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Distributed Adaptive Estimation and Tracking using

Ad Hoc Wireless Sensor Networks

Abstract:
Wireless sensor networks (WSNs), whereby large numbers of inexpensive sensors with

constrained resources cooperate to achieve a common goal, constitute a promising technol-
ogy for applications as diverse and crucial as environmental monitoring, healthcare, fault
diagnosis in process industry, protection of critical infrastructure including the smart grid,
and surveillance systems for homeland security. The advent of WSNs has created renewed
interest in the field of distributed computing, calling for collaborative solutions that enable
low-cost estimation of stationary signals as well as reduced-complexity tracking of nonsta-
tionary processes. In this thesis, distributed estimation and tracking algorithms using ad
hoc WSNs are developed, and analyzed in terms of their stability and performance.

Unique features characterizing the operation of WSNs dictate that often times sensors
need to perform estimation in a constantly changing environment, and lacking a data model
for the underlying processes of interest. This motivates the distributed counterparts to the
least mean-square (LMS) and recursive least-squares (RLS) algorithms developed in this
thesis, which are based on in-network processing of distributed sensor observations. An
iterative process takes place towards consenting on the desired global estimators: sensors
perform simple local tasks to refine their current estimates, and exchange messages with
one-hop neighbors over noisy communication channels. New sensor data is incorporated in
real time to enrich the estimation process and learn the unknown statistics ‘on-the-fly’.

Jointly, the novel distributed (D-)LMS and D-RLS algorithms offer the flexibility to
manipulate the complexity versus performance tradeoff. Requiring identical communication
resources, D-RLS markedly outperforms D-LMS in terms of convergence rate and steady-
state error, at the price of increased computational complexity. Mean-square error (MSE)
performance analysis is conducted to provide the means of selecting the best such tradeoff.
Under simplifying assumptions, closed-form expressions are derived for the networkwide and
sensor-level performance figures of merit in steady-state. Mean and MSE-sense stability of
both algorithms are also established, and yield sufficient conditions ensuring that a steady-
state is reached.
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Chapter 1

Wireless Sensor Networks

Driven by a wide span of foreseen applications, decentralized estimation of signals based on

observations acquired by spatially distributed wireless sensors has attracted much attention

recently. A wireless sensor is a device capable of sensing the physical environment, perform-

ing signal processing tasks and communicating information using a wireless transceiver. A

large collection of these sensors is referred to as a wireless sensor network (WSN). In order

to make large scale deployments economically feasible, sensors are supposed to be inexpen-

sive devices with constrained resources, limited computational, storage and communication

capabilities. Yet, the fundamental premise that many simple entities working in synergy

can still achieve greater goals is the key behind the popularity of WSNs. In other words,

a unique feature of WSNs is the cooperative effort of sensor nodes. It is the addition of

wireless communication abilities to the sensors that enables such cooperation, hence leading

to a whole new dimension of possibilities with regards to the environmental, domestic, and

military application areas.

Emergent WSN-based applications include distributed field monitoring, localization,

surveillance, power spectrum estimation and target tracking just to name a few. These

tasks typically require estimating parameters of interest such as temperature, concentration

of certain pollutants in the air, and position of a target. Surveillance applications could

also include the detection of critical events, e.g., the start of a fire in a warehouse to trigger

a remote alarm. Even though it is the distributed structure of a WSN which provides the
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means of tackling the aforementioned applications, this is simply not enough to achieve

the ultimate goals of performing distributed estimation and detection. Specifically, it has

been recognized that sensors should be empowered with appropriate signal processing tools,

that explicitly take into account the distributed nature of the sensed data and operational

constraints of the WSNs. In this dissertation, novel distributed estimation algorithms are

developed and analyzed in terms of their stability and performance. They enable low cost

estimation of stationary signals as well as reduced-complexity tracking of nonstationary

processes.

1.1 Motivation and Context

Formidable challenges arise as emergent WSN-based estimation applications demand

promptly available, yet accurate local estimates under increasingly restrictive and unpre-

dictable operational constraints. Such unique WSN features dictate that often times sensors

need to perform estimation in a constantly changing environment, without having available

a (statistical) model for the underlying processes of interest. This has motivated the devel-

opment of distributed adaptive estimation schemes, generalizing the notion of adaptive fil-

tering to a setup involving networked sensing/processing devices. In this thesis, distributed

counterparts to the least mean-square (LMS) and recursive least-squares (RLS) algorithms

are developed for decentralized estimation and tracking in WSNs. Different from schemes

that operate in a batch centralized mode, the novel D-LMS and D-RLS algorithms allow

for online incorporation and processing of sensor data. This enables learning the unknown

process statistics ‘on-the-fly’, or simply tracking them in the typical case of nonstationary

WSN environments.

1.1.1 Two Prevailing WSN Topologies

Two dominant WSN topologies have prevailed as the most suitable for distributed esti-

mation and detection tasks. They can be classified based on the presence or absence of a

central processing unit or fusion center (FC).
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Figure 1.1: (left) An FC-based WSN where many sensors transmit their information to a

fusion center via wireless links; (right) An ad hoc topology that is devoid of hierarchies.

When an FC is present, the WSN becomes a two-level hierarchical entity; see Fig 1.1

(left). On the one hand, all deployed sensors are in charge of sensing the environment and

then transmitting their acquired data to the central processing unit. It is possible that

simple sensor-level processing – such as compression and/or quantization – is performed on

the acquired raw data before transmission. Communications take place over the unreliable

wireless medium; hence, they are challenged by the effects of shadowing, multipath fading

and additive receiver noise. On the other hand, the FC serves the purpose of a data sink

collecting the sensor information. Most importantly, it is responsible of performing all

necessary signal processing tasks in order to achieve the network’s operational objectives.

Depending on the application, it may be the case that the FC feeds back the global estimate

to the sensors so that they can take specific action. In contrast to the resource-constrained

sensors, it is common to assume that an FC is a device with rich processing capabilities and

memory capacity.

In the absence of an FC, the WSNs are termed ad hoc and are devoid of hierarchies;
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see Fig 1.1 (right). It is the network itself, i.e., the collection of sensors, which is respon-

sible for processing the information acquired by the sensors. The so-termed in-network

processing introduces additional algorithmic challenges, as the information is not centrally

available but scattered across a possibly large geographical area under surveillance. Decen-

tralized estimation using ad hoc WSNs is based on successive refinements of local estimates

maintained at individual sensors. In a nutshell, each iteration of this broad class of fully

distributed algorithms comprises: (i) a communication step where sensors exchange in-

formation with their (nearby) neighbors through the shared wireless medium; and (ii) an

update step where each sensor uses this information to refine its local estimate. Absence

of hierarchy and the purely decentralized nature of in-network processing dictate that local

sensor estimates should eventually consent to a global estimate, while fully exploiting spa-

tial correlations to maximize estimation performance. In most cases, consensus can only

be attained asymptotically in time. However, a finite number of iterations will suffice to

obtain local sensor estimates that are sufficiently accurate for all practical purposes. All

in all, different from FC-based topologies sensors actively participate in both the sensing

and signal processing tasks, and the network behaves as a self-organized entity in lieu of a

centralized controller.

WSN topologies that include an FC usually encounter two limitations. The first one

pertains to robustness and WSN survivability, as the FC becomes a critical isolated point of

failure. In the eventuality of FC malfunction, the whole WSN operation is interrupted. Sec-

ondly, the WSN lifetime does not scale gracefully with the coverage area. Specifically, FC-

based operation may challenge communications as the WSN scales over a larger geographic

area, since far away sensors will require higher power to reach the FC, thus diminishing their

battery lifetime. This problem could be alleviated to some extent by requiring the sensors to

relay their data via multi-hop routing, since communications take place between neighbors

reachable with reduced power. Nevertheless, the important issue regarding fault tolerance

remains. For these reasons, the present thesis deals with distributed estimation algorithms

for ad hoc WSNs. In the case of sensor failures, ad hoc WSNs will incur performance loss

but still remain operational.
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It is usually the case that FC-based topologies benchmark the performance among the

class of decentralized estimators that can be implemented using WSNs. This is because

all network-wide information is centrally available for processing in a ‘single-shot’ fashion,

whereas in ad hoc WSNs sensor data percolate via single-hop exchanges among neighboring

sensors. There is an inherent delay till a given sensor can make use of all the data collected

by the WSN. Hence, intermediate local sensor estimates will generally be of lower quality

when compared to those formed by the FC. An important goal of this thesis is to develop

distributed estimation algorithms for ad hoc WSNs with quantifiable, e.g., mean-square

error (MSE) performance; that comes as close as possible to the equivalent solution that

involves an FC. Often times throughout the course of the dissertation, the performance of the

novel distributed algorithms will be gauged against the appropriate FC-based benchmarking

schemes. With a slight abuse of notation, the latter will be referred to as the ‘centralized’

counterpart since all sensor data – though distributed in nature – is centrally available for

processing.

Resource allocation, medium access control and general communication protocols for

in-network processing schemes are interesting problems in their own right, but go beyond

the scope of the present thesis. Some high-level comments on a feasible protocol to support

the proposed algorithms can be found in Remark 2.5 of Chapter 2.

1.1.2 A Motivating Application

A WSN application where the need for linear regression arises, is spectrum estimation for

the purpose of environmental monitoring. Suppose sensors comprising a WSN deployed over

some area of interest observe a narrowband source to determine its spectral peaks. This

information can assist them to disclose hidden periodicities due to a physical phenomenon

controlled by e.g., a natural heat or seismic source. The source of interest propagates

through multi-path channels and is contaminated with additive noise when sensed at the

sensors. The unknown source-sensor channels may introduce deep fades at the frequency

band occupied by the source. Thus, having each sensor operating on its own may lead to

faulty assessments. The available spatial diversity to effect improved spectral estimates,



1.1 Motivation and Context 6

can only be achieved via sensor collaboration as in the distributed estimation algorithms

presented in this dissertation.

Let θ(t) denote the evolution of the source signal in time, and suppose that θ(t) can be

modeled as an autoregressive (AR) process [55, p. 106]

θ(t) = −
p∑

τ=1

ατθ(t− τ) + w(t)

where p is the order of the AR process, while {ατ} are the AR coefficients and w(t) denotes

white noise. The source propagates to sensor j via a channel modeled as an FIR filter

Cj(z) =
∑Lj−1

l=0 cj,lz
−l, of unknown order Lj and tap coefficients {cj,l} and is contaminated

with additive sensing noise ε̄j(t) to yield the observation

xj(t) =
Lj−1∑

l=0

cj,lθ(t− l) + ε̄j(t).

Since xj(t) is an autoregressive moving average (ARMA) process, it can be written as [55]

xj(t) = −
p∑

τ=1

ατxj(t− τ) +
m∑

τ ′=1

βτ ′ η̃j(t− τ ′), j ∈ J (1.1)

where the MA coefficients {βτ ′} and the variance of the white noise process η̃j(t) depend

on {cj,l}, {ατ} and the variance of the noise terms w(t) and ε̄j(t). For the purpose of

determining spectral peaks, the MA term in (1.1) can be treated as observation noise,

i.e., εj(t) :=
∑m

τ ′=1 βτ ′ η̃j(t − τ ′). This is very important since sensors do not have to

know the source-sensor channel coefficients as well as the noise variances. The spectral

content of the source can be estimated provided sensors estimate the coefficients {ατ}. Let

s0 := [α1 . . . αp]T be the unknown parameter of interest. From (1.1) the regression vectors

are given as hj(t) = [−xj(t−1) . . .−xj(t−p)]T , and can be acquired directly from the sensor

data {xj(t)} without the need of training/estimation. Distributed spectrum estimation has

been considered also in [24] utilizing generalized projection schemes. Assumptions in [24]

include ideal any-to-any communications and known source-sensor channels.

As a preview of the results in this thesis, the performance of the distributed algorithms

described in the forthcoming chapters is illustrated next, when applied to the aforemen-

tioned power spectrum estimation task. For the numerical experiments, an ad hoc WSN
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Figure 1.2: D-LMS in a power spectrum estimation task. The true narrowband spectra

is compared to the estimated PSD, obtained after the WSN runs the D-LMS and (non-

cooperative) L-LMS algorithms. The reconstruction results correspond to a sensor whose

multipath channel from the source introduces a null at ω = π/2 = 1.57.

with J = 80 sensors is simulated as a realization of a random geometric graph; see, e.g., [20].

The source-sensor channels corresponding to a few of the sensors are set so that they have a

null at the frequency where the AR source has a peak, namely at ω = π/2. Fig. 1.2 depicts

the actual power spectral density (PSD) of the source as well as the estimated PSDs for

one of the sensors affected by a bad channel. To form the desired estimates in a distributed

fashion, the WSN runs local (L-) LMS and the D-LMS algorithm in Chapter 2. The L-LMS

is a noncooperative scheme, whereby each sensor, say the jth, independently runs an LMS

adaptive filter fed by its local data {xj(t),hj(t)} only. In the case of D-LMS, the experi-

ment is performed under ideal and noisy inter-sensor links. Clearly, even in the presence of

communication noise D-LMS exploits the spatial diversity available and allows all sensors to

estimate accurately the actual spectral peak, whereas L-LMS leads the problematic sensors

to misleading estimates.

For the same setup, Fig. 1.3 shows the global learning curve evolution MSE(t) =

J−1
∑J

j=1 ‖xj(t) − hT
j (t)sj(t − 1)‖2, where sj(t) denotes sensor j’s estimate of s0 at time
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Figure 1.3: Global MSE evolution (network learning curve) for the D-LMS and D-RLS

algorithms in a power spectrum estimation task.

instant t. D-LMS and the D-RLS algorithm in Chapter 4 are compared under ideal com-

munication links. It is apparent that D-RLS achieves better performance both in terms of

convergence rate and steady state MSE. As discussed in Chapter 4, this comes at the price

of increased computational complexity per sensor, while the communication costs incurred

are identical.

1.1.3 The Thesis in Context

The advent of WSNs has created renewed interest in the field of distributed computing, call-

ing for collaborative solutions that enable low-cost estimation of stationary signals as well

as reduced-complexity tracking of nonstationary processes. Different from WSN topologies

that include an FC, ad hoc ones are devoid of hierarchies and rely on in-network processing

to effect agreement among sensors on the estimate of interest. A great body of literature

has been amassed in recent years, building-up the field of consensus-based distributed signal

processing. The uninitiated reader is referred to the tutorial in [36] for general results and

a vast list of related works. Achieving consensus across agents was considered in vehicle

coordination [23], as well as in distributed sample-averaging of sensor observations [37,62].
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Recently, projecting into a linear subspace (a problem of which sample-averaging is a special

case) has been cast in terms of linear distributed iterations [4], and utilized for cooperative

spectrum sensing in wireless cognitive radio networks [3]. A general distributed estima-

tion framework was put forth in [45, 49], which does not require the desired estimator to

be expressible in closed form in terms of (weighted) sample averages. In the aforemen-

tioned schemes sensors acquire data only once and then locally exchange messages to reach

consensus.

Extensions for distributed tracking of the sample-average of time-varying signals can be

found in e.g., [38,53]. Sequential in-time incorporation of sensor observations to enrich the

estimation process was considered in [63], in the context of linear least-squares parameter

estimation. The space-time diffusion algorithm of [63] requires knowledge of the data model

and costly exchanges of matrices among neighbors, while the requirement for diminishing

step-sizes renders it incapable of tracking time-varying signals. The fundamental problem of

distributed state estimation for dynamical systems using ad hoc WSNs has also attracted a

lot of attention recently. Distributed Kalman filtering and smoothing approaches have been

reported in, e.g., [9, 11, 35, 45, 65], but they are applicable when the state and observation

models are known.

In many applications however, sensors need to perform estimation in a constantly chang-

ing environment without having available a (statistical) model for the underlying processes

of interest. This motivates the development of distributed adaptive estimation schemes, the

subject dealt with in the present thesis. The first such approach introduced a sequential

scheme, whereby information circulation through a topological cycle in conjunction with

LMS-type adaptive filtering per sensor allows the network to account for time variations

in the signal statistics [27]. For more general estimators, a similar stochastic incremental

gradient descent algorithm was developed in [42], which subsumes [27] as a special case.

The incremental LMS schemes in [27, 42] may outperform a centralized implementation of

LMS in terms of convergence rate and steady-state error, while entailing a relatively low

communication overhead. These features make them appealing, especially for small-size

WSNs. However, such schemes inherently require a Hamiltonian cycle through which signal
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estimates are sequentially circulated from sensor to sensor. In the eventuality of a sensor

failure, determination of a new cycle is an NP-hard problem [39], thus challenging the appli-

cability of incremental schemes in medium- to large-size WSNs. Time-critical applications

may encounter additional challenges, since the delay for a local estimate update may be

significant as the network, hence, the cycle size scales.

Without topological constraints and by fully exploiting the available links in the network,

the so-termed (combine-then-adapt) diffusion LMS [28] offers an improved alternative at

the price of increasing communication cost. On a per iteration basis, each sensor forms a

convex combination of the local estimates acquired from its neighborhood, quantity which is

then fed to a local LMS filter to yield the updated estimate. Performance gains result from

interchanging the order of the aforementioned steps; i.e., adapt-then-combine [10], leading

to the diffusion LMS variant originally proposed in [54]. An alternative to reduce steady-

state estimation errors involves diffusing raw sensor observations and regression vectors

per neighborhood [10]. This facilitates the flow of new data across the WSN, but can

degrade performance in the presence of communication noise and essentially doubles the

communication cost. Additional variants of the diffusion LMS algorithm in [28] include the

utilization of hierarchical nodes [12] and adaptive combiners [57]. Tailored to applications

in which fast convergence is at a premium and increased computational burden per sensor

can be afforded, distributed RLS counterparts can be found in [44] and [8].

Several distributed estimation algorithms are rooted on iterative optimization methods,

which capitalize upon the separable structure of the cost defining the desired estimator. The

sample mean estimator was formulated in [41] as an optimization problem, and was solved

in a distributed fashion using a primal dual approach; see, e.g., [7]. Similarly, the incre-

mental schemes in [27,40,42,44] are all based in incremental (sub)gradient methods [6,34].

Even the diffusion LMS algorithm in [28] has been recently shown to have a connection with

incremental strategies, when these are applied to optimize an approximate reformulation of

the LMS cost [10]. Building on the framework introduced in [45,49], the D-LMS and D-RLS

algorithms developed in this thesis are obtained upon recasting the respective decentral-

ized estimation problems as multiple equivalent constrained subproblems. The resulting
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minimization subtasks are shown to be highly parellizable across sensors, when carried out

using the alternating-direction method of multipliers (AD-MoM) [7, 17, 18]. Similar ideas

have been applied in spectrum cartography for cognitive radio networks [5], distributed

demodulation [64] and distributed classification [15]. Much related to the AD-MoM is the

alternating minimization algorithm (AMA) of [59], which is used in Chapter 4 to derive a

reduced complexity D-RLS variant.

Different from [27,42,44], the distributed estimators in this thesis are applicable to gen-

eral ad hoc WSNs that do not necessarily posses a Hamiltonian cycle, and where inter-sensor

communications are challenged by additive noise. The diffusion LMS and RLS algorithms

in [8,10] that exchange raw sensor data, as well as the consensus averaging schemes generate

local estimates with unbounded variance in the presence of communication noise. Diminish-

ing step-sizes have been proposed to suppress such undesirable effects [21,25], limiting their

applicability to stationary environments. The novel D-LMS and D-RLS tracking algorithms

utilize constant step-sizes, yet they remain robust to communication noise.

1.2 Thesis Outline and Contributions

A distributed least mean-square (D-LMS) algorithm is developed in Chapter 2, for ad hoc

WSN based estimation and tracking applications. It offers simplicity and flexibility whilst

solely requiring single-hop communications among sensors. The resultant estimator min-

imizes a pertinent squared-error cost by resorting to: (i) the AD-MoM so as to gain the

desired degree of parallelization; and, (ii) a stochastic approximation iteration to cope with

the time-varying statistics of the process under consideration. Information is efficiently

percolated across the WSN using a subset of ‘bridge’ sensors, which further trade-off com-

munication cost for robustness to sensor failures. The resulting in-network processing per

sensor is interpreted as a local-LMS adaptation rule superimposed to the output of a tun-

able proportional-integral (PI) regulator, which drives the local estimate to consensus as

dictated by a network-wide information enriched reference.

For a linear data model and under mild assumptions aligned with those considered in

the classical (centralized) LMS [43, 51, 52, 60], stability of the novel D-LMS algorithm is
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established to guarantee that local sensor estimation error norms remain bounded most

of the time. Interestingly, this weak stochastic stability result extends to the pragmatic

setup where inter-sensor communications are corrupted by additive noise. In the absence of

observation and communication noise, consensus is achieved almost surely as local estimates

are shown exponentially convergent to the parameter of interest with probability one. Mean-

square error (MSE) performance of D-LMS is also assessed, via an approximation that is

asymptotically exact as the step-size vanishes. Numerical simulations illustrate that D-LMS

outperforms existing alternatives and corroborate the stability and performance analysis

results.

Starting from an alternative reformulation of the LMS cost, an improved version of

the D-LMS algorithm is developed in Chapter 3 which does not rely on the special type

of ‘bridge’ sensors. As a byproduct, this approach results in a fully distributed algorithm

whereby all sensors perform identical tasks, without introducing hierarchies that may require

intricate recovery protocols to cope with sensor failures. When error control codes render

inter-sensor links virtually noise-free, a third variant of D-LMS incurring lower communi-

cation and computational complexity can be developed without sacrificing performance.

An MSE performance analysis of D-LMS tracking is conducted in the presence of a time-

varying parameter vector, which adheres to a first-order autoregressive model. For sensor

observations that are related to the parameter vector of interest via a linear Gaussian model

and after adopting simplifying independence assumptions, exact closed-form expressions are

derived for the global and sensor-level MSE evolution as well as its steady-state values. Mean

and MSE-sense stability of D-LMS are also established. As in the classical (centralized)

LMS algorithm, when tracking slowly time-varying processes there exists an optimum step-

size minimizing the limiting MSE. Interestingly, extensive numerical tests demonstrate that

for small step-sizes the results accurately extend to the pragmatic setting whereby sensors

acquire temporally correlated, not necessarily Gaussian data.

Recursive least-squares (RLS) schemes are of paramount importance for reducing com-

plexity and memory requirements in estimating stationary signals as well as for tracking

nonstationary processes, especially when the state and/or data model are not available
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and fast convergence rates are at a premium. To this end, a fully distributed (D-) RLS

algorithm is developed in Chapter 4 for use by WSNs whereby sensors exchange messages

with one-hop neighbors to consent on the network-wide estimates adaptively. The WSNs

considered here are general in the sense that they do not necessarily possess a Hamiltonian

cycle, while the inter-sensor links are challenged by communication noise. The novel algo-

rithm is obtained after judiciously reformulating the exponentially-weighted least-squares

cost into a separable form, which is then optimized via the AD-MoM. The exponential

weighting effected through a forgetting factor endows D-RLS with tracking capabilities.

This is desirable in a constantly changing environment, within which WSNs are envisioned

to operate. If powerful error control codes are utilized and communication noise is not an

issue, D-RLS is modified to reduce communication overhead when compared to existing

noise-unaware alternatives. Numerical simulations demonstrate that D-RLS outperforms

existing approaches in terms of estimation performance and noise resilience, while it has

the potential of performing efficient tracking.

The second-order D-RLS scheme markedly outperforms the (first-order) stochastic gra-

dient based D-LMS algorithms in Chapters 2 and 3, both in terms of convergence rate and

steady-state estimation error. A price is paid, however, in terms of increased computational

complexity per sensor, while the communication costs incurred are identical. One of the

main goals in this thesis is to introduce several distributed algorithms for in-network adap-

tive estimation using WSNs, with quantifiable MSE performance and affordable complexity.

This, in turn, allows the system designer to select a signal-processing solution according to

the best complexity-performance tradeoff, given the system performance specifications and

the sensor hardware at hand.

The results in this dissertation have been reported in journal and conference publica-

tions [29–32, 46–48]. The D-LMS algorithm with bridge sensors presented in Chapter 2

appeared in [30, 48], while its stability in a stochastic sense was reported in [47]. The fully

distributed D-LMS variant in Chapter 3 as well as its tracking performance analysis ap-

peared in [29, 31]. A bridge sensor based precursor to the D-RLS algorithm is introduced

in [46], whereas the D-RLS algorithm covered in Chapter 4 can be found in [32].
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1.3 Notational conventions

The following notational conventions will be adopted throughout the subsequent chapters.

Bold uppercase letters will denote matrices with ij-th entry [.]ij , whereas bold lowercase let-

ters will stand for column vectors (i-th entry denoted by [.]i). Whenever the context makes

it sufficiently clear, [.]ij will also be used for a matrix to denote block matrix partitioning.

Operators ⊗, ◦, (.)T , (.)†, λmax(.), tr(.), diag(.), bdiag(.), E [.], vec [.] will denote Kronecker

product, Hadamard product, transposition, matrix pseudo-inverse, spectral radius, matrix

trace, diagonal matrix (arguments are scalar diagonal entries), block diagonal matrix (ar-

guments are matrix diagonal entries), expectation, and matrix vectorization, respectively.

For both vector and matrices, ‖.‖ will stand for the 2−norm and |.| for the cardinality of a

set or the magnitude of a scalar. Positive definite matrices will be denoted by M Â 0. The

n × n identity matrix will be represented by In, while 1n will denote the n × 1 vector of

all ones and 1n×m := 1n1T
m. Similar notation will be adopted for vectors (matrices) of all

zeros. The i-th vector in the canonical basis for Rn will be denoted by bn,i, i = 1, . . . , n.
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Chapter 2

Distributed LMS for

Consensus-Based In-Network

Adaptive Processing

2.1 Introduction

In the present chapter we develop a consensus-based distributed (D-)LMS algorithm for

in-network adaptive processing using ad hoc WSNs with noisy links. Its simplicity matches

well the scarcity of communication and computation resources characterizing WSNs. In con-

trast with [28], the algorithm is derived from a well-posed estimation criterion optimized

using the alternating-direction method of multipliers (AD-MoM) and stochastic approxi-

mation techniques. Different from [27, 28] and [42], the novel D-LMS scheme accounts for

inter-sensor communication noise, in which setup local estimation errors are shown to be

stochastically bounded. In the absence of noise, the local estimates obtained via D-LMS

converge exponentially fast to the true parameters. These stability properties, also present

in the classical LMS algorithm (see e.g., [51]), are established without invoking the inde-

pendence and Gaussianity conditions assumed in [27, 28] and [30]. Stochastic averaging

arguments are further utilized to approximate the MSE associated with D-LMS. Moreover,
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D-LMS is shown flexible to trade-off communication cost for robustness to sensor failures

by imposing consensus only within a subset of the available sensors. The optimization setup

used here to derive the distributed adaptive algorithm resembles the one in [45, 49]. How-

ever, as in [27,28] and [42] D-LMS offers novel and attractive features including: (i) online

incorporation and processing of new data across sensors; and (ii) a distributed adaptive

estimation scheme for applications where a statistical model of variations is not available

(this is needed in e.g., [35, 45]).

