

Proof: To prove 1), introduce the vector ρ ∈ R
|Mλ|
+ with

ith entry ρi = ‖si − st‖2, and notice that (15) can be written as

ŝtML,λ = argmin
st

‖ρ‖λλ = argmin
st

‖ρ‖λ

where ‖ρ‖λ is the norm λ of ρ and the second equality follows
because (·)λ is monotonically increasing in R+. Now, as λ →
∞ then ‖ρ‖λ → ‖ρ‖∞ := maxi∈M ρi implying that

lim
λ→∞

ŝtML,λ = argmin
s

(
max
i∈M

‖si − s‖2
)

= ŝCMEC.

To obtain R̂ML,λ, differentiate the cost in (16) with respect to R
and equate the result to zero, to obtain the equation

2Mλ

R̂ML,λ

− λ

R̂λ+1
ML,λ

∑
i∈Mλ

‖si − ŝtML,λ‖λ2 = 0

with root

R̂ML,λ =
λ

√
λ
(∑

i∈Mλ
‖si − ŝtML,λ‖λ2

)
2Mλ

. (17)

Taking limits in (17) as λ → ∞ and using 1) one obtains

lim
λ→∞

R̂ML,λ = lim
λ→∞

λ

√
λ

2M
×
(
max
i∈M

‖si − ŝCMEC‖2
)

=1×
(
max
i∈M

‖si − ŝCMEC‖2
)

(18)

since limλ→∞ λ1/λ = 1, which establishes 2). �
Proposition 1 asserts that as λ → ∞ (arbitrarily close to the

ideal setting in Section III), the MLE maximizing the smooth
likelihood function Lλ(Sλ; st, R) approaches the CMEC of the
detecting sensors.

V. NUMERICAL TESTS

To support the analytical result of Section IV-B, a set of
corroborating simulations are carried out here. The target is
assumed to be located at the origin and a number of sensors
are distributed uniformly at random with density ρ over the
square A = [−50, 50]× [−50, 50]. For each λ and R, sensors
make decisions on the presence of the target based on the prob-
abilistic model in Section IV-A, and the corresponding set Mλ

is determined. The MLEs are then calculated by solving the
pair of problems (15) and (16). Moreover, sensor decisions in
the ideal setting of Section III are also determined for each
sensor-placement realization, and the CMEC of these detecting
sensors is compared with the MLEs for four different values of
λ. To compute the CMEC, a built in MATLAB function based

Fig. 3. MSE versus detection radius for fixed ρ = 2.3.

Fig. 4. MSE versus sensor density for fixed R = 1.77.

on the Megiddo algorithm is adopted [30]. Results are averaged
over 600 independent trials.

The simulations are run for different values of the parame-
ters ρ and R. Fig. 3 depicts the mean-square estimation error
(MSE) of the obtained MLEs versus R, along with the MSE
of the CMEC and other centrality-based estimators for fixed
density ρ = 2.3. As R increases, all MSE values approach zero
except for the mean estimator and the MLE with small λ = 2.
Most importantly, notice how the MLEs for large λ attain the
MSE of the CMEC, as asserted by Proposition 1. Fig. 4 shows
a similar comparison but now as a function of the density ρ,
when the detection radius is fixed to R = 1.77. Once more, it is
apparent that the MSE performance of the MLEs based on like-
lihood function smoothing follows closely that of the CMEC,
for sufficiently large λ.

VI. CONCLUSION

We showed that the CMEC estimator obtained using
censored WSN observations in an ideal noise-free target
localization setting, is equivalent to a limiting MLE that
maximizes a smooth, approximate likelihood function. This
result addresses the lingering question of why the CMEC out-
performs most heuristic centrality-based estimators proposed in
lieu of a well-defined MLE. As a useful byproduct, the CMEC
MSE can be used to benchmark the performance of all location
estimators in the presence of uncertainty, such as when additive
receiver noise or fading are present. It would also be interesting
to investigate alternative approximating functions [cf., (6)], and
study their respective rates of convergence to the CMEC.
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