In Section 2.2, we introduce the WSN model and the optimization problem defining the

desired estimator. Building on [49], we recast the original formulation into an equivalent

constrained optimization problem, whose solution becomes available in a distributed fashion

using the AD-MoM and stochastic approximation iterations leading to the novel D-LMS

(Section 2.3.1). Next, we describe its operation and required communications, and further

elaborate on the intuition and flexibility of the resulting algorithm (Section 2.3.2), before

demonstrating its merits via numerical simulations in Section 2.3.3. Turning our attention

to performance analysis, the challenging problems of stochastic stability and asymptotic

MSE characterization are addressed in Sections 2.4.1 and 2.4.2.

2.2 Preliminaries and Problem Statement

Consider an ad hoc WSN comprising J sensors where only single-hop communications

are allowed, i.e., sensor j can only communicate with sensors in its neighborhood Nj ⊆
{1, . . . , J} := J , with the convention j ∈ Nj . Assuming that inter-sensor links are symmet-

ric, the WSN is modeled as an undirected graph whose vertices are the sensors and its edges

represent the available links. Global connectivity information is captured by the symmetric

adjacency matrix E ∈ RJ×J , where [E]ij = 1 if i ∈ Nj and [E]ij = 0 otherwise. This model

includes the widely adopted planar random geometric graph G2(J, r) [20], where J sensors

are randomly placed over the unity square, while connectivity of two nodes is ensured so

long as their Euclidean distance is less than a pre-specified communication range r. To

ensure that the data from an arbitrary sensor can eventually percolate through the entire

network, it is assumed that:
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Figure 2.1: An ad hoc WSN with J = 7 sensors. The |B| = 2 of them serving as bridge

sensors are depicted in black.

(a1) The WSN graph is connected; i.e., there exists a (possibly) multi-hop communication

path connecting any two sensors.

Different from [27,28] and [42], the present network model accounts explicitly for non-ideal

sensor-to-sensor links, through a zero-mean additive noise vector ηi
j(t) with covariance

matrix Rηj,i := E[ηi
j(t)η

i
j(t)

T ] corrupting signals received at sensor j from sensor i at

discrete-time instant t. The noise vectors {ηi
j(t)}i∈Nj

j∈J are assumed temporally and spatially

uncorrelated. Because the results in this chapter do not depend on the noise pdf, this

model incorporates, but is not limited to receiver additive white Gaussian noise (AWGN).

A sample ad hoc WSN is depicted in Fig. 2.1.

The WSN is deployed to estimate a signal vector s0 ∈ Rp×1. Per time instant t =

0, 1, 2, . . ., each sensor has available a regression vector hj(t) ∈ Rp×1 and acquires a scalar

observation xj(t), both assumed zero-mean without loss of generality. A similar data setting

was considered also in [27] and [28]. Introducing the global vector x(t) := [x1(t) . . . xJ(t)]T ∈
RJ×1 and matrix H(t) := [h1(t) . . .hJ(t)]T ∈ RJ×p, the global LMS estimator of interest

can be written as [43, p. 49], [52, p. 14], [27]

ŝ(t) = arg min
s

E
[‖x(t)−H(t)s‖2

]
= arg min

s

J∑

j=1

E
[
(xj(t)− hT

j (t)s)2
]
. (2.1)

For jointly stationary {x(t),H(t)}, solving (4.1) leads to the well-known Wiener filter esti-

mate ŝW = R−1
H rHx, where RH := E[HT (t)H(t)] and rHx := E[HT (t)x(t)], see e.g., [52, p.

15]. If RH and rHx were known, then a steepest-descent iteration

ŝ(t) = ŝ(t− 1) + µ[rHx −RH ŝ(t− 1)]
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with sufficiently small step-size µ would converge to ŝW while avoiding the burden of in-

verting RH . In many linear regression applications involving online processing of data, this

covariance information may be either unavailable or time-varying, and thus impossible to

update continuously. Targeting low complexity implementations, one often resorts to the

centralized (C-) LMS algorithm; see e.g., [52, p. 77]

ŝ(t) = ŝ(t− 1) + µHT (t) [x(t)−H(t)ŝ(t− 1)] (2.2)

which relies on RH ≈ HT (t)H(t) and rHx ≈ HT (t)x(t) to coarsely approximate the en-

semble averages instantaneously. Considering a constant step-size µ, in order to allow for

tracking of a possibly time-varying s0(t), the C-LMS algorithm yields stochastic iterates ŝ(t)

that do not converge to, but hover around the desired signal of interest. Stability analysis

of C-LMS has a long history. General results can be found in [51], [26] and [43] that also

include surveys of prior art. One of the main results reported in [51] is that for observations

adhering to a linear model, i.e., x(t) = H(t)s0 + ε(t) with H(t) assumed stationary ergodic

with finite fourth-order moments and RH Â 0, recursion (2.2) with sufficiently small step-

size µ provably: (i) yields an estimation error whose norm remains most of the time within

a finite interval, i.e., limδ→∞ supt≥0 Pr[‖ŝ(t) − s0‖ ≥ δ] = 0 even in the presence of noise;

and (ii) provides estimates that are almost surely (a.s.) convergent to the true parameter

s0 at an exponential rate in the absence of observation noise. The stability notion described

in (i) is referred to as weak stochastic stability, and estimation errors are said to be weakly

stochastic bounded (WSB) [51]. Note that in (ii) a.s. convergence is with respect to the

probability measure induced by the random regressors {hj(t)}J
j=1.

Remark 2.1 (Application to distributed linear regression) An interesting applica-

tion where the need for linear regression arises is spectrum estimation. Specifically, suppose

sensors observe a narrowband source to determine its spectral peaks, which can assist them

disclose hidden periodicities due to a physical phenomenon controlled by e.g., a natural heat

source. The source of interest propagates through multi-path channels and is contaminated

with additive noise when sensed at the sensors. The unknown source-sensor channels may

introduce deep fades at the frequency band occupied by the source. Thus, having each
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sensor operating on its own may lead to faulty assessments. The available spatial diversity

to effect improved spectral estimates, can only be achieved via sensor collaboration.

Let θ(t) denote the narrowband source of interest, which can be modeled as an autore-

gressive (AR) process [55, p. 106]

θ(t) = −
p∑

τ=1

ατθ(t− τ) + w(t) (2.3)

where p is the order of the AR process, while {ατ} are the AR coefficients and w(t) denotes

white noise. The source propagates to sensor j via a channel modeled as an FIR filter

Cj(z) =
∑Lj−1

l=0 cj,lz
−l, of unknown order Lj and tap coefficients {cj,l} and is contaminated

with additive sensing noise ε̄j(t) to yield the observation

xj(t) =
Lj−1∑

l=0

cj,lθ(t− l) + ε̄j(t). (2.4)

Since xj(t) is an autoregressive moving average (ARMA) process, it can be written as [55]

xj(t) = −
p∑

τ=1

ατxj(t− τ) +
m∑

τ ′=1

βτ ′ η̃j(t− τ ′), j ∈ J (2.5)

where the MA coefficients {βτ ′} and the variance of the white noise process η̃j(t) de-

pend on {cj,l}, {ατ} and the variance of the noise terms w(t) and ε̄j(t). For the pur-

pose of determining spectral peaks, the MA term in (4.3) can be treated as observa-

tion noise, i.e., εj(t) :=
∑m

τ ′=1 βτ ′ η̃j(t − τ ′). This is very important since sensors do

not have to know the source-sensor channel coefficients as well as the noise variances.

The spectral content of the source can be estimated provided sensors estimate the coef-

ficients {ατ}, so we let s0 := [α1 . . . αp]T . From (4.3) the regressor vectors are given as

hj(t) = [−xj(t− 1) . . .−xj(t− p)]T , directly from the sensor data {xj(t)} without the need

of training/estimation. Distributed spectrum estimation has been considered also in [24]

utilizing generalized projection schemes. Assumptions in [24] include ideal any-to-any com-

munications and known source-sensor channels.

For different estimation/tracking applications suitable reformulation may be needed in

order to acquire linear regressors based on the available information across sensors. For
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example, in target tracking applications where sensors rely on power or range measurements,

the nonlinear data models must be linearized before obtaining regressors as a function of

sensor observations; see e.g., [2, p. 137]. Another possibility is to obtain the regression

vectors from the physics of the problem, using standard kinematic models with constant

velocity or acceleration that are well documented in the tracking literature; see e.g., [2, Ch.

6].

Remark 2.2 (Motivation for in-network processing) Both C-LMS and incremental

LMS [27] provide comparable performance benchmarks for distributed LMS-type adap-

tation rules, as every update encompasses all the information available in the network.

Although both the observations x(t) and regressor rows in H(t) are actually disseminated

across the WSN, in the broad context of sensor network processing one could envision an

implementation of the C-LMS using an FC-based topology. This, however, comes at the

price of isolating the network’s point of failure and may challenge communications as the

WSN scales over a larger geographic area, since far away sensors will require higher power

to reach the FC, thus diminishing their battery lifetime.

In the context of Remarks 2.1 and 2.2, this chapter aims to develop and analyze in terms

of stability and performance, a fully distributed (D-) LMS algorithm for in-network adaptive

processing using ad hoc WSNs. In a nutshell, the described setup naturally suggests three

characteristics that the algorithm should exhibit: (i) stability properties analogous to C-

LMS, (ii) processing at the sensor level should be kept as simple as possible; and, (iii)

communications among sensors should be confined to single-hop exchanges.

2.3 The D-LMS Algorithm

In this section we introduce the D-LMS algorithm, first going through the algorithm con-

struction and salient features of its operation. The approach followed includes three main

building blocks: (i) recast (4.1) into an equivalent form amenable to distributed imple-

mentation, (ii) split the optimization problem into smaller and simpler subtasks executed

locally at each sensor, and (iii) invoke a stochastic approximation iteration to obtain an
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adaptive LMS-type of algorithm that can both handle the unavailability/variation of sta-

tistical information, and also remain robust to signal variations. We further interpret the

resulting D-LMS recursions to gain insights on how local and network-wide information are

combined in the learning process, and build intuition on the mechanisms employed to reach

consensus among sensors on the adaptive estimate.

To distribute the cost function in (4.1), we replace the global variable s which couples

the per-sensor summands with auxiliary local variables {sj}J
j=1 that represent candidate

estimates of s per sensor. In conjunction with these local variables, consider the convex

constrained minimization problem

{ŝj(t)}J
j=1 = arg min

{sj}J
j=1

J∑

i=1

E
[
(xi(t)− hT

i (t)si)2
]
, s. t. εjsj = εj s̄b, b ∈ B, j ∈ Nb

(2.6)

where B ⊆ J is the bridge sensor set introduced in [49], and the additional set of consensus-

enforcing variables {s̄b}b∈B are maintained at each of the bridge sensors comprising B.

Regarding the positive constants εj , though they do not cause any effect whatsoever on

the constraints in (2.6), they will play an important role in the performance of the D-LMS

algorithm (see Remark 2.6). Two simple conditions define a valid set B: (i) for every sensor

j there exists at least one bridge sensor b ∈ B such that b ∈ Nj (the bridge neighbors

of sensor j will be denoted by Bj := Nj ∩ B); and, (ii) for every two bridge sensors b1

and b2 there exists a path connecting them which is devoid of edges that link two non-

bridge sensors. Multiple sensor assignments will qualify as valid bridge subsets for a given

WSN. For instance, the set of all sensors J is a valid one with maximum cardinality; see

also Fig. 2.1 where sensors in black depict B. An upper bound on the number of bridge

neighbors per sensor is provided by the maximum connectivity degree in the WSN, namely

D := maxj∈J |Nj |. Note that typically D is much smaller than the total number of sensors

J . From a practical viewpoint, B can be determined and maintained in a distributed fashion

using e.g., the simple and efficient polynomial time algorithm in [61].

The WSN connectivity assumption (a1) along with the defining characteristics of B
provide necessary and sufficient conditions to assure that the equality constraints in (2.6)

imply sj = sj′ ∀ j, j′ ∈ J [49, Proposition 1]. This establishes the equivalence between (4.1)
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and (2.6) in the sense that their optimal solutions coincide; i.e., ŝj(t) = ŝ(t) ∀ j ∈ J . Two

important structural properties of (2.6) should be appreciated, as they will be instrumental

in the development of a distributed algorithm to compute {ŝj(t)}J
j=1: (i) the separable

structure of the objective function; and, (ii) the constraints which involve variables of

neighboring sensors only.

2.3.1 Algorithm Construction

In order to solve (2.6), we associate Lagrange multipliers {vb
j}b∈Bj

j∈J with the corresponding

equality constraints and consider the quadratically augmented Lagrangian function given

by

La [s, s̄,v] =
J∑

j=1

E
[
(xj(t + 1)− hT

j (t + 1)sj)2
]

+
∑

b∈B

∑

j∈Nb

[
εj

(
vb

j

)T
(sj − s̄b) +

cjε
2
j

2
‖sj − s̄b‖2

]
(2.7)

where s := {sj}J
j=1, s̄ := {s̄b}b∈B, v := {vb

j}b∈Bj

j∈J and cj > 0 are coefficients penalizing

the violation of the constraints εjsj = εj s̄b ,∀ b ∈ B. The Lagrange multipliers {vb
j}b∈Bj

are maintained at sensor j. We will now resort to the AD-MoM [7, p. 253] to iteratively

minimize (2.7) through a set of simple recursions that update {s, s̄,v} in a fully distributed

fashion. Because the D-LMS algorithm is designed for online estimation, the recursions will

run in real-time and hence the iteration index will coincide with the time index t.

The first step consists of locally updating the Lagrange multipliers via dual gradient

ascent iterations, as it is customary in the various methods of multipliers [7, Ch. 3]. The

pertinent recursions are

vb
j(t) = vb

j(t− 1) + εjcj (sj(t)− s̄b(t)) , j ∈ J , b ∈ Bj . (2.8)

The second step involves recursions of the local estimates s obtained by minimizing (2.7)

using block coordinate descent, i.e., La [s, s̄,v] is minimized with regards to s assuming

all other variables s̄(t) := {s̄b(t)}b∈B, and v(t) := {vb
j(t)}b∈Bj

j∈J from (2.8) are fixed. The
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separable structure of (2.6) is inherited by the augmented Lagrangian, and therefore

s(t + 1) = arg min
s
La[s, s̄(t),v(t)]

decouples into J simpler minimization sub-problems:

sj(t + 1) = arg min
sj


E

[
(xj(t + 1)− hT

j (t + 1)sj)2
]

+
∑

b∈Bj

[
εj

(
vb

j(t)
)T

sj +
cjε

2
j

2
‖sj − s̄b(t)‖2

]
 . (2.9)

Since the cost in (2.9) is convex and differentiable, the first-order necessary condition is also

sufficient for optimality. Computing the gradient with respect to sj and setting the result

equal to zero, yields

E


−2hj(t + 1)

(
xj(t + 1)− hT

j (t + 1)sj

)
+

∑

b∈Bj

εjvb
j(t) +

∑

b∈Bj

ε2
jcj (sj − s̄b(t))


 = 0.

(2.10)

Thus, the local estimate update sj(t + 1) can be obtained as the root of an equation of

the form f(sj) := E[ϕ(sj , xj(t + 1),hj(t + 1))] = 0, where ϕ(·) stands for the function

inside the expectation in (2.10). In lieu of local (cross-) covariance information, namely

rhjxj := E[hj(t + 1)xj(t + 1)] and Rhj := E[hj(t + 1)hT
j (t + 1)], the root of f(sj) = 0 is

not computable in closed form since the function f(sj) is unknown. Hence, motivated by

stochastic approximation techniques (such as the Robbins-Monro algorithm [26, Ch. 1])

which find the root of an unknown function f(sj) given a time-series of noisy observations

{ϕ(sj , xj(t + 1),hj(t + 1))}∞t=0, the proposed recursion for all j = 1, . . . , J is

sj(t + 1) = sj(t) + µj


2hj(t + 1)ej(t + 1)− ε2

jcj |Bj |sj(t)−
∑

b∈Bj

(
εjvb

j(t)− ε2
jcj s̄b(t)

)



(2.11)

where µj is a constant step-size and ej(t + 1) := xj(t + 1) − hT
j (t + 1)sj(t) is the local a

priori error.

The final step entails updating the consensus-imposing variables s̄b kept at the bridge

sensors. The corresponding recursions are obtained by minimizing (2.7) with s(t + 1) :=
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{sj(t + 1)}j∈J and v(t) := {vb
j(t)}b∈Bj

j∈J fixed. The separability of the Lagrangian is crucial

again as the general problem

s̄(t + 1) = arg min
s̄
La[s(t + 1), s̄,v(t)]

separates into |B| convex and differentiable equivalent sub-problems:

s̄b(t + 1) = arg min
s̄b

∑

j∈Nb

[
−εj

(
vb

j(t)
)T

s̄b +
cjε

2
j

2
‖sj(t + 1)− s̄b‖2

]
. (2.12)

It should be noted that the expectation term in (2.7) has been discarded in the process of ob-

taining (2.12), since it is not dependent on s̄b and thus inconsequential for the minimization.

Applying the first-order optimality condition explicitly yields

s̄b(t + 1) =


 ∑

r∈Nb

ε2
rcr



−1 ∑

j∈Nb

(
εjvb

j(t) + ε2
jcjsj(t + 1)

)
, b ∈ B. (2.13)

Recursions (2.8), (2.11) and (2.13) constitute the D-LMS algorithm, which can be ar-

bitrarily initialized. At the beginning of the t-th iteration, sensor j receives the consensus

variables s̄b(t) from its bridge neighbors b ∈ Bj . With this information and using (2.8), it is

able to update its Lagrange multipliers {vb
j(t)}b∈Bj which are then jointly used along with

the newly acquired local data {xj(t+1),hj(t+1)} to compute sj(t+1) via (2.11). Then sen-

sor j transmits the vector (εjcj)−1vb
j(t) + sj(t + 1) to all bridge sensors in its neighborhood

Bj . Subsequently, each sensor b ∈ B receives the vectors (εjcj)−1vb
j(t)+ sj(t+1) and scales

them with ε2
jcj in order to find the weighted average in (2.13) and obtain s̄b(t + 1), thus

completing the t−th iteration. Further, observe that in order to compute the weights in

(2.13), bridge sensor b should acquire {ε2
jcj}j∈Nb

only from its neighbors during the start-up

phase of the WSN.

Communications take place among single-hop neighboring sensors only, at a resulting

cost that scales linearly in p, the dimensionality of s0. Incorporating also the effects of

additive communication noise, Fig. 2.2 depicts the vector exchanges required by D-LMS on

a per iteration basis, and explicitly shows the additional tasks performed by the sensors in

B. The modified D-LMS recursions accounting for the noise corrupted variables exchanged
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All sensors           :

Rx from Tx to

All bridge sensors           : 

Tx toRx from

Figure 2.2: D-LMS communications over noisy links.

among sensors are summarized below, and tabulated as Algorithm 1. For all sensors j ∈ J
and b ∈ B, the D-LMS algorithm in the noisy setup becomes

vb
j(t) = vb

j(t− 1) + εjcj

(
sj(t)− (s̄b(t) + ηb

j(t))
)

, b ∈ Bj (2.14)

sj(t + 1) = sj(t) + µj


2hj(t + 1)ej(t + 1)− ε2

jcj |Bj |sj(t)

−
∑

b∈Bj

(
εjvb

j(t)− ε2
jcj(s̄b(t) + ηb

j(t))
)

 (2.15)

s̄b(t + 1) =


 ∑

r∈Nb

ε2
rcr



−1 ∑

j∈Nb

(
εjvb

j(t) + ε2
jcj(sj(t + 1) + η̄j

b(t + 1))
)

. (2.16)

D-LMS entails |Bj | more recursions per sensor when compared to diffusion LMS in [28].

However, since |Bj | is typically much smaller than J the increase in computational com-

plexity is relatively low. On the other hand, this additional cost and introduced hierarchy

among sensors pays off with improved convergence rates as will become apparent in the

numerical examples of Section 2.3.3.



2.3 The D-LMS Algorithm 26

Algorithm 1 : D-LMS

Arbitrarily initialize {sj(0)}J
j=1, {s̄b(0)}b∈B and {vb

j(−1)}b∈Bj

j∈J .

for t = 0, 1,. . . do

Bridge sensors b ∈ B: transmit s̄b(t) to neighbors in Nb.

All j ∈ J : update {vb
j(t)}b∈Bj using (2.14).

All j ∈ J : update sj(t + 1) using (2.15).

All j ∈ J : transmit (εjcj)−1vb
j(t) + sj(t + 1) to each b ∈ Bj .

Bridge sensors b ∈ B: compute s̄b(t + 1) using (2.16).

end for

Remark 2.3 (Comparison with [45,49]) In contrast to the D-MLE, D-BLUE and D-

LMMSE schemes in [49] and [45], it is apparent that D-LMS in (2.14)-(2.16) allows online

incorporation and processing of sensor data. It is an adaptive estimation/tracking algo-

rithm, whereas the distributed estimation schemes in [45, 49] operate in batch mode. Fur-

ther, note that in D-LMS the requirement for statistical information is bypassed in the

stochastic approximation step where the process statistics are learnt ‘on-the-fly’. This is

not the case in [45, 49] where all proposed schemes are applicable as long as data models

are available across sensors.

Remark 2.4 (Versatility through the use of bridge sensors) The bridge sensor set

provides flexibility to trade-off communication cost for robustness to sensor failures. In

D-LMS each sensor transmits |Bj |p scalars whereas in diffusion LMS each sensor transmits

p scalars. However, note that in D-LMS the non-bridge sensors have to communicate

(transmit and receive) with approximately half of their neighbors, namely those in Bj . This

follows since the two conditions defining the set B are satisfied when |B| ≈ J/2. Intuitively,

this holds because if a sensor is designated to serve as a bridge then its neighbors do not

have to be in B, whereas if a sensor does not have bridge neighbors then it turns itself

into one; see also the numerical tests in [61]. With reference to Fig. 2.2, a non-bridge

sensor j has to remain active over 2|Bj | time slots in order to send and receive information

from b ∈ Bj . Among these slots, |Bj | are required to transmit (εjcj)−1vb
j(t) + sj(t + 1) to

its bridge neighbors, while the remaining |Bj | to receive s̄b(t) from them. Bridge sensor b
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remains active over 2(|Bb|−1) time slots, as any other sensor, plus |Nb| additional time slots:

one to transmit s̄b(t) to its neighbors in Nb, and the rest to receive (εjcj)−1vb
j(t)+ sj(t+1)

from them. Assuming equal battery capacities across sensors, bridge sensors are expected

to fail first. In diffusion LMS, each sensor has to be active over |Nj | time slots among which

one slot is spent for transmission and the rest for listening. Now, consider the WSN in Fig.

2.1 where bridge sensors are disconnected. Thus, |Bb| = 1 and the communication cost of a

bridge sensor is also |Nb|. Because typically 2|Bj | ≤ |Nj |, when diffusion LMS is applied to

the same WSN the total number of required active time slots will be larger (31 versus 26 in

this example). Thus, utilization of bridge sensors offers the potential of increasing the life

expectancy of the network.

Regarding recovery from sensor failures, D-LMS remains operational so long as each

sensor adjusts its local recursions (2.14)-(2.16) to the modified neighborhood structure, and

the overall network graph remains connected. In a possible bridge sensor failure, it might be

the case that some sensors need to be promoted to B using the algorithm in e.g., [61]. Thus,

the network as an autonomous entity is capable of adapting to changes in the topology. The

steps of the simple recovery process are given in [45, Remark 2].

Remark 2.5 (Consensus and communication protocols) Similar to all consensus-

based schemes, D-LMS requires an underlying communication protocol that controls in-

formation exchanges among sensors. One feasible choice (not necessarily the most efficient)

could be a time division multiple-access (TDMA) system, where each sensor is allocated a

time slot during which it can transmit data to its neighbors that operate in reception mode.

Consider a TDMA system with J + |B| time slots. During the first |B| slots each bridge sen-

sor b transmits to all its neighbors its consensus variable s̄b(t) required in (2.14) and (2.15).

Each of the p scalars in s̄b(t) can be transmitted using e.g., multi-carrier modulation. Then,

during the (|B|+j)th time slot only sensor j is active and broadcasts (εjcj)−1vb
j(t)+sj(t+1)

to each of its bridge neighbors. Recalling that |Bj | ¿ J , sensor j could either use different

frequency bands to transmit information to each of its bridge neighbors, or, could devote

(1/|Bj |)th fraction of the time slot for each of its |Bj | bridge neighbors. Such a scheme re-

quires: (i) unique sensor indexing established prior to the WSN deployment; and (ii) global
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synchronization across the WSN, for which there are available algorithms in the existing

literature e.g., see [56].

2.3.2 Consensus Controller Interpretation

Even though recursions (2.14)-(2.16) clearly suggest simplicity as an asset of the proposed

algorithm, they may somehow obscure the essential mechanisms operating on the avail-

able information to yield the estimates sj . Here we derive a set of equivalent recursions

which turn out to be insightful about these issues, despite being less appropriate for online

implementation than (2.14)-(2.16).

For arbitrary j ∈ J and b ∈ Bj , consider the noise-free Lagrange multiplier update

recursion (2.8) with initial condition vb
j(−1) = 0. By recognizing vb

j(t) as the output of

an accumulator system whose input εjcj [sj(t)− s̄b(t)] is the sequence of scaled constraint

violations, the zero initial condition yields the equivalent non-recursive form [cf. (2.8)]

vb
j(t) =

t∑

n=0

εjcj [sj(n)− s̄b(n)] . (2.17)

Arguing by induction as in [49, Lemma 3], the consensus variables for all b ∈ B and t ≥ 0

can be expressed as [cf. (2.13)]

s̄b(t) =


 ∑

r∈Nb

ε2
rcr



−1 ∑

j∈Nb

ε2
jcjsj(t). (2.18)

Equation (2.18) establishes that the consensus variables s̄b(t) are simply obtained as a

weighted average of the local estimates gathered from sensor b’s neighborhood.

Consider now the vector qj(t) := sj(t)−|Bj |−1
∑

b∈Bj
s̄b(t), which represents the instan-

taneous consensus error at sensor j, as measured with respect to the consensus reference

given by the average |Bj |−1
∑

b∈Bj
s̄b(t). Setting the penalty coefficients as cj = 1/|Bj | and

using (2.17) to eliminate the Lagrange multipliers from (2.11) yields

sj(t + 1) = sj(t) + µj2hj(t + 1)ej(t + 1)− µjε
2
jqj(t)− µjε

2
j

∑t
n=0 qj(n). (2.19)

Equations (2.18) and (2.19) are equivalent to D-LMS under ideal links, when vb
j(−1) = 0.

As they stand, the new recursions are not suitable for real-time implementation because the
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Figure 2.3: D-LMS sensor processing to obtain local estimates sj .

sum term in (2.19) requires storing the entire history of qj(t). Nonetheless, they shed light

into the signal processing taking place at each sensor, which turns out to be remarkably

intuitive as discussed next.

The right hand side of (2.19) readily suggests that the local estimate sj(t+1) is obtained

as the superposition of three terms: (a) the sum sj(t)+µj2hj(t+1)ej(t+1) represents a local

LMS adaptation based on the new information {hj(t + 1), xj(t + 1)} available at sensor

j; (b) an update based on a proportional correction µjε
2
jqj(t) due to the instantaneous

consensus error qj(t); and, (c) a correction sum due to the accumulated consensus error

(discrete-time integral). A term like (a) is expected, whereas the rest should explain the

mechanisms employed to incorporate the extra information gathered from the whole WSN.

In fact, (b) and (c) show that a proportional-integral (PI) discrete-time controller, see

e.g. [16, p. 605], is used to drive the local estimate sj(t) to consensus, as dictated by

the computed time-varying set-point |Bj |−1
∑

b∈Bj
s̄b(t); see also Fig. 2.3. It is exclusively

throughout this reference that global information is percolated to improve the local estimate

sj .

The first closed-loop system interpretation for consensus schemes was given in [23]. Let

q̃j(t) := |Bj |qj(t) =
∑

b∈Bj
[sj(t)− sb(t)] and eliminate sb(t) using (2.18). This leads to the

global representation q̃(t) = As(t) with q̃(t) := [q̃T
1 (t) . . . q̃T

J (t)]T , s(t) := [sT
1 (t) . . . sT

J (t)]T ,

and the generalized “two-hop range” Laplacian is given by

A := bdiag(|B1|Ip, . . . , |BJ |Ip)−
∑

b∈B

(eb ⊗ Ip)(eb ⊗ Ip)T

∑
r∈Nb

ε2
rcr

bdiag
(
ε2
1c1Ip, . . . , ε

2
JcJIp

)
(2.20)
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where eb represents the b-th column of the adjacency matrix E. Indeed, under (a1) A shares

fundamental properties with an undirected graph Laplacian, i.e., it is symmetric positive

semi-definite and its null-space is the consensus subspace (vectors with equal entries). The

network-wide feedback −µAs(t) [cf. (2.19) and Fig. 2.3] links D-LMS with the standard

Laplacian-based consensus protocol studied in e.g., [23, 37], whereas the difference stems

from the use of bridge sensors. This may not be surprising if one recalls that the Laplacian-

based protocol for undirected graphs can be derived using an iterative procedure minimizing

a suitable disagreement potential [37, eq. (5)]. The latter strongly resembles the quadratic

term augmenting the Lagrangian in (2.7). The extended two-hop information range enjoyed

by D-LMS should be also contrasted with diffusion LMS [28], which only spans the single-

hop neighborhood. Though, as clarified in Remark 2.4 a small price is paid in terms of the

amount of data needed to be transmitted from each sensor.

Remark 2.6 (Consensus loop tuning) The constant εj is only affecting the PI gains of

the consensus regulator [cf. (2.19)]. For εj = 1 these gains boil down to µj , a generally

small constant attenuating the influence that the information embedded in (b) and (c) has

on the estimate sj(t+1). The presence of εj is thus intuitively justified as a compensator for

this effect, gaining an additional degree of freedom to attain potentially faster convergence

and/or better estimation performance. Indeed, our simulation results in [30] corroborate

considerable improvements when selecting ε2
jµj ≈ 1. For a given step-size and contrasting

with εj = 1, the steady-state estimation error is markedly reduced at a modest price slightly

decreasing the convergence rate of the MSE cost in (4.1). On the other hand, if the D-

LMS step-size is increased to the point that there is no gain in estimation error, then

the MSE reaches steady-state much faster without a noticeable misadjustment. Based on a

suitable performance criterion, a problem falling outside the scope of this thesis, it would be

interesting to optimally design the εj coefficients; see [62] for a related weight optimization

approach in the context of consensus averaging problems.
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Figure 2.4: Normalized global MSE (learning curve).

2.3.3 Numerical Examples

Here we test the novel D-LMS algorithm, and compare its global MSE performance with:

(i) diffusion LMS using Metropolis weights [28]; (ii) local (L-) LMS whereby each sensor

runs an independent LMS filter using its local information only (no communications); (iii)

centralized incremental LMS [27]; and (iv) C-LMS [cf. (2.2)]. The WSN is simulated as

a G2(80, 0.6) graph, and for the examples with noisy links receiver AWGN with variance

σ2
η = 10−3 is added. The signal vector s0 = 1p has dimensionality p = 8, and for all

j ∈ J the regressors hj(t) = [hj(t) . . . hj(t− p+1)]T have entries which evolve according to

hj(t) = (1−ρ)u1,jhj(t−1)+
√

ρνj(t). We choose ρ = 2×10−1, the u1,j ∼ U [0, 1] (uniformly

distributed) are i.i.d. in space, and the driving white noise νj(t) ∼ U [−√3σνj ,
√

3σνj ] has

a spatial variance profile given by σ2
νj

= 10−1u2,j with u2,j ∼ U [0, 1] and i.i.d. A linear

model x(t) = H(t)s0 + ε(t) is adopted with observation WGN of spatial variance profile

σ2
εj

= 10−4u3,j , with i.i.d. u3,j ∼ U [0, 1]. For all four algorithms the step-size is set to

µ = 9× 10−2, and in particular for D-LMS cj = εj = 1 ∀ j ∈ J .

Fig. 2.4 compares the normalized MSE evolution (learning curve) obtained as

J−1
∑J

j=1 E[ej(t)2] for the distributed schemes, where the expectation is approximated by

averaging 50 Monte Carlo realizations. Both incremental LMS and C-LMS provide a com-
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Figure 2.5: Local performance figures of merit: MSE, EMSE and MSD.

parable performance benchmark while L-LMS stands on the other extreme. For both dis-

tributed approaches in the (communication) noise-free setting, the resultant misadjustment

is negligible thus matching the performance (in this sense) of its centralized counterparts.

Furthermore, D-LMS outperforms diffusion LMS whereas its MSE remains bounded even

when channel links are corrupted by reception noise; with an inflated steady-state MSE

level, as expected.

To gauge local performance, we evaluate the figures of merit which are customary in the

adaptive literature [27,28]: (i) MSE E[ej(t)2], (ii) excess-MSE (EMSE) E[ej(t)2]−σ2
εj

, and

(ii) mean-square deviation (MSD) E[‖sj(t)−s0‖2]. For the previous setup, the steady-state

values of these metrics are depicted in Fig. 2.5. Good performance for D-LMS is apparent

from the MSE curve which comes very close to the local noise levels; observe also the small

EMSE. Sensor collaboration, despite the diverse noise statistical profile across the WSN,

smoothens network-wide EMSE/MSD values. In comparison with diffusion LMS, D-LMS

exhibits a slight edge on MSD while EMSE levels are comparable.

Under the same WSN setup, we illustrate the capabilities of D-LMS when it comes to

tracking a time-varying signal vector s0(t). The large amplitude slowly time-varying process

model s0(t) = (1 − ρ)s0(t − 1) +
√

ρν(t) is simulated, with ρ = 10−2 and ν(t) ∼ N (0, 2 ×
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Figure 2.6: Tracking with D-LMS.

10−2I8). Fig. 2.6 depicts the fifth and third entries of the true time-varying parameter s0(t),

and the respective estimates from sensors 38 and 70 that closely follow the true variations.

Both sensors and parameter entries were chosen uniformly at random, in the interest of

showing the representative behavior across the WSN. In addition, we also plot the estimates

[s38(t)]5, [s70(t)]3 obtained when the WSN model accounts for communication noise with

σ2
η = 10−2. Larger estimate fluctuations are a direct manifestation of the increased MSE.

Next, we examine the D-LMS performance in the spectrum estimation application de-

scribed earlier in Remark 2.1 for the aforementioned WSN setting. The AR source has order

p = 4 and coefficients s0 = [−0.31, 1.14, 0.275, 0.222]T . The source signal propagates via

multi-path channels of order Lj = 2 and arrives at the sensors where it gets contaminated

with sensing noise having variance 10−4 [cf. (2.4)]. The channels corresponding to sensors

3, 7, 15, 27, 37, 57, 67 are set so that they have a null at the frequency where the AR source

has a peak, namely at ω = π/2. Fig. 2.7 depicts the actual power spectral density of the

source as well as the estimated ones at sensor 15 using L-LMS and D-LMS under ideal and

noisy inter-sensor links. The step-size is µ = 0.98× 10−3, while εj = cj = 1. Clearly, even

in the presence of communication noise D-LMS exploits the spatial diversity available and
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Figure 2.7: Spectral estimation with D-LMS.

allows all sensors to estimate accurately the actual spectral peak, whereas L-LMS leads

the problematic sensors, e.g., sensor 15 in Fig. 2.7, to misleading estimates. The latter

corroborates the ability of D-LMS to percolate information across the WSN.

2.4 Stability and Performance Analysis

An attractive feature of D-LMS is that it can be applied to a wide class of signals. Indeed, D-

LMS requires no assumption on the statistics of {xj(t),hj(t)}J
j=1. When it comes to stability

and performance evaluation however, a meaningful ‘ground-truth’ model should be adopted

to carry out the analysis and enable fair comparison among competing alternatives. Toward

this end, we adopt the standard data model, commonly used throughout the adaptive signal

processing literature, e.g., [52, Ch. 5,9], [51], [27, 28]:

(a2) The sensor observations adhere to the linear model

xj(t) = hT
j (t)s0 + εj(t), j ∈ J (2.21)

where the white noise εj(t) is zero-mean with variance σ2
εj

.

In order to facilitate stability analysis, an important preliminary step is to express

D-LMS as a linear time-varying (LTV) stochastic difference-equation. Specifically, start-
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ing from (2.14)-(2.16) and applying simple algebraic manipulations we will obtain recur-

sions for the local estimation errors y1,j(t) := sj(t) − s0 and the local sum of multipliers

y2,j(t) :=
∑

b∈Bj
vb

j(t − 1) ∀ j ∈ J . For simplicity in exposition, set ε2
jcj = µ−γ

j c1/2,

εjcj = µ
−γ/2
j c2 for any γ ∈ (0, 1), and µj = µ ∀ j ∈ J . Such a selection of εj is well

motivated, since it gives more emphasis to the information gathered from the neighbor-

hood [cf. (2.19)]. This is desirable in WSN-based applications including the one described

in Remark 2.1, where sensor collaboration is essential to efficiently estimate the parame-

ters of interest. Further, stack {y1,j(t),y2,j(t)}J
j=1 vectors to form the Jp × 1 supervec-

tors y1(t) := [yT
1,1(t) . . .yT

1,J(t)]T and y2(t) := [yT
2,1(t) . . .yT

2,J(t)]T , respectively; and let

y(t) := [yT
1 (t) yT

2 (t)]T ∈ R2Jp×1. The Lagrange multipliers vb
j(−1) are initialized so that

∑

j∈Nb

vb
j(−1) = 0, ∀b ∈ B. (2.22)

Equation (2.22) is easy to satisfy since sensors can initialize arbitrarily their multipliers,

e.g., through zero initial conditions whereby sensor j sets vb
j(−1) = 0 with b ∈ Bj .

The next step is to rewrite the consensus variable recursion in (2.16) in a way that will

allow us later on to derive a first-order recursion for y(t). Specifically, we prove in Appendix

A that:

Lemma 2.1 If the Lagrange multipliers vb
j(t) are initialized as in (2.22), then the consensus

variables s̄b(t) can be expressed for t ≥ −1 as

s̄b(t + 1) =
1
|Nb|

∑

j∈Nb

sj(t + 1) +
1
|Nb|

∑

j∈Nb

[
η̄j

b(t + 1)− η̄j
b(t)

]
− 1
|Nb|

∑

j∈Nb

ηb
j(t) (2.23)

with ηb
j(−1) = η̄j

b(−1) = 0, and η̄b
b(t) = ηb

b(t) = 0.

Using Lemma 2.1, as well as the multiplier update rule in (2.14) we wish to derive first-

order recursions for y1,j(t) := sj(t)− s0 and y2,j(t) :=
∑

b∈Bj
vb

j(t− 1). To this end, let us

define the noise vectors

η̄j(t) :=
∑

b∈Bj

∑

j′∈Nb

η̄j′
b (t)
|Nb| , j ∈ J (2.24)
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that depend on the reception noise at the bridge neighbors. Further, consider two more

noise vectors

ηα
j (t) :=

∑

b∈Bj

ηb
j(t), ηβ

j (t) :=
∑

b∈Bj

∑

j′∈Nb

ηb
j′(t)

|Nb| . (2.25)

Based on definitions (2.24) and (2.25), it is shown in Appendix B that:

Lemma 2.2 Under (a2) and with {vb
j(−1)}j∈Nb

selected to satisfy (2.22), local state vectors

{yi,j(t)}J
j=1 obey the recursions

y1,j(t + 1) =
(
Ip − 2µhj(t + 1)hT

j (t + 1)− µ1−γc1|Bj |Ip

)
y1,j(t)

+ µ1−γc1


∑

b∈Bj


 ∑

j′∈Nb

y1,j′(t)
|Nb|


− µγ/2

2c2
y2,j(t) +

(
η̄j(t)− η̄j(t− 1)

)

+
(
ηα

j (t)− ηβ
j (t− 1)

)

 + 2µhj(t + 1)εj(t + 1) (2.26)

y2,j(t + 1) = y2,j(t) + µ−γ/2c2


|Bj |y1,j(t)−

∑

b∈Bj


 ∑

j′∈Nb

y1,j′(t)
|Nb|


− (

η̄j(t)− η̄j(t− 1)
)

−
(
ηα

j (t)− ηβ
j (t− 1)

)

 . (2.27)

Aiming at a first-order recursion for y(t), consider concatenating the noise terms in (2.24)

and (2.25) for j = 1, . . . , J to form the Jp × 1 supervectors η̄(t), ηα(t) and ηβ(t), respec-

tively; and also define the global observation noise vector

ε(t) := 2µ[hT
1 (t)ε1(t) . . .hT

J (t)εJ(t)]T . (2.28)

Upon stacking y1,j(t + 1) and y2,j(t + 1) from Lemma 2.2, for j = 1, . . . , J , in y(t + 1), it

is shown in Appendix C that the D-LMS recursions (2.14)-(2.16) can be compactly written

in matrix form as

y(t+1) = Ψ(t+1, µ)y(t)+


 µ1−γc1IJp µ1−γc1IJp

−µγ/2c2IJp −µγ/2c2IJp





 η̄(t)− η̄(t− 1)

ηα(t)− ηβ(t− 1)


+


 ε(t + 1)

0




(2.29)

where for t ≥ 0 the 2Jp×2Jp transition matrix Ψ(t, µ) consists of four Jp×Jp matrix blocks

given by [Ψ(t, µ)]11 = IJp − 2µRh(t) − µ1−γc1A, [Ψ(t, µ)]12 = −µ1−γ/2c1
2c2

IJp, [Ψ(t, µ)]21 =
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µ−γ/2c2A and [Ψ(t, µ)]22 = IJp, with Rh(t) := bdiag
(
h1(t)hT

1 (t), . . . ,hJ(t)hT
J (t)

)
while the

structure of A is given in (2.20).

The linear dynamical system described by (2.29) is indeed time-varying since Ψ(t, µ) as

well as Rh(t) are time dependent. It is also random due to the noise terms as well as the

regression vectors hj(t). In order to satisfy the initialization requirement in (2.22), y2,j(0)

should be set to y2,j(0) =
∑

b∈Bj
vb

j(−1) = µ−γ/2c2Ajy′2(0), where Aj is the j-th p × Jp

block of the decomposition A = [AT
1 . . .AT

J ]T and y′2(0) can be chosen arbitrarily. Hence,

using

y2,j(0) = µ−γ/2c2

∑

b∈Bj


y′2,j(0)− 1

|Nb|
∑

j′∈Nb

y′2,j′(0)


 (2.30)

and setting vb
j(−1) = y′2,j(0)− |Nb|−1 ∑

j′∈Nb
y′2,j′(0) ensures that (2.22) holds true, while

µ−γ/2c2 is placed for normalization.

The LTV system in (2.29) is not yet ready for stability analysis since Eh[Ψ(t, µ)] does

not have all its eigenvalues inside the unit circle. Towards reformulating (2.29), consider

the p(
∑

b∈B |Nb|)× 1 supervector

η(t) :=
[
{ηb1

j′ (t)}T
j′∈Nb1

. . . {ηb|B|
j′ (t)}T

j′∈Nb|B|

]T
(2.31)

comprising the receiver noise of the bridge sensors’ transmissions to their neighbors; i.e.,

the first |Nb1 | vectors in η(t) correspond to the reception noise at the neighbors of bridge

sensor b1 and so on. Using η(t), the noise supervectors ηα(t) and ηβ(t) can be written as

ηα(t) = Pαη(t) and ηβ(t) = Pβη(t), where the structure of the time-invariant matrices Pα

and Pβ can be found in Appendix D, which establishes:

Lemma 2.3 The LTV system in (2.29) can be equivalently written as

y(t + 1) = bdiag(IJp, µ
−γ/2c2A)z(t + 1) +


 µ1−γc1IJp

−µ−γ/2c2IJp


 (η̄(t) + ηα(t)) (2.32)

where the state z(t) := [zT
1 (t) zT

2 (t)]T is arbitrarily initialized as z(0) := [yT
1 (0) (y′2(0))T ]T ;

updated according to

z(t+1) = Φ(t+1, µ)z(t)+Rα
h(t+1)η̄(t−1)+Rβ

h(t+1)η(t−1)+ [εT (t+1) 0T ]T , (2.33)
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and the transition matrix Φ(t+1, µ) consists of the submatrices [Φ(t, µ)]11 = IJp−2µRh(t)−
µ1−γc1A, [Φ(t, µ)]12 = −µ1−γc1

2 A and [Φ(t, µ)]21 = [Φ(t, µ)]22 = AA†. Matrices Rα
h(t + 1)

and Rβ
h(t + 1) are defined as

Rα
h(t + 1) :=

[
µ1−γc1

2
IJp − µ2(1−γ)c2

1A
T − 2µ2−γc1RT

h (t + 1), µ1−γc1IJp

]T

(2.34)

Rβ
h(t + 1) :=

[
µ1−γc1

(
3
2
PT

α − µ1−γc1(APα)T − 2µ(Rh(t + 1)Pα)T −PT
β

)
,

µ1−γc1PT
α + 2CT

R

]T

(2.35)

with CR chosen such that ACR = Pβ −Pα.

2.4.1 Stability Analysis

This subsection deals with stability analysis of D-LMS based on the equivalent LTV system

derived in Lemma 2.3. Specifically, it will be shown that under mild conditions the error

norm ‖y(t)‖ remains most of the time in a finite interval, i.e., errors are weakly stochastic

bounded (WSB) [51]. This WSB stability guarantees that for any θ > 0 there exists a δ > 0

such that Pr[‖y(t)‖ < δ] = 1− θ uniformly in t. As a consequence, it will be shown that in

the absence of observation and inter-sensor communication noise the local estimation errors

in D-LMS converge exponentially fast to zero with probability one. Therefore, consensus is

achieved a.s., as all local sensor estimates agree on the true parameter s0. This establishes a

strong connection with the known behavior of C-LMS [51], further validating the importance

of D-LMS in a distributed setting.

The first step in proving that ‖y(t)‖ is bounded in probability is to show that the same

holds for ‖z(t)‖. This will be established under the following assumptions:

(a3) The regressor vectors hj(t) are strictly stationary with Rhj
:= E[hj(t)hT

j (t)] < ∞,

and Rh := bdiag(Rh1 , . . . ,RhJ
) Â 0. Regressors are ergodic and satisfy (a.s.)

lim
t→∞ t−1

t∑

τ=1

‖Rh −Rh(τ)‖ = E[‖Rh −Rh(t)‖] := mh̃ < ∞ (2.36)

(a4) Communication and observation noise vector norms are bounded in the mean; i.e.,

E[‖εj(t)‖] = mε < ∞, E[‖ηb
j(t)‖] = mη < ∞ and E[‖η̄j

b(t)‖] = mη̄ < ∞. (2.37)
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Under assumption (a4), typically met in practice, the estimation error does not grow un-

bounded.

Necessary for proving boundedness of z(t) in (2.33) is to show that the norm of Φ(1 :

t, µ) :=
∏t

τ=1 Φ(τ, µ) converges to zero as t → ∞, a.s.. To this end, let λ+(A) denote the

minimum positive eigenvalue of A º 0. Specifically, it is established in Appendix E that:

Lemma 2.4 If (a3) holds true, c1 is selected such that c1λ
+(A) > 4 and the step-size

µ ∈ (0, µ′u), with µ′u < µu is chosen as

µu :=
[
2min

(
λ−1

max(Rh + (c1/2)A), λ−1
max(2Rh + (3c1/4)A)

)]1/(1−γ) (2.38)

to guarantee that the eigenvalues of Eh[Φ(t, µ)] are less than one, then with λ ∈ (0, 1)

lim supt→∞t−1 log ‖Φ(1 : t, µ)‖ ≤ log(λ) < 0, a.s.. (2.39)

In words, (2.39) establishes that ‖Φ(1 : t, µ)‖ will converge to zero exponentially fast

with probability one. This property is necessary to prove later on that ‖z(t)‖ satisfies

the WSB property, which in turn will lead us to the ultimate goal of establishing stochastic

boundedness of ‖y(t)‖. Thus, using Lemma 2.4, we prove in Appendix F the following

result.

Lemma 2.5 Under (a3)-(a4), c1λ
+(A) > 4 and if µ ∈ (0, µ′u) with µ′u < µu, then z(t)

satisfies the WSB property; i.e.,

lim
δ→∞

sup
t≥0

Pr[‖z(t)‖ ≥ δ] = 0. (2.40)

Careful inspection of (2.32), and exploitation of Lemmas 2.4 and 2.5, along with (a4) reveals

that y(t) is also WSB. As a result, it is possible to prove the following main result (see

Appendix G).

Proposition 2.1 Under (a2)-(a4), c1λ
+(A) > 4 and if µ ∈ (0, µ′u) with µ′u < µu, then

y(t) is WSB; i.e.,

lim
δ→∞

sup
t≥0

Pr[‖y(t)‖ ≥ δ] = 0. (2.41)
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Proposition 2.1 asserts that no probability mass of y(t), and consequently of the local

estimation errors y1,j(t) := sj(t) − s0, escapes to infinity. This is very important since

even in the presence of observation and communication noise the local estimation errors

remain bounded. Interestingly, in the absence of noise the local estimates sj(t) provided

by D-LMS converge exponentially fast to s0 with probability one. Thus, D-LMS exhibits

behavior similar to its centralized counterpart when it comes to stationary ergodic signals

[51]. Actually, it follows readily from Lemma 2.5 that (cf. [50, Proof of Lemma 3]):

Corollary 2.1 If c1λ
+(A) > 4 and µ ∈ (0, µ′u) with µ′u < µu, (a2) and (a3) hold true,

while εj(t) = 0 and ηb
j(t) = η̄j

b(t) = 0 for j ∈ J and b ∈ B, then there exists t0 < ∞, a

random variable B < ∞ and λ(µ) ∈ (0, 1) such that

‖y(t)‖ ≤ Bλt(µ), a.s. ∀ t > t0. (2.42)

Corollary 1 demonstrates that the WSN achieves consensus in the sense that local estima-

tion errors {sj(t) − s0}J
j=1 converge to zero exponentially fast on a per realization basis.

Interestingly, µu resembles the stability bound for C-LMS, namely 2/λmax(Rh) [52, Ch. 9].

The main difference here is that this bound is also affected by the topology of the WSN,

via A, due to the distributed nature of the algorithm and the information exchanges among

sensors.

2.4.2 Performance Analysis

In this subsection the estimation performance of D-LMS is analyzed by approximating the

error covariance matrix. Since the recursion (2.32) involved in D-LMS is time-varying,

a closed-form expression for the error covariance matrix is difficult, if not impossible, to

obtain. Specifically, the estimation MSE associated with the D-LMS recursions in (2.32)-

(2.33) evolves according to

emse(t) := J−1E[yT
1 (t)y1(t)] = J−1E[zT

1 (t)z1(t)] + (µ1−γc1)2J−1trace(Rη̄ + PαRηPT
α),

(2.43)
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where E[zT
1 (t)z1(t)] denotes the trace of the upper left Jp×Jp submatrix of the covariance

matrix E[z(t)zT (t)] that evolves according to

E[z(t)zT (t)] = E[Φ(t, µ)z(t− 1)zT (t− 1)ΦT (t, µ)] + E[Rα
h(t)Rη̄(Rα

h(t))T ]

+ E[Rβ
h(t)Rη(R

β
h(t))T ] + bdiag(E[ε(t)εT (t)],0Jp×Jp)

+ E[Φ(t, µ)z(t− 1)[εT (t) 0T ]T ] + (E[Φ(t, µ)z(t− 1)[εT (t) 0T ]T ])T . (2.44)

The first expectation in the right hand side of (2.44) is impossible to split because the

regressors are temporally correlated. Thus, under (a3)-(a4) it appears impossible to evaluate

E[z(t)zT (t)]. One possible alternative is to consider an appropriate time-invariant ‘average’

system approximating the LTV system in (2.32) and recursively evaluate its corresponding

error covariance matrix. Then, using stochastic averaging arguments, see e.g., [52, Ch. 9],

the estimation error ȳ1(t) associated with the ‘average’ system can be shown convergent in

probability to y1(t) as the step-size µ approaches zero. This approach allows approximating

the estimation MSE of D-LMS with that of the average system

ȳ(t + 1) = bdiag(IJp, µ
−γ/2c2A)z̄(t + 1) +


 µ1−γc1IJp

−µ−γ/2c2IJp


 (η̄(t) + ηα(t)) (2.45)

z̄(t + 1) = Φ(µ)z̄(t) + Rα
h η̄(t− 1) + Rβ

hη(t− 1) + [εT (t + 1) 0T ]T (2.46)

where Φ(µ) := Eh[Φ(t, µ)], Rα
h := Eh[Rα

h(t + 1)] and Rβ
h := Eh[Rβ

h(t + 1)]. Note that

the average system in (2.45) is not constructed by taking expectations on both sides of

(2.32)-(2.33). Instead, it is formed starting from the primary system and replacing the

time-varying transition matrix Φ(t, µ), and the matrices Rα
h(t + 1),Rβ

h(t + 1) with their

time-invariant counterparts Φ(µ), and Rα
h ,Rβ

h respectively. This average system plays a

key role in the stochastic averaging approach of [52, Ch. 9].

Next, we see how the local estimation errors in y1(t) are statistically related with the

average state vector ȳ1(t). Recall that both y1(t) and ȳ1(t) depend on µ. Actually, it is

shown in Appendix H that:

Proposition 2.2 If z(0) = z̄(0) and (a2)-(a4) are satisfied, while the joint moments of

{hj(t)}J
j=1 are bounded, then given finite T > 0 and for any δ > 0 and β > 0 arbitrarily
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small, it holds that

lim
µ→0

sup
0≤t≤T/µ1−γ−β

Pr[‖ȳ1(t)− y1(t)‖ ≥ δ] = 0. (2.47)

Proposition 2.2 shows that the probability of the estimation error y1(t) being close to ȳ1(t)

approaches unity with vanishing step-sizes, so long as the D-LMS and its ‘average’ version

are initialized with the same local estimates and multipliers, i.e., z(0) = z̄(0). This type

of result is referred to as trajectory locking, because the trajectory of the primary system

hovers around and locks to the trajectory of its average counterpart. The time horizon for

which the two systems remain ‘locked’ goes to infinity as µ → 0. These locking results are

applicable even when regressors exhibit temporal correlations.

Now, observe that the ‘average’ D-LMS algorithm in (2.45) has a time-invariant transi-

tion matrix. As a result, the ‘average’ estimation error covariance Rȳ1(t) := E[ȳ1(t)ȳT
1 (t)]

can be found in closed form. Specifically, we prove in Appendix I that

Rȳ1(t + 1) = [Rz̄(t + 1)]11 + (µ1−γc1)2
(
Rη̄ + PαRηPT

α

)
(2.48)

where [Rz̄(t + 1)]11 is the Jp× Jp upper left submatrix of

Rz̄(t + 1) = Φt+1(µ)Rz̄(0)(Φt+1(µ))T +
t∑

τ=0

Φτ (µ)Rη̆(Φτ (µ))T (2.49)

while

Rη̆ = Rα
hRη̄(Rα

h)T + Rβ
hRη(R

β
h)T + bdiag(E[ε(t + 1)εT (t + 1)],0Jp×Jp) (2.50)

with Rη̄ := E[η̄(t)η̄T (t)] and Rη := E[η(t)ηT (t)]; see also Appendix I for the structure of

Rη̄ and Rη.

Based on Proposition 2.2, the covariance matrix in (2.48) can be viewed as an approxi-

mation to Ry1(t) := E[y1(t)yT
1 (t)]. Then, the global normalized estimation error of D-LMS

at time instant t can be approximated as

emse(t) :=
1
J

J∑

j=1

E[‖sj(t)− s0‖2] ≈ J−1trace(Rȳ1(t)), (2.51)

while local approximate MSE performance across sensors can be acquired from the cor-

responding diagonal entries of Rȳ1(t). Proposition 2.2 implies that this approximation
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improves as µ → 0. Intuitively, this happens because a vanishing step-size suppresses tem-

poral correlations present in the regressors thus making D-LMS behave as the ‘average

system’ in (2.45). In the interest of tractability, the ‘average system’ does not take into

account temporal correlations. Thus, for a small step-size the MSE corresponding to the

‘average’ system in (2.45) can be used to approximate efficiently the one associated with

D-LMS, which will be corroborated via simulations.

Remark 2.7 (Comparison with existing results) The stochastic stability results pre-

sented in Section 2.4.1 allow for (non-) Gaussian distributed and spatio-temporally corre-

lated regressors. As for C-LMS, WSB has been established under conditions similar to those

in [51]. Communication noise has not been considered earlier, and stochastic boundedness

of D-LMS is a consequence of the inherent noise-robustness of the method of multipliers;

see also [49] for related claims in single-shot non-adaptive distributed estimation. Mean

and MSE convergence results for diffusion LMS [28] were established under the widely as-

sumed white Gaussian setting [52, Ch. 5]; similar mean-stability results were reported for

D-LMS in [30]. A comparison between the stability results here and those in [28] is not

possible since they are different in nature. Regarding performance analysis, steady-state

closed-form expressions of the relevant figures of merit have been derived for both incre-

mental and diffusion LMS [27,28]; when regressors are Gaussian and independent in space

and time by relying on an energy conservation framework [43]. This should be contrasted

with the alternative approach delineated in Section 2.4.2, that utilizes stochastic averaging

arguments to approximate the MSE associated with D-LMS. This approximation becomes

increasingly accurate for a vanishing step-size, since the regressor’s temporal correlations

are suppressed making D-LMS behave as in a white data setting.

2.4.3 Numerical Example

Here again, we test a WSN generated as a G2(80, 0.6) graph yielding λ+(A) = 0.904.

With p = 8 and s0 = 1p, observations obey the linear model (2.21), where regressors are

hj(t) = [hj(t) . . . hj(t − p + 1)]T with hj(t) evolving according to an AR(1) process as in

Section 2.3.3. We choose ρ = 0.7, the u1,j ∼ U [0, 1] are i.i.d. in space and the uniformly
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Figure 2.8: Normalized estimation error for D-LMS in the absence of noise.

distributed white driving noise has a spatial variance profile given by σ2
νj

= 2u2,j with

u2,j ∼ U [0, 1] and i.i.d.. First, we corroborate the result in Corollary 2.1, by running D-

LMS with cj = 2.25, εj = µ−1/4 for all j ∈ J in a noise-free setup and computing the sample

paths of the normalized estimation error J−1
∑J

j=1 ‖sj(t)−s0‖. Results are depicted in Fig.

2.8 for different step-sizes related to the upper bound µu = 8 × 10−3. When µ ∈ (0, µu),

the error norm converges to zero exponentially fast with a decay rate increasing with µ.

As per Corollary 2.1, convergence cannot be claimed for step-sizes larger than µu, though

simulations indicate that the stability region may be larger than (0, µu).

Next, we validate the approximation (2.51) by plotting the empirically estimated MSE

achieved by D-LMS in (2.32) (averaged over 50 Monte Carlo runs) and comparing it with the

MSE achieved by the average system [cf. right hand side of (2.51)] in a G2(60, 0.25) setting.

Space-time i.i.d. observation noise εj(t) ∼ N (0, 10−3) is now added as well as receiver

AWGN of variance σ2
η = 10−2. Fig. 2.9 confirms that the theoretical MSE obtained from

the ‘average’ D-LMS in (2.45) approximates well the primary MSE in (2.32), especially as

µ becomes smaller. Note that D-LMS is derived using the AD-MoM. Convergence in MoM

is not necessarily monotonic and the same holds for the true and approximated ‘average’

behavior of D-LMS, as depicted in Fig. 2.9.
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Figure 2.9: Empirical normalized estimation MSE for D-LMS and theoretical approximation

(2.51) for the ‘average’ D-LMS.

2.5 Appendices

2.5.1 Proof of Lemma 2.1

Recall that in the presence of noise, bridge variables obey [cf. (2.16)]

s̄b(t + 1) =
(
|Nb|µ−γ/2c2

)−1 ∑

j∈Nb

[
vb

j(t) + µ−γ/2c2(sj(t + 1) + η̄j
b(t + 1))

]
. (2.52)

Substituting (2.14) into (2.52), while adding and subtracting
∑

j∈Nb
η̄j

b(t), yields

s̄b(t + 1) =
(
|Nb|µ−γ/2c2

)−1 ∑

j∈Nb

[
vb

j(t− 1) + µ−γ/2c2(sj(t) + η̄j
b(t))

]
− s̄b(t)

+ |Nb|−1
∑

j∈Nb

sj(t + 1) + |Nb|−1
∑

j∈Nb

[
η̄j

b(t + 1)− η̄j
b(t)

]
− |Nb|−1

∑

j∈Nb

ηb
j(t).

(2.53)

Equations (2.22) and (2.52) imply that the first sum in (2.53) equals s̄b(t) for t ≥ 0. Thus,

(2.23) follows.
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2.5.2 Proof of Lemma 2.2

Summing (2.14) over b ∈ Bj , we can write y2,j(t + 1) as

y2,j(t + 1) =
∑

b∈Bj

[
vb

j(t− 1) + µ−γ/2c2(sj(t)− (s̄b(t) + ηb
j(t)))

]

= y2,j(t) + µ−γ/2c2|Bj |sj(t)− µ−γ/2c2

∑

b∈Bj


 ∑

j′∈Nb

sj′(t)
|Nb|




− µ−γ/2c2

(
η̄j(t)− η̄j(t− 1)

)− µ−γ/2c2

(
ηα

j (t)− ηβ
j (t− 1)

)
(2.54)

where the last equality follows after splitting the sum in the first equality into four individual

terms and invoking Lemma 2.1. Adding and subtracting µ−γ/2c2|Bj |s0 from the right hand

side of (2.54), yields (2.27) readily.

To prove (2.26), recall that the local estimate sj(t) is updated as [cf. (2.15)]

sj(t + 1) = sj(t) + 2µhj(t + 1)ej(t + 1)− µ1−γc1

2
|Bj |sj(t)

− µ1−γc1

2


µγ/2

c2
y2,j(t + 1)−

∑

b∈Bj

s̄b(t)−
∑

b∈Bj

ηb
j(t)


 . (2.55)

Upon: (i) using ej(t) := xj(t)− hT
j (t)sj(t− 1); (ii) substituting xj(t) from (a2) into (2.55);

(iii) subtracting s0 from both sides of (2.55); and (iv) replacing s̄b(t) and y2,j(t + 1) from

(2.23) and (2.27), respectively, we arrive at

y1,j(t + 1) = y1,j(t)− 2µhj(t + 1)hT
j (t + 1)y1,j(t)− µ1−γc1

[
|Bj |sj(t) +

µγ/2

2c2
y2,j(t)

−
∑

b∈Bj


 ∑

j′∈Nb

sj′(t)
|Nb|


− (

η̄j(t)− η̄j(t− 1)
)−

(
ηα

j (t)− ηβ
j (t− 1)

)



+ 2µhj(t + 1)εj(t + 1)

= y1,j(t)− 2µhj(t + 1)hT
j (t + 1)y1,j(t)− µ1−γc1

[
|Bj |y1,j(t) +

µγ/2

2c2
y2,j(t)

−
∑

b∈Bj


 ∑

j′∈Nb

y1,j′(t)
|Nb|


− (

η̄j(t)− η̄j(t− 1)
)−

(
ηα

j (t)− ηβ
j (t− 1)

)



+ 2µhj(t + 1)εj(t + 1)
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where the last equality follows after adding and subtracting |Bj |s0 from the quantity inside

the square brackets in the right hand side of the first equality.

2.5.3 Proof of Equation (2.29)

Consider first the noise vectors in (2.29). Stacking the channel noise terms from (2.26)

and (2.27) and scaling with µ1−γc1 and µ−γ/2c2, respectively, yields the first noise term in

(2.29). Likewise, stacking the noise terms 2µhj(t + 1)εj(t + 1) in (2.26) for j = 1, . . . , J

yields the second noise term in (2.29) corresponding to the observation noise. Note that

(2.27) contains no observation noise, which explains the zero vector at the lower part of the

second noise term in (2.29).

The second term within the square brackets in (2.26) explains why [Ψ(t, µ)]12 =

−(µ1−γ/2c1/2c2)IJp. To specify the structure of [Ψ(t, µ)]11, notice that

∑

b∈Bj

|Nb|−1
∑

j′∈Nb

y1,j′(t) =
∑

b∈B
eb(j)|Nb|−1(eb ⊗ Ip)Ty1(t). (2.56)

The supervector formed by concatenating the first term within the square brackets in (2.26),

for j = 1, . . . , J can be written as

∑

b∈B

(eb ⊗ Ip)(eb ⊗ Ip)T

|Nb| y1(t). (2.57)

Stack the first term in (2.26) for j = 1, . . . , J and add the resulting supervector to the one

in (2.57), to obtain
(

IJp − 2µRh(t + 1)− µ1−γc1

[
bdiag(|B1|Ip, . . . , |BJ |Ip)−

∑

b∈B

(eb ⊗ Ip)(eb ⊗ Ip)T

|Nb|

])
y1(t)

= (IJp − 2µRh(t + 1)− µ1−γc1A)y1(t)

from which we can readily deduce that [Ψ(t, µ)]11 is equal to the matrix multiplying y1(t).

Also, it follows immediately from the first term in (2.27) that [Ψ(t, µ)]22 = IJp. Further,

note that the second term within the square brackets in (2.27) has the same structure as

the second term in (2.26). Thus, after: (i) stacking the first and second terms within the
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square brackets in (2.27), scaling them with µ−γ/2c2 and subtracting them; and (ii) using

(2.56) and (2.57), we obtain [Ψ(t, µ)]21 = µ−γ/2c2A.

2.5.4 Proof of Lemma 2.3

We will argue by induction. For t = 0 we have from (2.33) that z(1) = Φ(1, µ)z(0) +

[εT (1) 0T ]T , where z(0) := [yT
1 (0) (y′2(0))T ]T ; and after substituting z(1) into (2.32), we

find

y(1) = bdiag(IJp, µ
−γ/2c2A)Φ(1, µ)z(0) +


 µ1−γc1IJp

−µ−γ/2c2IJp


 (η̄(0) + ηα(0)) +


 ε(1)

0


 .

(2.58)

Note that bdiag(IJp, µ
−γ/2c2A)Φ(t, µ) = Ψ(t, µ)bdiag(IJp, µ

−γ/2c2A) for t = 1, 2, . . .; and

y(0) = bdiag(IJp, µ
−γ/2c2A)z(0). Thus, the right hand side of (2.58) is equal to the right

hand side of (2.29) for t = 0.

Suppose next that (2.32) and (2.33) hold true for y(t) and z(t). The same will be shown

for y(t+1) and z(t+1). To this end, replace y(t) with the right hand side of (2.32) evaluated

at time instant t, into (2.29) to obtain

y(t + 1) = bdiag(I, µ−γ/2c2A)Φ(t + 1, µ)z(t) +


 µ1−γc1IJp

−µ−γ/2c2IJp


 (η̄(t) + ηα(t))

+ (Ψ(t + 1, µ)− IJp)


 µ1−γc1IJp

−µ−γ/2c2IJp


 η̄(t− 1) (2.59)

+ Ψ(t + 1, µ)


 µ1−γc1IJp

−µ−γ/2c2IJp


Pαη(t− 1)−


 µ1−γc1IJp

−µ−γ/2c2IJp


Pβη(t− 1)

(2.60)

+


 ε(t + 1)

0


 (2.61)

where Pα and Pβ are defined as Pα := [p1, . . . ,pJ ]T , Pβ := [p′1, . . . ,p
′
J ]T ; and the

p(
∑

b∈B |Nb|) × p submatrices pj and p′j are given by (pj)T := [(pj,1)T , . . . , (pj,|B|)T ],
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(p′j)
T := [(p′j,1)

T , . . . , (p′j,|B|)
T ] with pj,r,pj′,r defined for r = 1, . . . , |B| as

pT
j,r =





bT
|Nbr |,r(j) ⊗ Ip if j ∈ Nbr

0p×|Nbr |p if j /∈ Nbr

, (p′j,r)
T =




|Nbr |−111×|Nbr | ⊗ Ip if j ∈ Nbr

0p×|Nbr |p if j /∈ Nbr

.

Note that r(j) = 1, . . . , |Nbr | denotes the order in which ηbr
j (t) appears in {ηbr

j′ (t)}j′∈Nbr
.

Coming back to prove that y(t+1) is updated according to Lemma 2.3, observe that the

noise term in (2.59) can be easily written as bdiag(IJp, µ
−γ/2c2A)Rα

h(t + 1)η̄(t− 1). Then,

after algebraic manipulations the noise terms in (2.60) can be expressed as Řβ
h(t+1)η(t−1),

where the 2Jp× p(
∑

b∈B |Nb|) matrix Řβ
h(t + 1) := [[Řβ

h(t + 1)]T11 [Řβ
h(t + 1)]T21]

T is given

by

[Řβ
h(t + 1)]11 :=

3µ1−γc1

2
Pα − (µ1−γc1)2APα − 2µ2−γc1Rh(t + 1)Pα − µ1−γc1Pβ

[Řβ
h(t + 1)]21 := µ1−3γ/2c1c2APα + µ−γ/2c2(Pβ −Pα).

The remaining step is to show that Řβ
h(t + 1) = bdiag(IJp, µ

−γ/2c2A)Rβ
h(t + 1). If the

latter holds, then: (i) we group the noise terms in (2.59), (2.60) and (2.61); (ii) take out

bdiag(IJp, µ
−γ/2c2A) as a common factor; and (iii) conclude that y(t+1) is given by (2.32),

while z(t + 1) is provided by (2.33).

To show that Řβ
h(t + 1) = bdiag(IJp, µ

−γ/2c2A)Rβ
h(t + 1), it suffices to prove that there

exists matrix CR such that ACR = Pβ − Pα. To this end, it can be shown that (details

omitted due to space limitations) nullspace(PT
β − PT

α) = nullspace(A) = span(ν̄i), where

ν̄i := [νT
p,i . . .ν

T
p,i]

T , i = 1, . . . , p. Since A is symmetric, we have nullspace(A)⊥range(A).

As nullspace(PT
β −PT

α)⊥range(Pβ−Pα), it follows that range(Pβ−Pα) ⊆ range(A), which

further implies that we can find CR such that ACR = Pβ −Pα.

2.5.5 Proof of Lemma 2.4

We will specify first the step-size values for which Φ(µ) := Eh[Φ(t+1, µ)] has its eigenvalues

inside the unit circle.
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Lemma 2.6 If c1 is selected such that c1λ
+(A) > 4 and µ ∈ (0, µu), where µu is defined

in (2.38), then all the eigenvalues of Φ(µ) lie inside the unit circle; i.e., |λi(Φ(µ))| < 1 for

i = 1, . . . , 2Jp.

Proof: Following steps similar to those in [49, Appendix H], we express the eigenvalues as

roots of a second-order polynomial to determine bounds on µ that ensure |λi(Φ(µ))| < 1.

Further, the spectral radius of λmax(µ) := λmax(Φ(µ)), can be expressed as λmax(µ) =

1− µ1−γb1 + µb2 < 1, where b1, b2 are constants with b1 > 0.

Using Lemma 2.6, we can apply the results in [52, Section C6, pg. 321] to infer that for

µ ∈ [0, µu) there exists a finite constant 0 < κ(µ), such that

‖Φt
1(µ)‖ ≤ κ(µ)λt

max(µ), (2.62)

where Φ1(µ) and Φ2(µ) denote the Jp × 2Jp upper and lower block matrices of Φ(µ)

obtained by keeping the upper Jp or lower Jp rows of Φ(µ), respectively.

In order to upper bound ‖Φ(1 : t, µ)‖ in (2.39) we will establish a recursive inequality

for ‖Φ(1 : t, µ)‖ and then apply the discrete Bellman-Gronwall lemma [52, pg. 315]. To

this end, rewrite Φ(t, µ) as Φ(t, µ) = Φ(µ) + Φ̃(t, µ), where Φ̃(t, µ) := bdiag(2µ(Rh −
Rh(t)),0Jp). Then,

Φ(1 : t, µ) = Φ(t, µ)Φ(1 : t− 1, µ)

= Φ(µ)Φ(1 : t− 1, µ) + Φ̃(t, µ)Φ(1 : t− 1, µ)

= Φt(µ) +
t∑

τ=1

Φt−τ (µ)Φ̃(τ, µ)Φ(1 : τ − 1, µ) (2.63)

where Φ(1 : 0, µ) = IJp. Next, let Φ1(1 : t, µ) and Φ2(1 : t, µ) denote the Jp × 2Jp upper

and lower block matrices of Φ(1 : t, µ), respectively. Taking norm on both sides of (2.63)

leads to the recursive inequality

‖Φ1(1 : t, µ)‖ ≤ ‖Φt
1(µ)‖+

t∑

τ=1

‖Φt−τ
1 (µ)‖‖Φ̃(τ, µ)‖‖Φ1(1 : τ − 1, µ)‖ (2.64)

≤ κ(µ)λt
max(µ) +

t∑

τ=1

κ(µ)λt−τ
max(µ)‖Φ̃(τ, µ)‖‖Φ1(1 : τ − 1, µ)‖, (2.65)
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where the second inequality is obtained after using (2.62). Then, multiplying both sides of

(2.64) with λ−t
max(µ), and applying the the discrete Bellman-Gronwall lemma, leads to the

following non-recursive inequality:

‖Φ1(1 : t, µ)‖ ≤ κ(µ)λt
max(µ)

t∏

τ=1

(1 + λ−1
max(µ)κ(µ)‖Φ̃(τ, µ)‖)

= κ(µ)
t∏

τ=1

(λmax(µ) + κ(µ)‖Φ̃(τ, µ)‖). (2.66)

Raising both sides of (2.66) to the power of 1/t and applying the arithmetic-mean geometric-

mean inequality for the product term we arrive at

‖Φ1(1 : t, µ)‖1/t ≤ κ1/t(µ)

(
λmax(µ) + µκ(µ)t−1

t∑

τ=1

‖Φ̃(τ)‖
)

, (2.67)

where Φ̃(τ) = bdiag(2(Rh −Rh(τ)),0Jp).

Note at this point that limt→∞(κ(µ))1/t = 1, while from (a3) the strong of large numbers

implies that limt→∞ t−1
∑t

τ=1 ‖Φ̃(τ)‖ = Eh[‖Φ̃(t)‖] = 2mh̃ exists a.s., and is bounded. The

latter limits when combined with (2.67) give

lim sup
t→∞

‖Φ1(1 : t, µ)‖1/t ≤ λmax(µ) + 2µκ(µ)mh̃

= 1− µ1−γ [b1 − µγ(b2 + 2κ(µ)mh̃)] := λ′(µ), (2.68)

a.s.. Now, given that b1 > 0 we can always find a µp > 0 such that b1−µγ(b2+2κ(µ)mh̃) > 0

and λ′(µ) < 1 for all µ ∈ (0, µp]. Thus, for µ ∈ (0, µ′u) with µ′u := min(µu, µp) we ensure

that (2.68) is satisfied, while λ′(µ) < 1.

Next, we show that for µ ∈ (0, µ′u) matrix Φ2(1 : t, µ) also satisfies an inequality of the

form given in (2.68). Given that µ ∈ (0, µ′u) it follows from (2.68) that there exists t0 < ∞
and positive, a.s. finite random variable R such that

‖Φ1(1 : t, µ)‖ ≤ (λ′(µ))tR, for all t ≥ t0. (2.69)

Recall that for µ ∈ (0, µ′u) matrix Φ(µ) is stable (cf. Lemma 6); thus, similarl to (2.62) we

have ‖Φt
2(µ)‖ ≤ κ′(µ)λt

max(µ), where κ′(µ) is a positive constant.



2.5 Appendices 52

Focusing on the lower part Φ2(1 : t, µ) and taking norms in (2.63) we obtain

‖Φ2(1 : t, µ)‖ ≤ κ′(µ)λt
max(µ) + S(1 : t; t)

= κ′(µ)λt
max(µ) + S(1 : t0; t) + S(t0 + 1 : t; t) (2.70)

where S(t1 : t2; t) :=
∑t2

τ=t1
κ′(µ)λt−τ

max(µ)‖Φ̃(τ, µ)‖‖Φ1(1 : τ − 1, µ)‖. Next, we provide

bounds for the terms in (2.70) and examine how they behave as t → ∞. To this end, let

λ(µ) := max(λmax(µ), λ′(µ)), and use (2.69) to upper bound the third term in (2.70) as

S(t0 + 1 : t; t) ≤ κ′(µ)
t∑

τ=t0+1

λt−τ (µ)‖Φ̃(τ, µ)‖λτ−1(µ)R (2.71)

≤ κ′(µ)Rλt−1(µ)(t− t0)

[
(t− t0)−1

t∑

τ=t0+1

‖Φ̃(τ, µ)‖
]

. (2.72)

The quantity inside the square brackets in (2.72) converges a.s. to 2µmh̃ < ∞. Further,

R < ∞ a.s. and limt→∞ λt−1(µ)(t − t0) = 0 since λ(µ) < 1. Given these properties, it

follows readily that S(t0 + 1 : t; t) converges to zero a.s. as t → ∞. The second term in

(2.70) can be rewritten as

S(1 : t0; t) = κ′(µ)λt
max(µ)

[
t0∑

τ=1

λ−τ
max(µ)‖Φ̃(τ, µ)‖‖Φ1(1 : τ − 1, µ)‖

]

= κ′(µ)λt
max(µ)R′ ≤ κ′(µ)λt(µ)R′, (2.73)

where R′ is the quantity within the square brackets. Next, it suffices to show that R′ is

finite a.s. Since t0 < ∞ we have to show that each of the summands within R′ is finite

a.s. Observe first that λ−τ
max(µ) < ∞ for τ = 1, . . . , t0. Also, since E[‖Φ̃(t, µ)‖] < ∞ [cf.

(a3)], it follows that ‖Φ̃(t, µ)‖ < ∞ a.s. Next, notice that ‖Φ(1 : τ, µ)‖ ≤ ∏τ
i=1 ‖Φ(i, µ)‖

and recall that E[hj(t)hT
j (t)] < ∞ [cf. (a3)] which further implies that ‖Rh(t)‖ < ∞ a.s.

Thus, ‖Φ(i, µ)‖ < ∞ a.s. and consequently ‖Φ(1 : τ, µ)‖ ≤ ∞ a.s., for τ = 1, . . . , t0. Using

the previous bounds we can upper bound the right hand side in (2.70). Then, raising this

upper bound and the left hand side of (2.70) to the power of 1/t we have

‖Φ2(1 : t, µ)‖1/t ≤
(

κ′(µ) + R′κ′(µ) + Rκ′(µ)λ−1(µ)(t− t0)

[
t∑

τ=t0+1

‖Φ̃(τ, µ)‖
(t− t0)

])1/t

λ(µ).
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Since R, R′ < ∞ a.s., while the sample average within the square brackets converges to 2µmh̃

a.s., it follows readily that the quantity multiplying λ(µ) converges to one as t →∞. Thus,

lim supt→∞ ‖Φ2(1 : t, µ)‖1/t ≤ λ(µ) a.s., while λ(µ) < 1 for all µ ∈ (0, µ′u). Combining the

latter result with the one in (2.68), we deduce that lim supt→∞ ‖Φ(1 : t, µ)‖1/t ≤ λ(µ) < 1,

and consequently lim supt→∞ log (‖Φ(1 : t, µ)‖1/t) ≤ log(λ(µ)) < 0, a.s.

2.5.6 Proof of Lemma 2.5

The proof follows readily from the result in [51, Section VI, (A13)]. Specifically, (a3) implies

that: (i) Φ(t, µ) is stationary and ergodic; (ii) it holds that [cf. (a3)-(a4)]

E[‖Rα
h(t + 1)η̄(t− 1) + Rβ

h(t + 1)η(t− 1) + [εT (t + 1) 0T ]T ‖] < ∞

since E[‖Rα
h(t)‖] < ∞, E[‖Rβ

h(t)‖] < ∞ and E[‖η̄j(t)‖] < ∞; and (iii) Lemma 2.4 shows

that lim supt→∞ t−1 log(‖Φ(1 : t, µ)‖) ≤ log(λ(µ)) < 0. Conditions (i)-(iii) guarantee that

z(t) is weakly stochastically bounded [51, Section VI].

2.5.7 Proof of Proposition 2.1

Taking norms on both sides of (2.32) yields

‖y(t + 1)‖ ≤ ‖bdiag(IJp, µ
−γ/2c2A)‖‖z(t + 1)‖+ ‖[µ1−γc1IT

Jp − µ−γ/2c2IT
Jp]

T ‖‖η̄(t)‖

+ ‖[µ1−γc1IT
Jp − µ−γ/2c2IT

Jp]
T ‖‖ηα(t)‖. (2.74)

For brevity, let ξ(t) denote the sum of the last two terms in (2.74). Now recall that if Y1, Y2

are random variables and Y1 ≤ Y2, then Pr[Y1 ≥ δ] ≤ Pr[Y2 ≥ δ]; hence

Pr[‖y(t + 1)‖ ≥ δ] ≤ Pr[‖bdiag(IJp, µ
−γ/2c2A)‖‖z(t + 1)‖+ ξ(t) ≥ δ]. (2.75)

Another property needed in the remainder of the proof is that if Y1, Y2 are positive

random variables, then Pr[Y1 + Y2 ≥ δ] ≤ Pr[Y1 ≥ δ/2] + Pr[Y2 ≥ δ/2]. Applying this

property to the right hand side of (2.75) yields

Pr[‖y(t + 1)‖ ≥ δ] ≤ Pr[‖bdiag(IJp, µ
−γ/2c2A)‖‖z(t + 1)‖ ≥ δ/2] + Pr[ξ(t) ≥ δ/2].



2.5 Appendices 54

Markov’s inequality can now be used to obtain the upper bound Pr[ξ(t) ≥ δ/2] ≤
2δ−1E[ξ(t)]. Boundedness of E[‖Rα

h(t)‖], E[‖Rβ
h(t)‖], E[‖η̄(t)‖] and µ−γ/2, since µ ∈ (0, µ′u)

along with (a4) imply that 2E[ξ(t)] = cξ < ∞. Thus,

sup
t≥0

Pr[‖y(t+1)‖ ≥ δ] ≤ sup
t≥0

Pr[‖z(t+1)‖ ≥ (δ/2)‖bdiag(IJp, µ
−γ/2c2A)‖−1]+cξδ

−1. (2.76)

But from Lemma 2.5 we have that limδ→∞ supt≥0 Pr[‖z(t+1)‖ ≥ δ/2‖bdiag(IJp, µ
−γ/2c2A)‖−1] =

0 for any µ ∈ (0, µ′u). Hence, letting δ → ∞ on both sides of (2.76) we find that y(t) is

WSB; i.e.,

lim
δ→∞

sup
t≥0

Pr[‖y(t + 1)‖ ≥ δ] = 0. ¤

2.5.8 Proof of Proposition 2.2

Since y1(t + 1)− ȳ1(t + 1) = (z1(t + 1)− z̄1(t + 1)), it suffices to show that

lim
µ→0

sup
0≤t≤T/µ1−γ−β

Pr[‖z̄1(t)− z1(t)‖ ≥ δ] = 0.

To this end, subtract z̄1(t + 1) from z1(t + 1) and recursively substitute z1(t) − z̄1(t) to

obtain

z1(t + 1)− z̄1(t + 1) = [[Φ(1 : t + 1, µ)]11 0](z(0)− z̄(0))

+ 2µ
∑t

τ=0[[Φ(τ + 2 : t + 1, µ)]11 0]diag(Rh(τ + 1)−Rh,0)z̄(τ)

+ 2c1µ
2−γ ∑t

τ=0[Φ(τ + 2 : t + 1, µ)]11(Rh −Rh(τ + 1))η̄(τ − 1)

+ 2c1µ
2−γ ∑t

τ=0[Φ(τ + 2 : t + 1, µ)]11(Rh −Rh(τ + 1))Pαη(τ − 1) (2.77)

where [Φ(τ+2 : t+1, µ)]11 is the Jp×Jp upper left submatrix contained in Φ(τ+2 : t+1, µ).

Now, let T1(0, t), T2(0, t), T3(0, t) denote the norm of each of the last three summands in

(2.77), and T (0, t) :=
∑3

i=1 Ti(0, t). Since z(0) = z̄(0), it holds that ‖z1(t+1)− z̄1(t+1)‖ ≤
T (0, t− t0) + T (t− t0 + 1, t), from which it follows that

Pr[‖z1(t + 1)− z̄1(t + 1)‖ ≥ δ] ≤ Pr[T (0, t− t0) ≥ δ/2] + Pr[T (t− t0 + 1, t) ≥ δ/2] (2.78)

where t0 < ∞ will be selected appropriately later on.
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Thus, it suffices to prove that the two terms in (2.78) converge to zero as µ → 0. Toward

this objective, the first term in (2.78) can be upper bounded as

Pr[T (0, t−t0) ≥ δ/2] ≤ Pr[T1(0, t−t0) ≥ δ/4]+Pr[T2(0, t−t0) ≥ δ/8]+Pr[T3(0, t−t0) ≥ δ/8].

(2.79)

In order to show that the right hand side in (2.79) goes to zero, recall from (2.62) that

‖[Φt(µ)]11‖ ≤ κ(µ)λt
max(µ), where λmax(µ) = 1 − µ1−γb1 + µb2, with b1 > 0 and κ(µ)

finite positive constant. Note that (a3) ensures that there exists finite t′0 such that

|(t′0)−1
∑t′0

m=1 ‖Φ̃(m)‖ − E[‖Φ̃‖]| ≤ ∆ a.s. Then, setting t0 = t′0 and for t ≥ t′0, it fol-

lows from (2.67) that

‖[Φ(1 : t, µ)]11‖ ≤ κ(µ)
[
λmax(µ) + µκ(µ)(E[‖Φ̃(t)‖] + κ∆)

]t

≤ κ(µ)
(
1− µ1−γ(b1 − µγ(b2 + κ(µ)E[‖Φ̃‖] + κ(µ)κ∆))

)t
, (2.80)

where κ∆ ∈ [−∆, ∆]. We now contend that sup0≤t≤T/µ1−γ−β Pr[T1(0, t− t0) ≥ δ/4] → 0 as

µ → 0. Indeed, T1(0, t− t0) can be bounded as [cf. (2.45)-(46)]

T1(0, t− t0) ≤ 2µ

t−t0∑

τ=0

‖[Φ(τ + 2 : t + 1, µ)]11‖‖Φ̃(τ + 1)‖‖[[Φτ (µ)]11 [Φτ (µ)]12]‖‖z̄(0)‖

+ 2µ1+β
t−t0∑

τ=0

‖[Φ(τ + 2 : t + 1, µ)]11‖‖Φ̃(τ + 1)‖ (‖ζ1(τ)‖+ ‖ζ2(τ)‖+ ‖ζ3(τ)‖)

(2.81)

where

ζ1(τ) : = µ−β
τ−1∑

m=0

[[Φm(µ)]11 [Φm(µ)]12]Rα
h η̄(τ −m− 2)

ζ2(τ) : = µ−β
τ−1∑

m=0

[[Φm(µ)]11 [Φm(µ)]12]R
β
hη(τ −m− 2)

ζ3(τ) : = µ−β
τ−1∑

m=0

[Φm(µ)]11ε(τ −m). (2.82)

Next, recall that ‖[Φm(µ)]1i‖ ≤ κ(µ)λt
max(µ) with λmax(µ) = 1 − µ1−γb1 + µb2 and

κ(µ) > 0. Upon considering the expected norms of the noise terms in (2.82) and using (a4),
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we arrive after tedious but straightforward manipulations at

sup
0≤τ≤T/µ1−γ−β

E[‖Φ̃(τ + 1)‖‖ζi(τ)‖] = mζi
< ∞, i = 1, 2, 3. (2.83)

Using the result in (2.83) in conjunction with (2.80) leads to

lim
µ→0

sup
0≤t≤T/µ1−γ−β

E[T1(0, t− t0)] = 0. (2.84)

Applying once more Markov’s inequality for Pr(T1(0, t− t0) ≥ δ/4) yields

lim
µ→0

sup
0≤t≤T/µ1−γ−β

Pr[T1(0, t− t0) ≥ δ/4] = 0. (2.85)

Using similar arguments we can bound the second and third probability terms in (2.79).

Since sup0≤τ≤T/µ1−γ−β E[‖Φ̃(τ + 1)‖‖η̄b(τ − 1)‖] < ∞ and sup0≤τ≤T/µ1−γ−β E[‖Φ̃(τ +

1)‖‖η(τ − 1)‖] < ∞, use of (2.80) to bound ‖Φ(τ + 2 : t + 1, µ)‖, as well as Markov’s in-

equality (as in T1(0, t− t0)) implies that limµ→0 sup0≤t≤T/µ1−γ−β Pr[Ti(0, t− t0) ≥ δ/8] = 0,

for i = 2, 3. Combining these limits with the one in (2.85) establishes that

lim
µ→0

sup
0≤t≤T/µ1−γ−β

Pr[T (0, t− t0) ≥ δ/2] = 0. (2.86)

Consider next, the second probability term in (2.78). The three summands in (2.77)

comprising T1(t − t0 + 1, t) contain a finite number of terms, namely t0. Hence Markov’s

inequality yields Pr[T (t − t0 + 1, t) ≥ δ/2] ≤ 2
δ E[T (t − t0 + 1, t)]. Boundedness of the

regressor moments further ensures that the expectation in the right hand side of the last

inequality converges to zero as µ → 0. We have already shown that the supremum of the

two probability terms in (2.78) goes to zero as µ → 0 over the time interval [0, T/µ1−γ−β];

thus, the supremum of the left hand side in (2.78) also goes to zero for vanishing µ.

2.5.9 Proof of Equation (2.48)

The covariance in (2.48) follows readily from (2.46) after recalling that ηα(t) := Pαη(t).

Similarly, it is possible to find the covariance matrix of z̄(t) in (2.49) using the recursive

formula for z̄(t) in (2.45) and setting η̆(t+1) := Rα
h η̄(t−1)+Rβ

hη(t−1)+[εT (t+1) 0T ]T .
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Thus, we can readily obtain Rη̆. Next, focus on the structure of Rη̄ and Rη. From the

definition in (2.24) it follows that Rη̄ consists of p× p submatrices of the form

[Rη̄]jj′ =





∑

b∈Bj

∑
j′′∈Nb\{b}Rη̄b,j′′

|Nb|2 if j′ = j, and j = 1, . . . , J

∑

b∈Bj∩Bj′

∑
j′′∈Nb\{b}Rη̄b,j′′

|Nb|2 if j′ 6= j, and j, j′ = 1, . . . , J

where Rη̄b,j
:= E[η̄j

b(t)(η̄
j
b(t))

T ] denotes the covariance of the channel noise at bridge sensor

b when receiving from sensor j. In the same way it follows from (2.31) that Rη is a block

diagonal matrix with (
∑

b∈B |Nb|) diagonal blocks of size p× p. Each of these blocks is set

equal to Rηj,b
of the corresponding channel noise vector ηb

j(t). Note also that Rηj,j = 0.
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Chapter 3

Tracking Performance Analysis of

the Distributed LMS Algorithm

3.1 Introduction

This chapter deals with a fully-distributed version of the D-LMS algorithm, with major focus

towards quantifying its tracking performance in nonstationary environments. Relative to the

D-LMS variant in Chapter 2, the reformulation of the LMS cost introduced in this chapter

circumvents the requirement of the special type of sensors comprising the bridge sensor

subset. As a byproduct, this approach results in a fully distributed algorithm whereby all

sensors perform identical tasks, without introducing hierarchies that may require intricate

recovery protocols to cope with sensor failures. Utilization of a constant step-size endows

D-LMS with tracking capabilities, without hurting its resilience to communication noise.

A main contribution of the present chapter pertains to a detailed mean-square error

(MSE) tracking performance analysis for D-LMS (Section 3.5). For a time-varying parame-

ter fluctuating as a first-order autoregressive [AR(1)] process, and sensor observations that

are linearly related to it, the simplifying independence Gaussian setting assumptions [52, pg.

110], [43, pg. 448] are key enablers towards deriving exact closed-form expressions for the

MSE evolution and its steady-state value (Section 3.5.2). Mean and MSE stability are also

established, revealing sufficient conditions under which steady-state is attained. The AR(1)
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model subsumes a time-invariant parameter as a special case, and performance results for

the stationary case are readily obtained as a byproduct. Hence, the estimation/tracking

capabilities of D-LMS in the presence of: i) time-invariant; and ii) time-varying parameters

can be contrasted in a unified fashion. Of particular interest in these two scenarios are the

corresponding steady-state MSE versus step-size characteristics, which reveal fundamental

insights and differences similar to those observed in the classic LMS algorithm (Section

3.5.3). All in all, the importance of the aforementioned results is threefold: i) an exact

tracking MSE characterization is provided for D-LMS; ii) for the stationary case and ideal

inter-sensor links, similar results for the diffusion LMS algorithm [28] lay a common ground

for fair comparisons; and iii) for small step-sizes the conclusions extend to temporally cor-

related (non-)Gaussian data. Numerical tests corroborating the theoretical findings of this

chapter are presented in Section 3.6.

3.2 Network Model and Estimation Problem Statement

Consider an ad hoc WSN with sensors {1, . . . , J} := J . To effect energy-aware commu-

nications, sensor j communicates only with its (nearby) single-hop neighbors in Nj ⊆ J .

Under the natural assumption of symmetric inter-sensor links, the WSN is modeled as

an undirected graph G(V, E). The vertices in V correspond to the sensors and hence are

biunivocally mapped to the elements of J , while the edges in E represent the available

wireless links. Global connectivity information is captured by the symmetric adjacency

matrix E ∈ RJ×J , where [E]ij = 1 if i ∈ Nj and [E]ij = 0 otherwise. By convention

[E]jj = 1 ∀ j ∈ J so that G is not simple. The graph Laplacian L ∈ RJ×J will be useful

in the sequel, where L := D − E, and D := diag(|N1|, . . . , |NJ |). The adjustment of the

sensors’ transmission power as well as the initial WSN deployment are assumed to render G

connected. This is a minimum requirement ensuring that sensors’ data can percolate across

the whole WSN. Different from [27, 28, 42], the present network model accounts explicitly

for non-ideal sensor-to-sensor links, through a zero-mean additive noise vector ηi
j(t) with

covariance matrix Rηj,i := E[ηi
j(t)η

i
j(t)

T ] corrupting signals received at sensor j from sen-

sor i at discrete-time instant t. The noise vectors {ηi
j(t)}i∈Nj

j∈J are assumed temporally and
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spatially uncorrelated.

The WSN is deployed to estimate a signal vector s0(t) ∈ Rp×1 in a collaborative fashion

subject to single-hop communication constraints, by resorting to the linear LMS criterion;

see e.g. [43, pg. 171]. Per time instant t = 0, 1, 2, . . . , each sensor has available a regres-

sion vector hj(t) ∈ Rp×1 and a scalar observation xj(t), both assumed zero-mean without

loss of generality. The network-wide snapshot of data at time instant t can be compactly

represented in the global vector x(t) := [x1(t) . . . xJ(t)]T ∈ Rp×1 and regression matrix

H(t) := [h1(t) . . .hJ(t)]T ∈ RJ×p. A similar data setting was considered in [28]. The global

LMS estimator of interest can be written as [28], [27], [48]

ŝ(t) = arg min
s

E
[‖x(t)−H(t)s‖2

]
= arg min

s

J∑

j=1

E
[
(xj(t)− hT

j (t)s)2
]
. (3.1)

Suitable reformulation may be needed in order to acquire {hj(t)}j∈J based on the available

information across sensors. There are no general guidelines to this end, which is dictated

by the specific estimation/tracking problem at hand. For example, in target tracking ap-

plications where sensors rely on power or range measurements, the nonlinear data models

must be linearized before obtaining regressors as a function of sensor observations; see,

e.g., [2, pg. 137]. Another possibility is to obtain the regression vectors from the physics

of the problem, using standard kinematic models; see, e.g., [2, Ch. 6]. A distributed power

spectrum estimation problem was described in Remark 2.1 in Chapter 2, where regressors

are formed by stacking the last p local sensor observations.

Remark 3.1 (Motivation for adaptive processing) The gradient of the differentiable

cost in (3.1) depends on the (cross-) covariances RH(t) := E[HT (t)H(t)] and rHx(t) :=

E[HT (t)x(t)]. Any attempt to iteratively obtain ŝ(t) via gradient-based optimization algo-

rithms will require knowledge of RH(t) and rHx(t). In many WSN applications however, this

information may be either unavailable or time-varying, and thus impossible to acquire con-

tinuously. Tuned with the reduced-complexity requirements of WSNs, the arguably simplest

approach involves approximating the expectations coarsely via instantaneous realizations of

the sensor data as in the classical LMS, i.e., RH(t) ≈ HT (t)H(t) and rHx(t) ≈ HT (t)x(t).
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This exemplification of the adaptive step in turn leads to centralized stochastic (noisy)

gradient iterations, which one expects to perform well after sufficient data are acquired and

the unknown statistics are learnt. Still, the challenge is to enable such learning mechanisms

even when data is not centrally available, i.e., when entries of x(t) and rows of H(t) are

scattered across the WSN. In this context, the present chapter aims to develop a fully

distributed LMS-type algorithm, which relies on in-network, adaptive processing of the

available information across the WSN.

3.3 The D-LMS Algorithm

In this section we introduce the D-LMS algorithm, first going through the algorithmic con-

struction steps and salient features of its operation. The approach followed includes three

main building blocks: i) recast (3.1) into an equivalent separable form which facilitates dis-

tributed implementation; ii) split the optimization problem into simpler subtasks executed

locally at each sensor; and iii) invoke a stochastic approximation iteration to obtain an

adaptive LMS-type algorithm that can both handle the unavailability of (cross-) covariance

information, and also remain robust to signal variations. Important differences with respect

to the related approach in [48] are encountered in steps i) and ii); see also Remark 3.2 for

a summary of the merits of the present contribution relative to [48].

To distribute the cost in (3.1), replace the global variable s which couples the per-sensor

summands with auxiliary local variables s := {sj}J
j=1 representing candidate estimates of s

per sensor. These local estimates are utilized to reformulate (3.1) as the following convex

constrained minimization problem:

{ŝj(t)}J
j=1 = arg min

s

J∑

i=1

E
[
(xi(t)− hT

i (t)si)2
]
, s. t. sj = sj′ , j ∈ J , j′ ∈ Nj . (3.2)

The set of equality constraints in (3.2) involves variables of neighboring sensors only, forcing

an agreement across each sensor’s neighborhood. If the WSN graph G is connected, these

constraints impose network-wide consensus a fortiori, i.e., sj = s′j ∀j, j′ ∈ J . As an imme-

diate consequence, one finds that the optimization problems (3.1) and (3.2) are equivalent

in the sense that their optimal solutions coincide; i.e., ŝj(t) = ŝ(t), ∀ j ∈ J .
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3.3.1 Algorithm Construction

In order to tackle (3.2) in a distributed fashion, we will resort to the AD-MoM [7, p.

253]. Towards this end, consider the auxiliary variables z := {zj′
j }

j′∈Nj

j∈J and replace the

constraints in (3.2) with the equivalent ones

sj = zj′
j and sj′ = zj′

j , j ∈ J , j′ ∈ Nj , j 6= j′. (3.3)

The sole purpose of the variables z is to facilitate application of the AD-MoM, and they

will be eventually eliminated due to their inherent redundancy. Next, associate Lagrange

multipliers [v ,u ] := {vj′
j ,uj′

j }
j′∈Nj

j∈J with the constraints in (3.3), and form the quadratically

augmented Lagrangian function

La [s, z , v ,u ] =
J∑

j=1

E
[
(xj(t + 1)− hT

j (t + 1)sj)2
]

+
J∑

j=1

∑

j′∈Nj

[
(vj′

j )T (sj − zj′
j ) + (uj′

j )T (sj − zj
j′)

]

+
J∑

j=1

∑

j′∈Nj

c

2

[
‖sj − zj′

j ‖2 + ‖sj − zj
j′‖2

]
(3.4)

where c > 0 is a penalty coefficient. Sensor j will locally store and update a total of

3|Nj |+ 1 vectors in Rp×1, namely sj and {zj′
j ,vj′

j ,uj′
j }j′∈Nj

. We re-iterate however, that in

the process of deriving the local updating recursions many of these variables will turn out

to be redundant.

The AD-MoM entails an iterative process comprising three steps per time instant t =

0, 1, 2, . . .

[S1] Multiplier updates:

vj′
j (t) = vj′

j (t− 1) + c(sj(t)− zj′
j (t)), j ∈ J , j′ ∈ Nj (3.5)

uj′
j (t) = uj′

j (t− 1) + c(sj(t)− zj
j′(t)), j ∈ J , j′ ∈ Nj . (3.6)

[S2] Local estimate updates:

s(t + 1) = arg min
s
La [s, z (t), v(t),u(t)] . (3.7)
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[S3] Auxiliary variable updates:

z (t + 1) = arg min
z
La [s(t + 1), z , v(t),u(t)] . (3.8)

The multiplier recursions in [S1] correspond to gradient ascent iterations seeking the optimal

dual prices, and are customary in various methods of multipliers [7, Ch. 3]. On the other

hand, [S2] and [S3] represent block coordinate descent steps which respectively update s

and z in a cyclic fashion. At each step while minimizing the augmented Lagrangian, the

variables not being updated are treated as fixed constants and substituted with their most

up to date values. Interestingly, it is shown in Appendix A that [S1]-[S3] boil down to the

following simple set of subtasks carried out locally at each sensor j ∈ J ,

vj′
j (t) = vj′

j (t− 1) +
c

2
(sj(t)− sj′(t)), j′ ∈ Nj , (3.9)

sj(t + 1) = arg min
sj


E

[
(xj(t + 1)− hT

j (t + 1)sj)2
]
+

∑

j′∈Nj

[vj′
j (t)− vj

j′(t)]
T sj

+c
∑

j′∈Nj

∥∥∥∥sj − 1
2
(sj(t) + sj′(t))

∥∥∥∥
2

 . (3.10)

As promised, the set of auxiliary variables [z ,u ] have been eliminated; and each sensor, say

the j-th, has to store and update only (|Nj |+ 1)p scalars. To carry out the unconstrained

minimization in (3.10), observe that the cost is convex and differentiable. Thus, the first-

order necessary condition is also sufficient for optimality. Computing the gradient with

respect to sj and setting the result equal to zero, yields

E


−2hj(t + 1)

(
xj(t + 1)− hT

j (t + 1)sj

)
+

∑

j′∈Nj

(
vj′

j (t)− vj
j′(t)

)

+2c
∑

j′∈Nj

(
sj − 1

2
(sj(t) + sj′(t))

)
 = 0p. (3.11)

It is now apparent that sj(t + 1) can be obtained as the root of an equation of the form

f(sj) := E[ϕ(sj , xj(t + 1),hj(t + 1))] = 0p, where ϕ stands for the function inside the

expectation in (3.11) and corresponds to the stochastic gradient of the cost in (3.10). In

lieu of local (cross-) covariance information, namely rhjxj
:= E[hj(t + 1)xj(t + 1)] and
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Rhj
:= E[hj(t + 1)hT

j (t + 1)], the root of f(sj) = 0p is not computable in closed form

since f is unknown. Hence, motivated by stochastic approximation techniques1 which iter-

atively find the root of an unknown function f(sj) given a time-series of noisy observations

{ϕ(sj(t), xj(t + 1),hj(t + 1))}∞t=0, the proposed recursion for every j ∈ J is

sj(t + 1) = sj(t) + µj


2hj(t + 1)ej(t + 1)−

∑

j′∈Nj

(vj′
j (t)− vj

j′(t))− c
∑

j′∈Nj

(sj(t)− sj′(t))




(3.12)

where µj is a constant step-size and ej(t + 1) := xj(t + 1) − hT
j (t + 1)sj(t) is the local a

priori error. Recursions (3.9)-(3.12) are tabulated as Algorithm 2, and constitute the D-

LMS algorithm that can be arbitrarily initialized. To capture the effects of receiving noise

corrupting the variables exchanged among neighboring sensors, the D-LMS recursions are

modified to yield

vj′
j (t) = vj′

j (t− 1) +
c

2
(sj(t)− (sj′(t) + ηj′

j (t))), j′ ∈ Nj (3.13)

sj(t + 1) = sj(t) + µj


2hj(t + 1)ej(t + 1)−

∑

j′∈Nj

(vj′
j (t)− (vj

j′(t) + η̄j′
j (t)))

−c
∑

j′∈Nj

(sj(t)− (sj′(t) + ηj′
j (t)))


 (3.14)

where ηj′
j (t) and η̄j′

j (t) denote the additive communication noise present in the reception

of sj′(t) and vj
j′(t) at sensor j, respectively. In detail, during time instant t + 1 sensor j

receives the local estimates {sj′(t) + ηj′
j (t)}j′∈Nj

and plugs them into (3.13) to evaluate

vj′
j (t) for j′ ∈ Nj . Each one of the updated local Lagrange multipliers {vj′

j (t)}j′∈Nj
is

subsequently transmitted to the corresponding neighbor j′ ∈ Nj . Then, upon reception

of {vj
j′(t) + η̄j′

j (t)}j′∈Nj
, the multipliers are jointly used along with {sj′(t) + ηj′

j (t)}j′∈Nj

and the newly acquired local data {xj(t + 1),hj(t + 1)} to obtain sj(t + 1) via (3.14). The

(t + 1)-st iteration is concluded after sensor j broadcasts sj(t + 1) to its neighbors.

The use of a constant step-size µj endows D-LMS with tracking capabilities. This is

1Such as the celebrated Robbins-Monro algorithm; see e.g., [26, Ch. 1].
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Algorithm 2 : D-LMS

Arbitrarily initialize {sj(0)}J
j=1 and {vj′

j (−1)}j′∈Nj

j∈J .

for t = 0, 1,. . . do

All j ∈ J : transmit sj(t) to neighbors in Nj .

All j ∈ J : update {vj′
j (t)}j′∈Nj

using (3.13).

All j ∈ J : transmit vj′
j (t) to each j′ ∈ Nj .

All j ∈ J : update sj(t + 1) using (3.14).

end for

desirable in a constantly changing environment, within which WSNs are envisioned to op-

erate. Some related consensus-based estimation approaches compromise adaptability, by

introducing a diminishing step-size to suppress the error-propagation effects of communi-

cation noise; see, e.g., [21] and [25]. D-LMS is shown to be robust against communication

noise in Section 3.5, a property directly inherited from the AD-MoM; see also [49] for related

claims in single-shot non-adaptive distributed estimation.

Remark 3.2 (Comparison with the D-LMS algorithm in Chapter 2) To enable task

parallelization via AD-MoM while ensuring that estimates agree across the whole WSN, the

approach in the previous chapter reformulates (3.1) by relying on the so called bridge sensor

subset. Not only setting-up – but also readjusting the bridge sensor set, e.g., when sen-

sors inevitably fail in battery-limited WSN deployments – requires additional coordination

among sensors with an associated communication overhead. The approach followed here

does not require such a bridge sensor set, and in this sense, it offers a fully distributed, ro-

bust, and resource efficient LMS-type algorithm for use in ad hoc WSNs. The contributions

in this chapter are also relevant to the D-LMS variant in Chapter 2, as the performance

analysis in the forthcoming sections carries over with minor adjustments; see also [31].

3.3.2 D-LMS Algorithm with Ideal Links

Consider an ideal scenario whereby sensors are able to communicate via error-free links.

Such an operational setup may arise, e.g., whenever the use of powerful channel codes ren-

ders inter-sensor links virtually noise-free. Next, we show that under such assumptions,
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D-LMS can be simplified to yield a set of local recursions which are equivalent to (3.9) and

(3.12), while incurring notably lower communication and reduced computational complexi-

ties with respect to the original version of the algorithm.

Specifically, note first that if the Lagrange multipliers v are initialized such that

vj′
j (−1) = −vj

j′(−1) with j ∈ J and j′ ∈ Nj , then in the absence of communication

noise one finds from (3.9) that vj′
j (t) = −vj

j′(t) for all t ≥ 0. By relying on this identity

and starting from (3.12), we arrive at a simplified recursion to update the local estimates

sj(t + 1) for all j ∈ J

sj(t + 1) = sj(t) + µj


2hj(t + 1)ej(t + 1)− 2

∑

j′∈Nj

vj′
j (t)− c

∑

j′∈Nj

(sj(t)− sj′(t))


 . (3.15)

The specific initialization requirement for the multipliers is not restrictive, as it can be

readily satisfied by selecting vj′
j (−1) = 0p for j ∈ J and j′ ∈ Nj without the need of extra

coordination among sensors.

The second summand inside the square brackets in (3.15) incorporates only the local

multipliers {vj′
j (t)}j∈Nj stored at sensor j. Hence, multipliers need not be communicated

to the neighboring sensors at all. What is more, multipliers enter (3.15) only through their

local sum across j′ ∈ Nj , so that there is no need to keep track of them separately. This

motivates introducing the new set of local variables pj(t) := 2
∑

j′∈Nj
vj′

j (t) for j = 1, . . . , J ,

which have to be updated in conjunction with sj(t) The updating rule for pj(t) follows

immediately from (3.9), and the final recursions per sensor j ∈ J are

pj(t) = pj(t− 1) + c
∑

j′∈Nj

(sj(t)− sj′(t)) (3.16)

sj(t + 1) = sj(t) + µj


2hj(t + 1)ej(t + 1)− pj(t)− c

∑

j′∈Nj

(sj(t)− sj′(t))


 . (3.17)

Interestingly, (3.16)-(3.17) require each sensor to store and update only 2p scalars, regardless

of the WSN topology and corresponding neighborhood sizes. While diffusion LMS [28]

needs half the number of scalar recursions, in D-LMS [cf. (3.13)-(3.14)] sensor j has to

store and update (|Nj |+ 1)p scalars. With regards to communication cost incurred by the
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Algorithm 3 : D-LMS with Ideal Links
Arbitrarily initialize {sj(0)}J

j=1 and set {pj(−1) = 0p}j∈J .

for t = 0, 1,. . . do

All j ∈ J : transmit sj(t) to neighbors in Nj .

All j ∈ J : update pj(t) using (3.16).

All j ∈ J : update sj(t + 1) using (3.17).

end for

D-LMS variant in (3.16)-(3.17), on a per-iteration basis, sensor j receives |Nj |p scalars due

to {sj′(t)}j′∈Nj
and transmits p scalars corresponding to sj(t + 1); exactly as in diffusion

LMS. Recall that D-LMS in (3.13)-(3.14) incurs an additional cost of 2|Nj |p communicated

scalars due to the reception and transmission of {vj
j′(t)}j′∈Nj

and {vj′
j (t)}j′∈Nj

, respectively.

Recursions (3.16)-(3.17) (also tabulated as Algorithm 3) are equivalent to D-LMS whenever

ηj′
j (t) = η̄j′

j (t) = 0p in (3.13)-(3.14). Hence, both will achieve identical convergence rates

and estimation performance, making Algorithm 3 the most attractive alternative when noise

is not an issue as corroborated via the numerical tests in Section 3.6. However, there is a

price paid for the reduced amount of communications and computational savings as clarified

on the ensuing remark.

Remark 3.3 (Communication noise resilience) The D-LMS variant in (3.16)-(3.17) is

only applicable when communication links are ideal. Being equivalent to D-LMS under this

assumption, one might still be tempted to replace {sj′(t)}j′∈Nj
with {sj′(t) + ηj′

j (t)}j′∈Nj

in recursions (3.16)-(3.17) to capture the effects of noise corrupting the exchanged local

estimates. As it turns out, in the process of running (3.16)-(3.17) noise will accumulate

resulting in local estimates whose variance grows unbounded as t →∞. The reduced com-

munication overhead is thus counterbalanced by the lack of resilience in the presence of

communication noise. As a byproduct, this highlights the key role played by the Lagrange

multiplier exchanges in rendering D-LMS – and generally all MoM-based distributed algo-

rithms – robust to communication noise; see also [49] for further details.
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3.4 Analysis Preliminaries

Our approach to performance analysis relies on a compact error-form representation of D-

LMS as a linear time-varying stochastic difference equation. As discussed in this section,

the resulting estimation error covariance matrix encompasses all the information needed to

evaluate the relevant performance metrics; namely MSE, excess mean-square error (EMSE)

and mean-square deviation (MSD). The aforementioned figures of merit ultimately assess

the performance of D-LMS, both on a per-sensor basis and collectively by considering the

WSN as a whole.

3.4.1 Error-form D-LMS

In this subsection, we start from the D-LMS recursions in (3.13)-(3.14) and characterize the

evolution of the local estimation errors {y1,j(t) := sj(t) − s0(t)}J
j=1 and multiplier-based

quantities {y2,j(t) :=
∑

j′∈Nj
(vj′

j (t − 1) − vj
j′(t − 1))}J

j=1. It turns out that a convenient

global state capturing the spatio-temporal dynamics of D-LMS can be defined as y(t) :=

[yT
1 (t) yT

2 (t)]T = [yT
1,1(t) . . .yT

1,J(t) yT
2,1(t) . . .yT

2,J(t)]T . While the need of the local errors

within y1(t) is apparent, augmentation with the seemingly unnecessary y2(t) will prove

useful to obtain a simple, first-order difference equation for y(t). Otherwise, a first-order

recursion for y1(t) is impossible. In order to proceed, we shall require for all j ∈ J that:

(a1) Sensor observations obey xj(t) = hT
j (t)s0(t − 1) + εj(t), where the zero-mean white

noise {εj(t)} has variance σ2
εj

.

Linear models are commonly used throughout the adaptive signal processing literature to

facilitate stability and performance analysis, e.g., [43], [52, Ch. 5,9], [28], [27], and [48].

Observation noise variances can differ across sensors, accounting for faulty sensing devices

presumably leading to larger values of σ2
εj

.

Remark 3.4 (Sensor data assumptions) An attractive feature of D-LMS is that it can

be applied to a wide class of distributed linear regression problems. Indeed, D-LMS does

not require prior knowledge of a data model to describe the sensor observations, as the
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underlying process statistics are learnt ‘on-the-fly’. In this sense, D-LMS differs from the

distributed Kalman filtering approaches in [35], [45], and [9], which are only applicable when

state and observation models are available locally at each sensor. When it comes to stability

and performance evaluation however, a meaningful ‘ground-truth’ model should be adopted

to carry out the analysis and enable fair comparison among competing alternatives. It is

true that assumption (a1) delimitates the scope of the forthcoming analysis, though by no

means restrains D-LMS from being applied in broader settings.

To concisely capture the effects of both observation and communication noise on

the estimation errors across the WSN, define the Jp × 1 noise vectors ε(t) :=

2µ[hT
1 (t)ε1(t) . . .hT

J (t)εJ(t)]T and η̄(t) := [η̄T
1 (t) . . . η̄T

J (t)]T , where vectors {η̄j(t)}j∈J are

given by

η̄j(t) :=
∑

j′∈Nj

η̄j′
j (t) (3.18)

and Rη̄ := E[η̄(t)η̄T (t)]. The vector in (3.18) amounts to the accumulated communica-

tion noise at sensor j, due to the reception of all required multipliers at time t, namely

{vj
j′(t)}j′∈Nj

. Next, introduce the p(
∑J

j=1 |Nj |)× 1 vector

η(t) :=
[{(η1

j′(t))
T }j′∈N1 . . . {(ηJ

j′(t))
T }j′∈NJ

]T
(3.19)

which comprises the receiver noises corrupting transmissions of local estimates across

the whole network at time instant t, and define Rη := E[η(t)ηT (t)]. Finally, let

Lc := cL ⊗ Ip ∈ RJp×Jp be a matrix capturing the WSN topology through the (scaled)

graph Laplacian L, and arrange the instantaneous outer products of regression vectors in

Rh(t) := bdiag
(
h1(t)hT

1 (t), . . . ,hJ(t)hT
J (t)

) ∈ RJp×Jp. Based on these definitions and as-

suming for simplicity in exposition that µj = µ for all j ∈ J , the following instrumental

lemma is established in Appendix B.

Lemma 3.1 Under (a1) and for t ≥ 0, the global state y(t) evolves according to

y(t + 1) = bdiag(IJp,Lc)z(t + 1) +


 µIJp

0Jp×Jp


 η̄(t) +


 µ(3Pα −Pβ)

Pβ −Pα


η(t) (3.20)
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where the inner state z(t) := [zT
1 (t) zT

2 (t)]T is arbitrarily initialized and updated according

to

z(t + 1) = Φ(t + 1, µ)z(t) +


 ε(t + 1)

0Jp


−


 1J ⊗ (s0(t + 1)− s0(t))

0Jp




+ Φ(t + 1, µ)


 µIJp

0Jp×Jp


 η̄(t− 1) + Φ(t + 1, µ)


 µ(3Pα −Pβ)

C


η(t− 1)

(3.21)

and the 2Jp × 2Jp transition matrix Φ(t, µ) consists of the blocks [Φ(t, µ)]11 = IJp −
2µ(Rh(t) + Lc), [Φ(t, µ)]12 = −µLc and [Φ(t, µ)]21 = [Φ(t, µ)]22 = LcL

†
c. The matrix

C is chosen such that LcC = Pβ −Pα, where the structure of the time-invariant matrices

Pα and Pβ is given in Appendix B.

The desired state y(t) is obtained as a rank-deficient linear transformation of the inner

state z(t), plus a stochastic offset due to the effects of communication noise. A linear, time-

varying, first-order difference equation describes the dynamics of z(t), and hence of y(t), via

the algebraic transformation in (3.20). The time-varying nature of (3.20)-(3.21) is inherited

from Φ(t, µ) that depends on the regression vectors within Rh(t). Four stochastic inputs are

clearly discernible from (3.21): i) communication noise η(t − 1) affecting the transmission

of local estimates; ii) communication noise η̄(t−1) contaminating the Lagrange multipliers;

iii) observation noise within ε(t + 1); and iv) a forcing term due to the true ‘parameter

speed’ s0(t + 1)− s0(t).

3.4.2 Performance Metrics

When it comes to performance evaluation of adaptive algorithms, it is customary to consider

as figures of merit the so-called MSE, excess mean-square error (EMSE) and mean-square

deviation (MSD) [43], [52]. In the present setup for distributed adaptive estimation, it is

pertinent to address both global (network-wide) and local (per-sensor) performance [28].

After recalling the definitions of the local a priori error ej(t) := xj(t)− hT
j (t)sj(t− 1) and

local estimation error y1,j(t) := sj(t)−s0(t), the per-sensor performance metrics are defined
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as

MSEj(t) := E[e2
j (t)]

EMSEj(t) := E[(hT
j (t)y1,j(t− 1))2]

MSDj(t) := E[‖y1,j(t)‖2]

whereas their global counterparts are defined as the respective averages across sensors, e.g.,

MSE(t) := J−1
∑J

j=1 E[ej(t)2] and so on. Assume ∀ j ∈ J that:

(a2) Vectors {hj(t)} are spatio-temporally white with covariance matrix Rhj Â 0p×p; and

(a3) Vectors {hj(t)}, {εj(t)}, {ηj′
j (t)}j′∈Nj

and {η̄j′
j (t)}j′∈Nj

are independent.

Assumptions (a1)-(a3) comprise the widely adopted independence setting, which is in-

strumental in rendering the subsequent performance analysis tractable; see e.g., [52, pg.

110], [43, pg. 448]. Clearly, (a2) can be violated in, e.g., FIR filtering of signals (regressors)

with a shift structure as in the distributed power spectrum estimation problem described

in [48, Remark 1]. Nonetheless, for small step-sizes the upshot of the analysis extends to

correlated data as will be demonstrated via computer simulations in Section 3.6.

Next, we show that it suffices to evaluate the state covariance matrix Ry(t) :=

E[y(t)yT (t)] in order to assess the aforementioned performance metrics. To this end, note

that by virtue of (a1) it is possible to write ej(t) = −hT
j (t)y1,j(t − 1) + εj(t). Because

y1,j(t − 1) is independent of the zero-mean {hj(t), εj(t)} under (a1)-(a3), from the pre-

vious relationship between the a priori and estimation errors one finds that MSEj(t) =

EMSEj(t) + σ2
εj

. Hence, it suffices to focus on the evaluation of EMSEj(t), through which

MSEj(t) can also be determined. If Ry1,j (t) := E[y1,j(t)yT
1,j(t)] denotes the j-th local error

covariance matrix, then MSDj(t) = tr(Ry1,j (t)); and under (a1)-(a3), a simple manipulation

yields

EMSEj(t) = E[tr((hT
j (t)y1,j(t− 1))2)] = tr(E[hj(t)hT

j (t)y1,j(t− 1)yT
1,j(t− 1)])

= tr(E[hj(t)hT
j (t)]E[y1,j(t− 1)yT

1,j(t− 1)]) = tr(RhjRy1,j (t− 1)).

Observe that the global error covariance matrix corresponds to the Jp× Jp upper left sub-

matrix [Ry(t)]11 of Ry(t). Further, its j-th p×p diagonal submatrix (j = 1, . . . , J) denoted
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by [Ry(t)]11,j is Ry1,j (t). It follows that with Rh := E[Rh(t)] = bdiag(Rh1 , . . . ,RhJ
),

the global performance metrics are given by MSD(t) = J−1tr([Ry(t)]11) and EMSE(t) =

J−1tr(Rh[Ry(t − 1)]11). In a nutshell, deriving a closed-form expression for Ry(t) enables

the evaluation of all performance metrics of interest.

3.5 Performance Analysis of D-LMS Tracking

In this section, a performance analysis is conducted for the D-LMS tracking algorithm. For

that purpose, we first introduce a commonly adopted model for the time-varying param-

eter s0(t), and resort to a simplifying Gaussian assumption on the regression vectors to

complement (a1)-(a3). Main results include deriving an exact closed-form recursion for the

global error covariance matrix [Ry(t)]11, and establishing the existence of step-sizes ensur-

ing stability of D-LMS both in the mean and MSE-sense. Expressions for the steady-state

local and global figures of merit are also provided. To conclude, the steady-state EMSE is

viewed as a function of the step-size, and is compared for time-invariant and time-varying

parameters. While in the former case the trend is monotonically increasing, when tracking

slowly time-varying processes there exists a non-vanishing optimal step-size minimizing the

limiting error.

To characterize fluctuations of the time-varying parameter s0(t), consider ∀ j ∈ J a:

(a4) First-order autoregressive [AR(1)] model, i.e.,




s0(t) = s0 + s̆(t)

s̆(t) = Θs̆(t− 1) + ζ(t)

where Θ ∈ Rp×p has eigenvalues with modulus within [0, 1), the driving noise {ζ(t)}
is zero-mean, white with covariance matrix Rζ Â 0p×p; and E[s̆(−1)] = 0p.

Under (a4), the perturbation due to the parameter velocity in (3.21) becomes

−

 1J ⊗ (s0(t + 1)− s0(t))

0Jp


 =


 1J ⊗ (Ip −Θ)s̆(t)

0Jp


−


 1J ⊗ ζ(t + 1)

0Jp


 , (3.22)

and its expectation vanishes for all t ≥ 0. Further, (a3) is augmented and replaced by
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(a5) Vectors {hj(t)}, {εj(t)}, {ζ(t)}, s̆(−1), {ηj′
j (t)}j′∈Nj

and {η̄j′
j (t)}j′∈Nj

are indepen-

dent.

The model in (a4) provides a simple description of a time-varying parameter, and has

been widely adopted to evaluate the performance of (centralized) adaptive filters [52, pg.

121], [43, pg. 360]. The true parameter s0(t) has been split into a ‘DC level’ s0 which is

superimposed to the ‘AC component’ s̆(t), with fluctuations adhering to a stable vector

AR(1) process. Two other models of interest are obtained by simple modifications to (a4):

(a4.1) Time-invariant parameter, i.e., s0(t) = s0 is subsumed by (a4), by selecting Θ =

Rζ = 0p×p.

(a4.2) Random-walk model, i.e., s0(t) = s0(t−1)+ζ(t), where {ζ(t)} is zero-mean, white,

with covariance matrix Rζ Â 0; and E[s0(−1)] = 0p. Such a model is obtained by

letting s0 = 0p and Θ = Ip in (a4).

A random-walk is the simplest stochastic model to describe variations of s0(t), and has been

also considered for performance analysis of trackers; see, e.g., [52, pg. 121] and [43, pg. 359].

It could be arguably thought as not meaningful due to its increasing variance, thus violating

the sensor’s limited dynamical range which requires E[x2
j (t)] < ∞, ∀ t. To circumvent

this problem, the forthcoming analysis generalizes [31] by considering the (asymptotically)

stationary case in (a4). When Θ is a stable matrix, i.e., λmax(Θ) < 1, the steady-state

covariance matrix of s0(t) has finite entries, and obeys the Lyapunov equation Rs0(∞) =

ΘRs0(∞)ΘT + Rζ . In any case, the model is simple but well justified as the resulting

analysis sheds sufficient light on the key aspects of D-LMS when it comes to tracking.

3.5.1 Mean Stability

From Lemma 3.1 it is straightforward to establish that local estimates obtained via D-LMS

are asymptotically unbiased, implying that consensus in the mean-sense is achieved on s0.

Proposition 3.1 Under (a1)-(a2) and (a4)-(a5), the D-LMS algorithm achieves consensus

in the mean, i.e.,

lim
t→∞E[y1,j(t)] = 0p, ∀ j ∈ J
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provided the step-size is chosen such that µ ∈ (0, µu) with

µu := min
(

2
λmax(Rh + Lc)

,
2

λmax(2Rh + (3/2)Lc)

)
. (3.23)

Proof: Based on the independence setting assumptions (a1)-(a2), (a5) and since

the data is zero-mean, one obtains after taking expectations on (3.20) and (3.21) that

E[y(t)] = bdiag(IJp,Lc)E[z(t)] and E[z(t)] = Φ(µ)E[z(t − 1)], where Φ(µ) := E[Φ(t, µ)].

Assumption (a4) was also invoked to render the expectation of (3.22) null. The following

lemma specifies the step-size values under which Φ(µ) is a stable matrix.

Lemma 3.2 If µ > 0 is chosen smaller than (3.23), then Φ(µ) is a stable matrix, i.e.,

λmax(Φ(µ)) < 1.

Proof: Following steps similar to those in [49, Appendix H], it is possible to express

the eigenvalues of Φ(µ) as the roots of a second-order polynomial to determine bounds

on µ that ensure λmax(Φ(µ)) < 1. Further, for sufficiently small µ the eigenvalues with

largest modulus correspond to a complex conjugate pair, while the spectral radius scales as

λmax(Φ(µ)) ∼ 1 − µκ, where κ > 0 is a finite constant. From Lemma 3.2 and the theory

of linear time-invariant dynamical systems, E[z(t)] is exponentially convergent to zero for

µ ∈ (0, µu). Noting that E[y1(t)] = E[z1(t)] [cf. (3.20)], the result follows. Interestingly, µu

resembles the first-order (mean) stability bound for the centralized LMS algorithm, namely

2/λmax(Rh) [52, pg. 111]. The main difference here is that this bound is also affected by

the topology of the WSN, via the graph Laplacian matrix within Lc.

3.5.2 MSE Stability and Performance Evaluation

Turning to MSE stability and performance analysis, observe from the upper Jp × 1 block

of y(t + 1) in (3.20) that y1(t + 1) = z1(t + 1) + µ[η̄(t) + (3Pα −Pβ)η(t)]. Under (a2) and

(a5), z1(t + 1) is independent of the zero-mean {η̄(t),η(t)}; hence,

[Ry(t)]11 = [Rz(t)]11 + µ2[Rη̄ + (3Pα −Pβ)Rη(3Pα −Pβ)T ] (3.24)
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based on which we obtain Rz(t) := E[z(t)zT (t)]. From the coupling between z(t) and s̆(t)

entering through (3.22), it is convenient to consider the augmented state ž(t) := [zT (t) 1T
J ⊗

s̆T (t)]T in order to perform covariance calculations [52, pg. 124]. From (3.21), (a4) and

(3.22), one finds that ž(t) can be recursively updated as

ž(t + 1) =


 Φ(t + 1, µ)

[
(IJ ⊗ (Ip −Θ))T 0Jp×Jp

]T

0Jp×2Jp IJ ⊗Θ


 ž(t) +


 ε(t + 1)

02Jp




+




−1J ⊗ ζ(t + 1)

0Jp

1J ⊗ ζ(t + 1)


 +


 Φ(t + 1, µ)

0Jp×2Jp


 (η̄µ(t− 1) + ηµ(t− 1)) (3.25)

:= Ω(t + 1, µ)ž(t) + ν(t + 1) (3.26)

where for notational convenience Ω(t+1, µ) denotes the new transition matrix and ν(t+1)

encapsulates all three forcing terms. Note that in writing (3.25) we have introduced

η̄µ(t) :=


 µIJp

0Jp×Jp


 η̄(t), ηµ(t) :=


 µ(3Pα −Pβ)

C


η(t) (3.27)

while the structure of the respective covariance matrices Rη̄µ
:= E[η̄µ(t)η̄T

µ (t)] and Rηµ
:=

E[ηµ(t)ηT
µ (t)] is given in Appendix C.

By definition of the augmented state ž(t), the desired covariance matrix Rz(t) clearly

corresponds to the 2Jp × 2Jp upper left submatrix of Rž(t) := E[ž(t)žT (t)]. Towards

obtaining a closed-form expression for Rž(t), observe that for all j ∈ J there exist p × p

unitary matrices Uj that are arranged in U := bdiag(U1, . . . ,UJ) such that UjRhj
UT

j =

Λj = diag(λj
1, . . . , λ

j
p), and also URhUT = Λ = bdiag(Λ1, . . . ,ΛJ). For the subsequent

arguments, it will prove useful to introduce the (invertible) change of variables z̃(t) := Ũž(t)

with Ũ := bdiag(U, I2Jp). To proceed, specialize (a2) by assuming that:

(a6) Vectors {hj(t)} are spatio-temporally white Gaussian with covariance matrix Rhj Â
0p.

The Gaussianity assumption is instrumental in obtaining closed-form expressions for the

regressors’ fourth-order moments, which arise in the evaluation of Rz̃(t + 1) as shown next.
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Proposition 3.2 Under (a4)-(a6) and for t ≥ 0, the covariance matrix of z̃(t) obeys the

first-order matrix recursion given by

Rz̃(t + 1) =M(Ω̃(µ),Rz̃(t)) +M(Φ̃(µ), bdiag(U, IJp)(Rη̄µ
+ Rηµ

)bdiag(UT , IJp))

+ 4µ2bdiag(σ2
ε1Λ1, . . . , σ

2
εJ

ΛJ ,02Jp×2Jp)

+ Ũ
(
([−1 0 1]T [−1 0 1])⊗ (1J×J ⊗Rζ)

)
ŨT (3.28)

with Ω̃(µ) := ŨE[Ω(t, µ)]ŨT and Φ̃(µ) := ŨE[[Φ(t + 1, µ)T 02Jp×Jp]T ]bdiag(UT , IJp)),

while

M(S,T) := STST + 4µ2bdiag((IJ ⊗ 1p×p) ◦Λ[T]11Λ,02Jp×2Jp)

+ 4µ2bdiag(tr(Λ1[T]11,1)Λ1, . . . , tr(ΛJ [T]11,J)ΛJ ,02Jp×2Jp). (3.29)

Proof: In the transformed space, (3.26) becomes z̃(t) = Ω̃(t, µ)z̃(t − 1) + ν̃(t), where

Ω̃(t, µ) := ŨΩ(t, µ)ŨT and ν̃(t) := Ũν(t). Using (a4)-(a6), it follows that E[Ω̃(t, µ)z̃(t −
1)ν̃T (t)] = 03Jp×3Jp. Therefore, Rz̃(t) = E[Ω̃(t, µ)Rz̃(t − 1)Ω̃T (t, µ)] + E[ν̃(t)ν̃T (t)] and

we start by showing that the first expectation is M(Ω̃(µ),Rz̃(t − 1)). Split Ω̃(t, µ) =

Ω̄(µ)− 2µbdiag(Rh̃(t),02Jp×2Jp) into its deterministic and random components, and drop

for simplicity the t− 1 argument in Rz̃(t− 1) to obtain

E[Ω̃(t, µ)Rz̃Ω̃T (t, µ)] = Ω̄(µ)Rz̃Ω̄T (µ)

+ 4µ2E[bdiag(Rh̃(t),02Jp×2Jp)Rz̃bdiag(Rh̃(t),02Jp×2Jp)]

− 2µ[Ω̄(µ)Rz̃bdiag(Λ,02Jp×2Jp) + (Ω̄(µ)Rz̃bdiag(Λ,02Jp×2Jp))T ].

(3.30)

The second summand in the right hand side of (3.30) has the structure 4µ2bdiag(A,02Jp×2Jp),

where A ∈ RJp×Jp can be partitioned into p× p blocks

[A]i,j =





E[h̃j(t)h̃T
j (t)[Rz̃]11,jh̃j(t)h̃T

j (t)] = 2Λj [Rz̃]11,jΛj + tr(Λj [Rz̃]11,j)Λj , i = j

E[h̃i(t)h̃T
i (t)[Rz̃]11,i,jh̃j(t)h̃T

j (t)] = Rhi [Rz̃]11,i,jRhj , i 6= j

for i, j = 1, . . . , J . To evaluate the regressor’s fourth-order moments in the diagonal blocks

of A, we have relied on the Gaussianity of h̃j(t) ∀ j ∈ J , which follows from (a6). The
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expectations in the non-diagonal blocks follow immediately as regressors are also assumed

spatially uncorrelated. Substituting in (3.30) and regrouping terms one obtains

Ω̃(µ)Rz̃Ω̃T (µ) = Ω̄(µ)Rz̃Ω̄T (µ) + 4µ2bdiag(A− bdiag([A]1,1, . . . , [A]J,J),02Jp×2Jp)

+ 4µ2bdiag(Λ1[Rz̃]11,1Λ1, . . . ,ΛJ [Rz̃]11,JΛJ ,02Jp×Jp)

− 2µ[Ω̄(µ)Rz̃bdiag(Λ,02Jp×2Jp) + (Ω̄(µ)Rz̃bdiag(Λ,02Jp×2Jp))T ]

which finally yields

E[Ω̃(t, µ)Rz̃Ω̃T (t, µ)] = Ω̃(µ)Rz̃Ω̃T (µ)

+ 4µ2bdiag(Λ1[Rz̃]11,1Λ1, . . . ,ΛJ [Rz̃]11,JΛJ ,02Jp×Jp)

+ 4µ2bdiag(tr(Λ1[Rz̃]11,1)Λ1, . . . , tr(ΛJ [Rz̃]11,J)ΛJ ,02Jp×Jp).

(3.31)

Simple manipulations on the second term in the right hand side of (3.31) lead to the desired

result [cf. (3.29)]. Back to the remaining covariance Rν̃ := E[ν̃(t)ν̃T (t)], because the three

noise terms within ν̃(t) [cf. (3.25)] are pairwise independent and zero-mean, we have that

Rν̃ = E[Ũ[Φ(t + 1, µ)T 02Jp×Jp]T (Rη̄µ
+ Rηµ

)(Ũ[Φ(t + 1, µ)T 02Jp×Jp]T )T ]

+ 4µ2bdiag(σ2
ε1Λ1, . . . , σ

2
εJ

ΛJ ,02Jp×2Jp) + Ũ
(
([−1 0 1]T [−1 0 1])⊗ (1J×J ⊗Rζ)

)
ŨT

(3.32)

where the last two terms follow after using (a4)-(a6), and correspond to the covariance

matrices of the second and third vectors in the right hand side of (3.25). The structure of

Rη̄µ
and Rηµ

is provided in Appendix C. The first expectation in (3.32) can be treated

similarly as E[Ω̃(t, µ)Rz̃(t−1)Ω̃T (t, µ)] to yield the second summand in the right hand side

of (3.28). ¤

The covariance recursion in Proposition 3.2 (indirectly) characterizes the exact tracking

MSE evolution of the D-LMS algorithm, under the white Gaussian setting assumptions and

the vector AR(1) model for s0(t). With the appropriate simplifications indicated in (a4.1)

and (a4.2), (3.28) enables performance evaluation when the parameter vector of interest,

s0(t), is either time-invariant or adheres to a random-walk model. For example, under (a4.1)
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the last matrix in the right hand side of (3.28) vanishes because Rζ = 0p×p while the inner

structure of Ω̃(µ) should be adapted to Θ = 0p×p.

Starting from Proposition 2, the recipe towards obtaining the performance metrics de-

scribed in Section 3.4.2 is the following. Given (3.28) and upon inverting the change of

variables to yield Rž(t) = ŨTRz̃(t)Ũ, one can readily extract [Rz(t)]11 as the upper-left

Jp× Jp submatrix of Rž(t). Closed-form evaluation of the MSE(t), EMSE(t) and MSD(t)

for all t ≥ 0 and every sensor j ∈ J is now possible by using (3.24) to obtain [Ry(t)]11, and

then resorting to the formulae in Section 3.4.2.

The next step is to reformulate (3.28) into a first-order vector recursion which is better

suited for stability analysis. Specifically, (3.28) can be vectorized to obtain vec[Rz̃(t+1)] =

vec[M(Ω̃(µ),Rz̃(t))] + vec[Rν̃ ]. As asserted in the following lemma, further simplification

is possible by relying on properties of the matrix vectorization operator [33]. It is shown in

Appendix D that:

Lemma 3.3 Under (a4)-(a6) and for t ≥ 0, the vectorized covariance matrix of z̃(t) obeys

the first-order vector recursion given by

vec[Rz̃(t + 1)] = Ψ̃(µ)vec[Rz̃(t)] + vec[Rν̃ ]. (3.33)

The (3Jp)2 × (3Jp)2 transition matrix Ψ̃(µ) is

Ψ̃(µ) := Ω̃(µ)⊗ Ω̃(µ) + 4µ2
J∑

j=1

qjqT
j

+ 4µ2(bdiag(Λ,02Jp×2Jp)⊗ bdiag(Λ,02Jp×2Jp))diag(vec[I3J ⊗ 1p×p]) (3.34)

where qj := vec[diag(b3J,j)⊗Λj ] ∀ j ∈ J .

An immediate consequence of Lemma 3.3 is that the D-LMS algorithm is MSE stable if

λmax(Ψ̃(µ)) < 1. Although deriving explicit bounds on µ for stability appears intractable,

the following proposition provides an important existence result.

Proposition 3.3 Under (a1), (a4)-(a6) the D-LMS algorithm is MSE stable, i.e.,

limt→∞[Ry(t)]11 has bounded entries, provided that µ > 0 is chosen sufficiently small.
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Proof: The eigenvalues of Ω̃(µ) ⊗ Ω̃(µ) are the pairwise products of those of Ω̃(µ).

From (3.34) it is possible to upper-bound λmax(Ψ̃(µ)) ≤ λmax(Ω̃(µ))2 + κ1µ
2, with

κ1 a finite positive constant. Given the block upper-triangular structure of E[Ω(t, µ)]

[cf. (3.25)] which has the same eigenvalues as Ω̃(µ), for κ2 ∈ (0,∞) one obtains that

λmax(Ω̃(µ)) = max(λmax(Φ(µ)), λmax(Θ)) ∼ max(1 − µκ2, λmax(Θ)), where the scaling of

λmax(Φ(µ)) follows from the proof of Lemma 3.2. By virtue of (a4), λmax(Θ) ∈ [0, 1)

and is independent of µ. Hence, λmax(Ω̃(µ)) ∼ 1 − µκ2 for µ small enough so that

λmax(Ψ̃(µ)) ≤ 1 − µ[2κ2 − µ(κ2
2 + κ1)], which can be made smaller than one for µ > 0

sufficiently small. This readily implies that limt→∞Rz̃(t) has bounded entries, and can be

established also for limt→∞[Ry(t)]11 via the process described after Proposition 3.2. ¤

While the proof for Proposition 3.3 is still valid for a time-invariant parameter vector, the

argument clearly breaks down for the random-walk model because λmax(Θ) = λmax(Ip) = 1.

In this case, Rs0(t) grows unbounded; thus, one would expect that the same happens to the

inner state z(t). However, note that the coupling between z(t) and s0(t) arising in (3.22)

disappears under (a4.2). For this reason, it is possible to reproduce all previous results by

working just with z(t) (instead of ž(t)) to finally conclude that Proposition 3.3 holds true

for the random-walk model also [31].

Next, we consider an alternative notion of stochastic stability that can be inferred from

Proposition 3.3. Specifically, it is possible to show that under the white Gaussian setting

assumptions, the error norm ‖y1(t)‖ remains most of the time in a finite interval, i.e., errors

are weakly stochastic bounded (WSB) [51], [52, pg. 110]. This WSB stability guarantees

that for any θ > 0 there exists a δ > 0 such that Pr[‖y1(t)‖ < δ] = 1 − θ uniformly in t.

It is a weak notion of stability, providing an alternative for the analysis of adaptive filters

when the presence of, e.g., time-correlated data, renders variance calculations impossible;

see also [48], [51]. Nevertheless, it is an important practical notion as it ensures – on a

per-realization basis – that there is no probability mass allowing estimation errors escape

to infinity. Similar to Proposition 3.3, this property holds for the D-LMS algorithm in the

presence of communication noise.

Proposition 3.4 Under (a1), (a4)-(a6) and if the step-size µ > 0 is chosen sufficiently
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small, then the D-LMS algorithm yields estimation errors which are WSB; i.e.,

lim
δ→∞

sup
t≥0

Pr[‖y1(t)‖ ≥ δ] = 0. (3.35)

Proof: An application of Chebyshev’s inequality yields the bound

Pr [‖y1(t)‖ ≥ δ] ≤ E[‖y1(t)‖2]
δ2

=
tr([Ry(t)]11)

δ2
. (3.36)

From Proposition 3.3, limt→∞[Ry(t)]11 has bounded entries, which also implies that

supt≥0 tr([Ry(t)]11) < ∞. Taking the limit as δ → ∞, while relying on the bound in

(3.36) yields the desired result. ¤

3.5.3 MSE Performance in Steady-State

Under the stability conditions in Proposition 3.3, the steady-state covariance matrix

Rz̃(∞) := limt→∞Rz̃(t) has bounded entries. Lemma 3.3 enables the evaluation of

vec[Rz̃(∞)] as a fixed point of (3.33); thus,

vec[Rz̃(∞)] = (I(3Jp)2 − Ψ̃(µ))−1vec[Rν̃ ]. (3.37)

Note that if D-LMS is MSE stable, i.e., Ψ̃(µ) is a stable matrix, matrix (I(3Jp)2 − Ψ̃(µ))−1

is guaranteed to exist thanks to Gershgorin’s circle theorem. Exactly as before, all relevant

local and global figures of merit in steady-state can be evaluated provided [Ry(∞)]11 is

available (cf. Section 3.4.2). Just reshape (3.37) to obtain Rz̃(∞), undo the change of

variables to extract Rz(∞) from Rž(∞), and finally use (3.24).

While MSE stability ensures, e.g., a bounded EMSE(∞), satisfactory tracking of s0(t)

ultimately requires the error to be small. This will depend on µ and the speed of param-

eter variation roughly dictated by tr(1J×J ⊗Rζ) = Jtr(Rζ). For simplicity in exposition,

consider in the sequel that communication links are ideal so that Rη̄µ
= Rηµ

= 02Jp×2Jp

in (3.28). Interestingly, whenever Jtr(Rζ) is comparable to 4µ2
∑J

j=1 σ2
εj

tr(Λj), there ex-

ists an optimal µ? minimizing EMSE(∞); see also the numerical examples in Section 3.6.

Because the latter term is O(µ2), tr(Rζ) should also be small to ensure that EMSE(∞)

has an acceptable level. This further implies that D-LMS can track satisfactorily slowly
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time-varying processes. Inevitable communication-induced delays will affect the D-LMS al-

gorithm, and may further limit the tracking capabilities of the proposed scheme. However,

delay analysis falls beyond the scope of the present paper.

The existence of a µ? should not be surprising, given the known results for the centralized

LMS algorithm, [43, pg. 367], [52, pg. 123]. Excessive adaptation leads to the same MSE

inflation as in the absence of parameter variation, while if µ is too small the tracking ability

may be lost and once again an MSE penalty is expected. To gain some insight into this

tradeoff for the D-LMS algorithm, recall from Section 3.4.2 and (3.37) that

EMSE(∞) =
1
J

J∑

j=1

tr(Rhj
[Ry(∞)]11,j) =

1
J

J∑

j=1

tr(Λj [Rz̃(∞)]11,j)

=
1
J

J∑

j=1

qT
j vec[Rz̃(∞)] =

1
J

J∑

j=1

qT
j (I(3Jp)2 − Ψ̃(µ))−1vec[Rν̃ ] (3.38)

where in obtaining the third equality we used that tr(RTS) = vec[R]T vec[S], and the

{qj}J
j=1 were defined as in Lemma 3.3. Now, in the absence of communication noise (cf.

(3.28))

Rν̃ = 4µ2bdiag(σ2
ε1Λ1, . . . , σ

2
εJ

ΛJ ,02Jp×2Jp) + Ũ
(
([−1 0 1]T [−1 0 1])⊗ (1J×J ⊗Rζ)

)
ŨT

so that the term due to observation noise is O(µ2), and the second summand due to param-

eter nonstationarities is O(1). Roughly, (I(3Jp)2 − Ψ̃(µ))−1 = O(µ−1) and one finds from

(3.38) that EMSE(∞) = O(µ−1) for small µ, whereas EMSE(∞) = O(µ) for moderate- to

large values of the step-size approaching the stability bound. This advocates the existence

of an optimal step-size µ? minimizing the steady-state EMSE. Unfortunately, deriving an

explicit formula for µ? is a formidable task. If needed however, 1−D minimization can be

carried out numerically using, e.g., Newton’s method, as the derivatives of the EMSE(∞)

cost in (3.38) are readily computable in closed form.

If Jtr(Rζ) À 4µ2
∑J

j=1 σ2
εj

tr(Λj), then Rν̃ ≈ Ũ
(
([−1 0 1]T [−1 0 1])⊗ (1J×J ⊗Rζ)

)
ŨT

in the whole range of stable step-sizes so that EMSE(∞) = O(µ−1), and will not at-

tain a minimum. To achieve the best tracking performance in this scenario, the step-

size should be chosen as large as possible while ensuring stability. The other extreme
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Figure 3.1: An ad hoc WSN with J = 20 sensors.

Jtr(Rζ) ¿ 4µ2
∑J

j=1 σ2
εj

tr(Λj) corresponds to a small degree of nonstationarity, which

in the limit Rζ → 0p×p leads to the time-invariant parameter model in (a4.1). Then,

Rν̃ ≈ 4µ2bdiag(σ2
ε1Λ1, . . . , σ

2
εJ

ΛJ ,02Jp×2Jp), and as expected EMSE(∞) = O(µ). The

steady-state error can be reduced as much as needed by choosing µ sufficiently small, but

this comes at the price of reduced convergence rates.

3.6 Numerical Tests

Here we corroborate the analytical results of Section 3.5 through numerical experiments.

Substantiating the comments in Remark 3.4, the usefulness of the analysis is corroborated as

the results extend accurately beyond the white Gaussian data setting, allowing for correlated

data provided the step-size is small enough. For J = 20 sensors, a connected ad hoc WSN

is generated as a realization of the random geometric graph model on the unity square, with

communication range r = 0.3. Hence, sensors are deployed uniformly at random over [0, 1]2

and an edge joining two sensors is included in E whenever their Euclidean distance does not

exceed r; see Fig. 3.1. To model noisy links, additive white Gaussian noise (AWGN) with

variance σ2
η = 10−2 is added at the receiving end.
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Figure 3.2: (left) Global performance evaluation for a time-invariant parameter; (right)

Local performance evaluation for a time-invariant parameter: sensors 3 and 12.

With p = 4, observations obey a linear model [cf. (a1)] with sensing WGN of spatial

variance profile σ2
εj

= 10−1αj , where αj ∼ U [0, 1] (uniform distribution) and i.i.d.. The

regression vectors hj(t) = [hj(t) . . . hj(t− p + 1)]T have a shift structure and entries which

evolve according to hj(t) = (1−ρ)βjhj(t−1)+
√

ρωj(t) for all j ∈ J . We choose ρ = 5×10−1,

the βj ∼ U [0, 1] i.i.d. in space, and the driving white noise ωj(t) ∼ U [−√3σωj ,
√

3σωj ] has a

spatial variance profile given by σ2
ωj

= 2γj with γj ∼ U [0, 1] and i.i.d.. The local regressor’s

covariance matrices Rhj have symmetric Toeplitz structure, whereby the elements on the

i-th diagonal are [Rhj ]i+l,l =
[(1−ρ)βj ]

iρσ2
ωj

1−[(1−ρ)βj ]
2 for i = 0, 1, . . . , p − 1 and 1 ≤ i + l ≤ p (i = 0

corresponds to the main diagonal). Observe that the data is temporally-correlated and

non-Gaussian, implying that (a6) does not hold here. Two test cases will be considered

with regards to the nature of s0(t):

TC1: Large-amplitude slowly time-varying parameters adhering to (a4) with s0 = 0p and

Θ = (1− 10−4)diag(θ1, . . . , θp) with θi ∼ U [0, 1] for i = 1, . . . , p. The driving noise is

normally distributed with Rζ = 10−4Ip.

TC2: Time-invariant parameters adhering to (a4.1), with s0 = 1p.
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Figure 3.3: (left) Global performance evaluation for a time-varying parameter; (right) Local

performance evaluation for a time-varying parameter: sensors 3 and 12.

For all experimental performance curves obtained by running the algorithms, the ensemble

averages are approximated via sample averaging 500 runs of the experiment.

First, under TC2 and µ = 5×10−2, c = 1 for D-LMS, Fig. 3.2 (left) depicts the network

performance through the evolution of EMSE(t) and MSD(t) figures of merit. Both noisy

and ideal links are considered, while for the latter case the D-LMS variant in Section 3.3.2

has been used. Even though the simulated data does not adhere to (a6), the empirical

curves closely follow the theoretical trajectories evaluated via Proposition 3.2 (and the

formulae in Section 3.4.2). The steady-state limiting values found in Section 3.5.3 are also

extremely accurate. As intuitively expected and analytically corroborated via the noise-

related additive terms in (3.24) and (3.28), the performance penalty due to non-ideal links

is also apparent. Theoretical error trajectory curves for the diffusion LMS [28, eqs. (73)-

(74)] with Metropolis combining weights are also included. While in this case diffusion

LMS has a slight edge on steady-state performance, note that it comes at the price of a

much slower convergence rate. Similar overall conclusions can be drawn from the plots

in Fig. 3.2 (right), that gauge local performance of two randomly selected representative

sensors. Even though the noise levels of both sensors are dissimilar (σ2
ε3 = 7.2 × 10−2 and
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Figure 3.4: (left) Global steady-state EMSE and MSD versus step-size dependencies; (right)

Tracking with D-LMS: slow and optimal adaptation levels.

σ2
ε12 = 2.3 × 10−2), effective percolation of information across the WSN renders the s.s

performance of both sensors very simliar. The curves for D-LMS with noisy links have been

removed in the interest of clarity.

Turning our attention to the tracking performance of the D-LMS algorithm, Fig. 3.2

is reproduced under TC1 as Fig. 3.3. Once more, it is appealing how well the theoretical

findings in Section 3.5.2 agree with the true behavior for all t ≥ 0. Curves for diffusion LMS

are not included as time-varying parameters have not been considered in [28]. To conclude,

Fig. 3.4 (left) corroborates the discussion in Section 3.5.3, by showing the theoretically

assessed dependence of the steady-state global quantities EMSE(∞) and MSD(∞) on µ,

under both TC1 and TC2. While the trend is similar for moderate- to large step-sizes, for

small µ the MSE penalty in the tracking setup due to lack of adaptation becomes dominant,

and is increasingly severe as µ → 0. The existence of µ? ≈ 5 × 10−2 is also highlighted by

Fig. 3.4 (left). From another perspective, Fig. 3.4 (right) illustrates how the adaptation

level affects the resulting per-sensor estimates when tracking time-varying parameters with

D-LMS. Under TC1 and for µ = 5 × 10−4 [slow adaptation; see also Fig. 3.4 (left)] and
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µ = 5× 10−2 (near optimal adaptation), we depict the third entry of the parameter vector

[s0(t)]3 and the respective estimates from the randomly chosen sixth sensor. Under optimal

adaptation the sensor estimate closely follows the true variations, while – as expected – for

the smaller step-size D-LMS fails to provide an accurate estimate.
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3.7 Appendices

3.7.1 Proof of Equations (3.9)-(3.10)

Starting with [S3], observe that the per sensor decomposable structure of (3.2) is also

present in the the augmented Lagrangian. Thus, (3.8) decouples into
∑J

j=1 |Nj | quadratic

sub-problems

zj′
j (t + 1) = arg min

zj′
j

[
−[vj′

j (t) + uj
j′(t)]

Tzj′
j +

c

2

[
‖sj(t + 1)− zj′

j ‖2 + ‖sj′(t + 1)− zj′
j ‖2

]]

(3.39)

which admit the closed-form solutions

zj′
j (t + 1) =

1
2c

[vj′
j (t) + uj

j′(t)]
T +

1
2

[
sj(t + 1) + sj′(t + 1)

]
, j ∈ J , j′ ∈ Nj . (3.40)

Using (3.40) to eliminate zj′
j (t) and zj

j′(t) from (3.5) and (3.6) respectively, a simple induc-

tion argument establishes that if the initial Lagrange multipliers obey vj′
j (−1) = −uj

j′(−1),

then vj′
j (t) = −uj

j′(t) for all t ≥ 0 where j ∈ J and j′ ∈ Nj . The set u of multipliers has

been shown redundant, and (3.40) readily simplifies to

zj′
j (t + 1) =

1
2

[
sj(t + 1) + sj′(t + 1)

]
, j ∈ J , j′ ∈ Nj . (3.41)

The symmetry in (3.41) implies that zj′
j (t) = zj

j′(t) for all t ≥ 0. Upon substituting (3.41)

in (3.5), the validity of (3.9) follows readily.

Next, observe that the optimization (3.7) in [S2] can be split into J sub-problems

sj(t + 1) = arg min
sj


E

[
(xj(t + 1)− hT

j (t + 1)sj)2
]
+

∑

j′∈Nj

[vj′
j (t) + uj′

j (t)]T sj

+
c

2

∑

j′∈Nj

[
‖sj − zj′

j (t)‖2 + ‖sj − zj
j′(t)‖2

]

 . (3.42)

To arrive at (3.10), use the identities: i) uj′
j (t) = −vj

j′(t) to eliminate uj′
j (t) from (3.42);

and ii) zj′
j (t) = zj

j′(t) to recognize that the two quadratic terms in the last summand of

(3.42) are identical, while zj′
j (t) can be eliminated using (3.41).
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3.7.2 Proof of Lemma 3.1

Introduce first the Jp × 1 communication noise supervectors ηα(t) := [(ηα
1 (t))T . . .

(ηα
J (t))T ]T and ηβ(t) := [(ηβ

1 (t))T . . . (ηβ
J(t))T ]T , where for j ∈ J

ηα
j (t) :=

c

2

∑

j′∈Nj

ηj′
j (t), ηβ

j (t) :=
c

2

∑

j′∈Nj

ηj
j′(t). (3.43)

In order to relate these vectors with η(t) in (3.19), we introduce two Jp × (
∑J

j=1 |Nj |)p
matrices Pα := [p1 . . .pJ ]T and Pβ := [p′1 . . .p′J ]T . The (

∑J
j=1 |Nj |)p × p submatrices pj ,

p′j are given by pj := [(pj,1)T . . . (pj,J)T ]T and p′j := [(p′j,1)
T . . . (p′j,J)T ]T , with pj,r,pj′,r

defined for r = 1, . . . , J as

pT
j,r :=





c
2b

T
|Nr|,r(j) ⊗ Ip if j ∈ Nr

0p×|Nr|p if j /∈ Nr

(p′j,r)
T :=





c
211×|Nr| ⊗ Ip if r = j

0p×|Nr|p if r 6= j
.

Note that r(j) ∈ {1, . . . , |Nr|} denotes the order in which ηr
j(t) appears in {ηr

j′(t)}j′∈Nr [cf.

(3.19)]. It is straightforward to verify that ηα(t) = Pαη(t) and ηβ(t) = Pβη(t).

The proof entails two steps, the first one being summarized in the following lemma:

Lemma 3.4 Under (a1) and for t ≥ 0, the global state y(t) evolves according to

y(t + 1) = Υ(t + 1, µ)y(t) +


 ε(t + 1)

0


−


 1J ⊗ (s0(t + 1)− s0(t))

0




+


 µIJp

0


 η̄(t) +


 µ3IJp

−IJp


ηα(t)−


 µIJp

−IJp


ηβ(t), (3.44)

where the 2Jp× 2Jp transition matrix Υ(t, µ) consists of the Jp× Jp blocks [Υ(t, µ)]11 =

IJp − 2µ(Rh(t) + Lc), [Υ(t, µ)]12 = −µIJp, [Υ(t, µ)]21 = Lc and [Υ(t, µ)]22 = IJp. The

initial condition y(0) should be selected as y(0) = bdiag(IJp,Lc)y′(0), where y′(0) is any

vector in R2Jp.
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Proof: After summing vj′
j (t)−vj

j′(t) over j′ ∈ Nj , it follows from (3.13) that for all j ∈ J

y2,j(t + 1) :=
∑

j′∈Nj

(vj′
j (t)− vj

j′(t))

= y2,j(t) + c
∑

j′∈Nj

(sj(t)− sj′(t))− c

2

∑

j′∈Nj

(
ηj′

j (t)− ηj
j′(t)

)
(3.45)

= y2,j(t) + c
∑

j′∈Nj

(y1,j(t)− y1,j′(t))− ηα
j (t) + ηβ

j (t), (3.46)

where the last equality was obtained after adding and subtracting c|Nj |s0(t) from the right

hand side of (3.45), and relying on the definitions in (4.32). Next, starting from (3.14) and

upon: i) using (a1) to eliminate ej(t + 1) = −hT
j (t + 1)y1,j(t) + εj(t + 1) from (3.14); ii)

subtracting s0(t+1)+s0(t) from both sides of (3.14); iii) replacing the sums of noise vectors

with the quantities defined in (3.18) and (4.32); and iv) recognizing y2,j(t + 1) in the right

hand side of (3.14) and substituting it with (3.46), one arrives at

y1,j(t + 1) = y1,j(t) + µ


−2hj(t + 1)hT

j (t + 1)y1,j(t)− y2,j(t)− 2c
∑

j′∈Nj

(y1,j(t)− y1,j′(t))




+ 3µηα
j (t)− µηβ

j (t) + µη̄j(t) + 2µhj(t + 1)εj(t + 1)− (s0(t + 1)− s0(t)).

(3.47)

Again, the term 2c
∑

j′∈Nj
(y1,j(t)−y1,j′(t)) inside the square brackets is obtained in error-

form after adding and subtracting 2c|Nj |s0(t).

What remains to be shown is that after stacking the recursions (3.47) and (3.46) for

j = 1, . . . , J to form the one for y(t+1), we can obtain the compact representation in (3.44).

Consider first the forcing terms in (3.44). Stacking the channel noise terms from (3.47) and

(3.46), readily yields the last three terms in (3.44). Likewise, independently stacking the

terms 2µhj(t + 1)εj(t + 1) for j = 1, . . . , J and s0(t + 1)− s0(t) yields the second and third

terms in the right hand side of (3.44), which are due to the observation noise and parameter

velocity, respectively. These terms are not present in (3.46), which explains the zero vectors

at the lower part of the second and third terms in (3.44).

To specify the structure of the transition matrix Υ(t, µ), note that the first term on

the right hand side of (3.46) explains why [Υ(t, µ)]22 = IJp. Similarly, the second term



3.7 Appendices 90

inside the square brackets in (3.47) explains why [Υ(t, µ)]12 = −µIJp. Next, it follows

readily that upon stacking the terms c
∑

j′∈Nj
(y1,j(t) − y1,j′(t)), which correspond to a

scaled Laplacian-based combination of p× 1 vectors, one obtains c(L⊗ Ip)y1(t) = Lcy1(t).

This justifies why [Υ(t, µ)]21 = Lc. Using similar arguments and recalling that Rh(t) :=

bdiag(h1(t)hT
1 (t), . . . ,hJ(t)hT

J (t)), we establish that [Υ(t, µ)]11 = IJp − 2µ(Rh(t) + Lc).

Although the vectors {y1,j(0)}J
j=1 are decoupled so that y1(0) can be chosen arbitrarily,

this is not the case for {y2,j(0)}J
j=1 which are coupled and satisfy

J∑

j=1

y2,j(t) =
J∑

j=1

∑

j′∈Nj

(
vj′

j (t− 1)− vj
j′(t− 1)

)
= 0p, ∀ t ≥ 0. (3.48)

The coupling across {y2,j(t)}J
j=1 dictates that y2(0) should be chosen in compliance with

(3.48), so that the system (3.44) is equivalent to D-LMS for all t ≥ 0. Let y2(0) = Lcy′2(0),

where y′2(0) is any vector in RJp. Then, y2(0) satisfies the conservation law (3.48) as (recall

that 1J = nullspace(L))

J∑

j=1

y2,j(0) = (1T
J ⊗ Ip)y2(0) = (1T

J ⊗ Ip)c(L⊗ Ip)y′2(0) = c((1T
J L)⊗ Ip)y′2(0) = 0p. (3.49)

In conclusion, for arbitrary y′(0) ∈ R2Jp the recursion (3.44) should be initialized as y(0) =

bdiag(IJp,Lc)y′(0), and the proof of Lemma 3.4 is completed.

The second step of the proof involves establishing the equivalence between the dynamical

systems in (3.44) and (3.20) for all t ≥ 0, when the inner state is arbitrarily initialized

as z(0) = y′(0). We will argue by induction. For t = 0, it follows from (3.21) that

z(1) = Φ(1, µ)y′(0) + [εT (1) 0T ]T − [1T
J ⊗ (s0(1) − s0(0))T 0T ]T . Upon substituting z(1)

into (3.20), we find

y(1) = bdiag(IJp,Lc)Φ(1, µ)y′(0) +


 ε(1)

0


−


 1J ⊗ (s0(1)− s0(0))

0




+


 µIJp

0


 η̄(0) +


 µ(3Pα −Pβ)

Pβ −Pα


η(0). (3.50)

Note that: i) bdiag(IJp,Lc)Φ(t, µ) = Υ(t, µ)bdiag(IJp,Lc) for all t ≥ 1; ii) y(0) =

bdiag(IJp,Lc)y′(0) for the system in Lemma 3.4; and iii) ηα(t) = Pαη(t), while ηβ(t) =
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Pβη(t). Thus, the right hand side of (3.50) is equal to the right hand side of (3.44) for

t = 0.

Suppose next that (3.20) and (3.21) hold true for y(t) and z(t). The same will be shown

for y(t+1) and z(t+1). To this end, replace y(t) with the right hand side of (3.20) evaluated

at time instant t, into (3.44) to obtain

y(t + 1) = Υ(t + 1, µ)bdiag(IJp,Lc)z(t) + Υ(t + 1, µ)


 µIJp

0


 η̄(t− 1)

+ Υ(t + 1, µ)


 µ(3Pα −Pβ)

Pβ −Pα


η(t− 1)

+


 ε(t + 1)

0


−


 1J ⊗ (s0(t + 1)− s0(t))

0




+


 µIJp

0


 η̄(t) +


 µ3IJp

−IJp


ηα(t)−


 µIJp

−IJp


ηβ(t)

= bdiag(IJp,Lc)


Φ(t + 1, µ)z(t) +


 ε(t + 1)

0


−


 1J ⊗ (s0(t + 1)− s0(t))

0




+Φ(t + 1, µ)


 µIJp

0


 η̄(t− 1) + Φ(t + 1, µ)


 µ(3Pα −Pβ)

C


η(t− 1)




+


 µIJp

0


 η̄(t) +


 µ(3Pα −Pβ)

Pβ −Pα


η(t). (3.51)

In obtaining the last equality in (3.51), we used: i) bdiag(IJp,Lc)Φ(t, µ) = Υ(t, µ)bdiag(IJp,Lc)

; ii) the relationship between ηα(t), ηβ(t) and η(t); and iii) the existence of a matrix C such

that LcC = Pβ −Pα. This made possible to extract the common factor bdiag(IJp,Lc) and

deduce from (3.51) that y(t + 1) is given by (3.20), while z(t + 1) is provided by (3.21).

In order to complete the proof, we must show the existence of matrix C. To this end, via

a simple evaluation one can check that2 nullspace(Lc) ⊆ nullspace(PT
β −PT

α), and since Lc

is symmetric, we have nullspace(Lc)⊥range(Lc). As nullspace(PT
β −PT

α)⊥range(Pβ −Pα),

2It is straightforward to completely characterize null(Lc) from the properties of the Laplacian matrix L

and the connectivity assumption for the WSN.
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it follows that range(Pβ −Pα) ⊆ range(Lc), which further implies that we can find C such

that LcC = Pβ −Pα.

3.7.3 Structure of Matrices Rη̄µ
and Rηµ

From (3.27) we have

Rη̄µ
=


 µIJp

0Jp×Jp


Rη̄


 µIJp

0Jp×Jp




T

, Rηµ
=


 µ(3Pα −Pβ)

C


Rη


 µ(3Pα −Pβ)

C




T

(3.52)

so that it suffices to focus on the structure of Rη̄ and Rη. From the definition in (3.18)

and recalling that communication noise vectors are assumed uncorrelated in space, it follows

that

Rη̄ = bdiag


 ∑

j′∈N1\{1}
Rη1,j′ , . . . ,

∑

j′∈NJ\{J}
RηJ,j′


 .

In the same way it follows from (3.19) that Rη is a block diagonal matrix with a total of
∑J

j=1 |Nj | diagonal blocks of size p× p, namely

Rη = bdiag
(
{Rηj′,1}j′∈N1 , . . . , {Rηj′,J}j′∈NJ

)
.

Note also that the blocks Rηj,j
= 0p×p for all j ∈ J .

3.7.4 Proof of Lemma 3.3

We separately treat each of the three summands in M(Ω̃(µ),Rz̃(t)) [cf. (3.29)] and fi-

nally add the results. The algebraic property vec[RST] = (TT ⊗ R)vec[S], allows writ-

ing the first term as (Ω̃(µ) ⊗ Ω̃(µ))vec[Rz̃(t)]. The second term can be rewritten as

4µ2bdiag(Λ,02Jp×2Jp)[(I3J ⊗ 1p×p) ◦ Rz̃(t)]bdiag(Λ,02Jp×2Jp), which is vectorized upon

using the property for vec[RST] followed by vec[R ◦ S] = diag(vec[R])vec[S], to yield

4µ2(bdiag(Λ,02Jp×2Jp)⊗ bdiag(Λ,02Jp×2Jp))diag(vec[I3J ⊗ 1p×p])vec[Rz̃(t)].
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The third term is a diagonal matrix, which can be decomposed as (up to a constant factor

4µ2)

bdiag(tr(Λ1[Rz̃(t)]11,1)Λ1, . . . ,tr(ΛJ [Rz̃(t)]11,J)ΛJ ,02Jp×2Jp)

=
J∑

j=1

tr(Λj [Rz̃(t)]11,j)[diag(b3J,j)⊗Λj ]

=
J∑

j=1

tr([diag(b3J,j)⊗Λj ]Rz̃(t))[diag(b3J,j)⊗Λj ]

=
J∑

j=1

(
vec[diag(b3J,j)⊗Λj ]T vec[Rz̃(t)]

)
[diag(b3J,j)⊗Λj ],

(3.53)

where the last equality follows from the identity tr(RTS) = vec[R]T vec[S]. Upon

scaling and vectorizing (3.53), while letting qj := vec[diag(b3J,j) ⊗ Λj ], one obtains

4µ2
∑J

j=1 qjqT
j vec[Rz̃(t)]. The result follows readily after summing the three vectorized

terms and taking vec[Rz̃(t)] as common factor.
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Chapter 4

Distributed RLS for In-Network

Adaptive Estimation

4.1 Introduction

Motivated by WSN-based estimation/tracking applications in which a data model is not

available and fast convergence rates are at premium, fully distributed (D-) RLS type of algo-

rithms are developed in this chapter. They perform consensus-based, in-network, adaptive

least squares estimation in general ad hoc WSNs that are challenged by additive com-

munication noise. The algorithms are derived by optimizing the convex exponentially-

weighted least squares (EWLS) cost using distributed optimization techniques, namely the

alternating-direction method of multipliers (AD-MoM) [7, p. 253] and the alternating min-

imization algorithm (AMA) [59]. The exponential weighting effected through a forgetting

factor endows D-RLS with tracking capabilities. This is desirable in a constantly changing

environment, within which WSNs are envisioned to operate. Whenever the use of powerful

channel codes renders inter-sensor links virtually noise-free, both the AD-MoM and AMA-

based D-RLS algorithms can be streamlined to lower communication overhead, yet higher

convergence rates with respect to existing approaches in [8, 48].

For sensor observations that are linearly related to the time-invariant parameter of

interest, a steady-state mean-square error (MSE) performance analysis is conducted for the
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AMA-based D-RLS algorithm (Section 4.5). By relying on simplifying approximations and

independence assumptions, exact closed-form expressions are derived for all the relevant

MSE performance figures of merit. Stability is established in both the mean and MSE-

sense. Numerical tests showcase the merits of the novel distributed estimation algorithms

and corroborate the theoretical findings of this chapter.

4.2 Problem Statement

Consider a WSN with sensors {1, . . . , J} := J . Only single-hop communications are al-

lowed, i.e., sensor j can communicate only with the sensors in its neighborhood Nj ⊆ J ,

having cardinality |Nj |. Assuming that inter-sensor links are symmetric, the WSN is mod-

eled as an undirected connected graph. Global connectivity information is captured by the

symmetric adjacency matrix E ∈ RJ×J , where [E]ij = 1 if i ∈ Nj and [E]ij = 0 other-

wise. The graph Laplacian L ∈ RJ×J will be useful in the sequel, where L := D − E, and

D := diag(|N1|, . . . , |NJ |). Different from [8, 63] and [44], the present network model ac-

counts explicitly for non-ideal sensor-to-sensor links. Specifically, signals received at sensor

j from sensor i at discrete-time instant t are corrupted by a zero-mean additive noise vector

ηi
j(t), assumed temporally and spatially uncorrelated.

The WSN is deployed to estimate a real signal vector s0(t) ∈ Rp×1 in a distributed

fashion and subject to the single-hop communication constraints, by resorting to the LS

criterion [43, p. 658]. Per time instant t = 0, 1, . . . , each sensor acquires a regression

vector hj(t) ∈ Rp×1 and a scalar observation xj(t), both assumed zero-mean without loss of

generality. A similar data setting was considered in [8] and [44]. Given new data sequentially

acquired, a pertinent approach is to consider the EWLSE [8,43,44]

ŝewls(t) := arg min
s

t∑

τ=0

J∑

j=1

λt−τ
[
xj(τ)− hT

j (τ)s
]2

+ λtsTΦ0s (4.1)

where λ ∈ (0, 1] is a forgetting factor, while the positive definite matrix Φ0 is included

for regularization. Note that in forming the EWLSE at time t, the entire history of data

{xj(τ),hj(τ)}t
τ=0, ∀ j ∈ J is incorporated in the online estimation process. Whenever λ <

1, past data are exponentially discarded thus enabling tracking of nonstationary processes.
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Remark 4.1 (Fusion center versus ad hoc WSN operation) If one can afford con-

structing/maintaining a cyclic path across sensors; or, having sensors continuously commu-

nicate their new data to a central unit (fusion center), then the I-RLS algorithm in [44]

can find the centralized EWLSE benchmark. However, in-network (or diffusion) estimators

may consume less power relative to I-RLS while exhibiting improved resilience to sensor

failures-a feature particularly critical as the WSN size increases.

Next, we describe an application setup for distributed adaptive linear LS estimation, which

naturally gives rise to the aforementioned data setting and highlights the importance of the

problem addressed.

4.2.1 Distributed Power Spectrum Estimation

Consider an ad hoc WSN deployed e.g., for collaborative habitat monitoring, whereby

sensors observe a narrowband source to determine its spectral peaks. Such information

enables the WSN to disclose hidden periodicities due to a physical phenomenon controlled

by e.g., a seismic source. Let θ(t) denote the source of interest, which can be modeled as

an autoregressive (AR) process [55, p. 106]

θ(t) = −
p∑

τ=1

ατθ(t− τ) + w(t) (4.2)

where p is the order of the AR process, {ατ} the AR coefficients, and w(t) denotes white

noise. The source propagates to sensor j via a multi-path channel modeled as an FIR filter

Cj(z) =
∑Lj−1

l=0 cj,lz
−l, of unknown order Lj and tap coefficients {cj,l}. In the presence of

additive sensing noise ε̄j(t), the observation at sensor j is: xj(t) =
∑Lj−1

l=0 cj,lθ(t− l)+ ε̄j(t).

Since xj(t) is an ARMA process, it can be written as [55]

xj(t) = −
p∑

τ=1

ατxj(t− τ) +
m∑

τ ′=1

βτ ′ ξ̄j(t− τ ′), j ∈ J (4.3)

where the moving average (MA) coefficients {βτ ′} and the variance of the white noise

process ξ̄j(t) depend on {cj,l}, {ατ}, and the variance of the noise terms w(t) and ε̄j(t).

For the purpose of determining spectral peaks, the MA term in (4.3) can be treated as

observation noise, i.e., εj(t) :=
∑m

τ ′=1 βτ ′ ξ̄j(t − τ ′). This is important since sensors do not
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have to know the source-sensor channel coefficients as well as the noise variances. The

spectral content of the source can be obtained provided sensors estimate the coefficients

{ατ}, so let s0 := [α1 . . . αp]T . Note from (4.3) that the regressor vectors here are hj(t) =

[−xj(t − 1) . . . − xj(t − p)]T , directly from the sensor data {xj(t)} without the need of

training/estimation.

Remark 4.2 (Spatial diversity via sensor collaboration) The source-sensor chan-

nels may introduce deep fades at the frequencies occupied by the source. Thus, having

each sensor operating on its own may lead to faulty assessments. The necessary spatial

diversity to effect improved spectral estimates, can only be achieved through sensor collab-

oration as in the D-RLS algorithm described next.

4.3 Distributed RLS Algorithm

In this section, we first construct the D-RLS algorithm, and then provide further insights

regarding its implementation and associated communication overhead and computational

complexity. The approach followed consists of two main steps: (i) reformulate (4.1) into an

equivalent separable minimization problem that is amenable to distributed implementation;

and (ii) rely on the AD-MoM [7, p. 253] to split (4.1) into simpler optimization subtasks

that can be carried out locally at each sensor.

To decompose the cost function in (4.1), in which summands are coupled through the

global variable s, we introduce auxiliary variables {sj}J
j=1 that represent local estimates of s0

per sensor j. These local estimates are utilized to form the convex constrained minimization

problem:

{ŝj(t)}J
j=1 := arg min

{sj}J
j=1

t∑

τ=0

J∑

j=1

λt−τ [xj(τ)− hT
j (τ)sj ]2 + J−1λt

J∑

j=1

sT
j Φ0sj ,

s. t. sj = sj′ , j ∈ J , j′ ∈ Nj . (4.4)

From the connectivity of the WSN, (4.1) and (4.4) are equivalent in the sense that ŝj(t) =

ŝewls(t), ∀ j ∈ J and t ≥ 0; see also [49].
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4.3.1 Algorithm Construction

In order to tackle (4.4) in a distributed fashion, we resort to AD-MoM to obtain an adaptive

algorithm that: i) allows recursive estimation of a time-invariant parameter s0; and ii) can

track a time-varying process s0(t). To facilitate application of AD-MoM, consider the

auxiliary variables {z̄j′
j , z̃j′

j }j′∈Nj
for j ∈ J , and replace the constraints in (4.4) with the

equivalent ones

sj = z̄j′
j , sj′ = z̃j′

j , and z̄j′
j = z̃j′

j , j ∈ J , j′ ∈ Nj , j 6= j′. (4.5)

Variables {z̄j′
j , z̃j′

j } are only used to derive the local recursions but will be eventually elim-

inated. Next, associate Lagrange multipliers vj′
j and µj′

j with the first two constraints in

(4.5), and form the quadratically augmented Lagrangian

La [s, z ,v, µ] =
J∑

j=1

t∑

τ=0

λt−τ [xj(τ)− hT
j (τ)sj ]2 + J−1λt

J∑

j=1

sT
j Φ0sj

+
J∑

j=1

∑

j′∈Nj

[(
vj′

j

)T
(sj − z̄j′

j ) + (µj′
j )T (sj′ − z̃j′

j )
]

+
c

2

J∑

j=1

∑

j′∈Nj

[
‖sj − z̄j′

j ‖2 + ‖sj′ − z̃j′
j ‖2

]
(4.6)

where c is positive penalty coefficient; and s := {sj}J
j=1, z := {z̄j′

j , z̃j′
j }

j′∈Nj

j∈J and [v, µ] :=

{vj′
j , µj′

j }
j′∈Nj

j∈J . Observe that the remaining constraints in (4.5), namely z ∈ Cz := {z :

z̄j′
j = z̃j′

j , j ∈ J , j′ ∈ Nj , j 6= j′}, have not been dualized. Now, let k = 0, 1, . . . denote the

iteration index for the recursive algorithm to be constructed in order to minimize (4.4) at

time instant t+1. The first step in the AD-MoM updates the multipliers using the gradient

ascent iterations

vj′
j (t + 1; k) = vj′

j (t + 1; k − 1) + c[sj(t + 1; k)− z̄j′
j (t + 1; k)] (4.7)

µj′
j (t + 1; k) = µj′

j (t + 1; k − 1) + c[sj′(t + 1; k)− z̃j′
j (t + 1; k)], j ∈ J , j′ ∈ Nj . (4.8)

The second step entails recursions that are obtained after minimizing (4.6) with respect

to s, assuming that all other variables z (t + 1; k) := {z̄j′
j (t + 1; k), z̃j′

j (t + 1; k)}j′∈Nj

j∈J and
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[v(t+1; k), µ(t+1; k)] := {[vj′
j (t+1; k), µj′

j (t+1; k)]}j′∈Nj

j∈J are fixed. The separable structure

of (4.6) with respect to sj leads to the J separate minimization subproblems

sj(t + 1; k + 1) = arg min
sj

[
t+1∑

τ=0

λt+1−τ [xj(τ)− hT
j (τ)sj ]2 + J−1λt+1sT

j Φ0sj

+
∑

j′∈Nj

[
vj′

j (t + 1; k) + µj
j′(t + 1; k)

]T
sj

+
c

2

∑

j′∈Nj

(
‖sj − z̄j′

j (t + 1; k)‖2 + ‖sj − z̃j
j′(t + 1; k)‖2

)

 (4.9)

which are quadratic and whose optimal solution is available in closed form.

The third step involves updating {z̄j′
j (t + 1; k), z̃j′

j (t + 1; k)}. The related recursions

are obtained after minimizing La [s(t + 1; k + 1), z ,v(t + 1; k), µ(t + 1; k)] with respect to

z subject to z ∈ Cz, while treating s(t + 1; k + 1) := {sj(t + 1; k + 1)}j∈J and [v(t +

1; k), µ(t + 1; k)] := {[vj′
j (t + 1; k), µj′

j (t + 1; k)]}j′∈Nj

j∈J as fixed. Then, given the separable

structure of the Lagrangian in (4.6) with respect to z̄j′
j , it follows after letting z̄j′

j = z̃j′
j and

retaining only the z̄j′
j -dependent terms in (4.6) that

z̄j′
j (t + 1; k + 1) := arg min

z̄j′
j

[
−

[
vj′

j (t + 1; k) + µj′
j (t + 1; k)

]T
z̄j′

j

+
c

2

(
‖sj(t + 1; k + 1)− z̄j′

j ‖2 + ‖sj′(t + 1; k + 1)− z̄j′
j ‖2

)]

which being linear-quadratic accepts the closed-form solution

z̄j′
j (t + 1; k + 1) =

1
2c

[
vj′

j (t + 1; k) + µj′
j (t + 1; k)

]
+

1
2

[
sj(t + 1; k + 1) + sj′(t + 1; k + 1)

]
.

(4.10)

Clearly, z̄j′
j (t + 1; k + 1) = z̃j′

j (t + 1; k + 1). Substituting (4.10) into (4.7) and (4.8), it

follows by induction that if the Lagrange multipliers are initialized such that vj′
j (t+1; 0) =

−µj′
j (t + 1; 0), then vj′

j (t + 1; k) = −µj′
j (t + 1; k) for all t and k, while

vj′
j (t + 1; k) = vj′

j (t + 1; k − 1) +
c

2
[
sj(t + 1; k)− sj′(t + 1; k)

]
, j ∈ J , j′ ∈ Nj . (4.11)

Notice that sensor j has to store and update only {vj′
j (t + 1; k)}j′∈Nj

since µj′
j turned out

to be redundant. To obtain a recursion for sj(t + 1; k + 1): i) substitute (4.10) into (4.9);
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ii) use the identity µj
j′(t + 1; k) = −vj

j′(t + 1; k) to eliminate µj
j′ from (4.9); and iii) apply

first-order optimality conditions to the resulting quadratic cost. Then, sj(t + 1; k + 1) can

be obtained recursively as

sj(t + 1; k + 1) = Φ−1
j (t + 1)ψj(t + 1) +

c

2
Φ−1

j (t + 1)
∑

j′∈Nj

[
sj(t + 1; k) + sj′(t + 1; k)

]

− 1
2
Φ−1

j (t + 1)
∑

j′∈Nj

[
vj′

j (t + 1; k)− vj
j′(t + 1; k)

]
(4.12)

where

Φj(t + 1) :=
t+1∑

τ=0

λt+1−τhj(τ)hT
j (τ) + J−1λt+1Φ0 + c|Nj |Ip (4.13)

ψj(t + 1) :=
t+1∑

τ=0

λt+1−τhj(τ)xj(τ) = λψj(t) + hj(t + 1)xj(t + 1). (4.14)

Recursions (4.11) and (4.12) constitute the D-RLS algorithm, whereby all sensors j ∈ J
keep track of their local estimate sj(t + 1; k + 1) and their multipliers {vj′

j (t + 1; k)}j′∈Nj
,

which can be arbitrarily initialized. For λ = 1 , matrix Φ−1
j (t + 1) can be also recursively

obtained from Φ−1
j (t) with complexity O(p2) using the matrix inversion lemma; i.e.,

Φ−1
j (t + 1) = Φ−1

j (t)− Φ−1
j (t)hj(t + 1)hT

j (t + 1)Φ−1
j (t)

1 + hT
j (t + 1)Φ−1

j (t)hj(t + 1)
. (4.15)

Interestingly, the first term in sj(t + 1; k + 1), namely Φj(t + 1)−1ψj(t + 1), is a regularized

version of the local EWLSE per sensor j at time instant t+1. The regularization is imposed

by the scaled identity matrix term in Φj(t+1). Contrary to the classical RLS, see e.g., [43],

it allows one to set Φ0 = 0 without compromising the invertibility of Φj(t). The remaining

terms in (4.12) are responsible for fusing information from the neighborhood of sensor j,

refining in that way the local estimate provided by Φ−1
j (t + 1)ψj(t + 1). As promised, the

variables {z̄j′
j , z̃j′

j } have been completely eliminated from the D-RLS recursions in (4.11)-

(4.12).

In order to solve (4.4) at time instant t + 1, all sensors run local consensus recursions.

During the (k + 1)-st consensus iteration, sensor j receives the local estimates sj′(t + 1; k)

from its neighbors j′ ∈ Nj and updates its multipliers vj′
j (t + 1; k) via (4.11). Then, sensor

j receives the multipliers {vj′
j (t + 1; k)}j′∈Nj

and uses them along with {sj′(t + 1; k)}j′∈Nj
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to evaluate sj(t + 1; k + 1) via (4.12). This way, recursions (4.11)-(4.12) minimize (4.4)

asymptotically. Specifically, it follows that:

Proposition 4.1 For arbitrarily initialized {vj′
j (t; 0)}j′∈Nj

j∈J , sj(t; 0) and any c > 0; the local

estimates sj(t; k) generated by (4.12) reach consensus as k →∞; i.e.,

lim
k→∞

sj(t; k) = ŝewls(t), for all j ∈ J .

Proof: See Appendix 4.6.1.

Thus, D-RLS recursions are able to attain the EWLSE at each time instant t as long as the

number of consensus iterations grows. For a time-invariant setup, running many consensus

iterations, i.e., k À 1 would not be a problem, though this is not the case when the sensors

track a time-varying process s0(t). One way to enable D-RLS operation in nonstationary

settings, is to apply one consensus iteration per time instant t. In this case, k = t and

recursions (4.11)-(4.12) simplify to

vj′
j (t) = vj′

j (t− 1) +
c

2
[sj(t)− (sj′(t) + ηj′

j (t))], (4.16)

sj(t + 1) = Φ−1
j (t + 1)ψj(t + 1) +

c

2
Φ−1

j (t + 1)
∑

j′∈Nj

[
sj(t) + (sj′(t) + ηj′

j (t))
]

− 1
2
Φ−1

j (t + 1)
∑

j′∈Nj

[
vj′

j (t)− (vj
j′(t) + η̄j′

j (t))
]

(4.17)

where ηj′
j (t) and η̄j′

j (t) denote the additive communication noise present in the reception of

sj(t) and vj
j′(t) at sensor j, respectively. In detail, during time instant t+1 sensor j receives

the local estimates {sj′(t) + ηj′
j (t)}j′∈Nj

and plugs them into (4.16) to evaluate vj′
j (t) for

j′ ∈ Nj . Then, it receives vj
j′(t)+ η̄j′

j (t) from its neighbors j′ ∈ Nj , which are used together

with {sj′(t)+ηj′
j (t)}j′∈Nj

and the new observation data within Φ−1
j (t+1)ψj(t+1) to obtain

sj(t + 1) via (4.17). Recursions (4.16)-(4.17) constitute a single-time (ST-) scale version

of D-RLS, abbreviated as STD-RLS and tabulated as Algorithm 4. Note also that there

is no need for a common penalty coefficient c across sensors; that is, each sensor can use

its own local penalty coefficient cj > 0 allowing increased flexibility to attain potentially

higher convergence rates.
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Algorithm 4 : STD-RLS

Arbitrarily initialize {sj(0)}J
j=1 and {vj′

j (−1)}j′∈Nj

j∈J .

for t = 0, 1,. . . do

All j ∈ J : transmit sj(t) to neighbors in Nj .

All j ∈ J : update {vj′
j (t)}j′∈Nj

using (4.16).

All j ∈ J : transmit vj′
j (t) to each j′ ∈ Nj .

All j ∈ J : update sj(t + 1) using (4.17).

end for

Remark 4.3 (Comparison with a bridge sensor-based D-RLS algorithm) A sim-

ilar consensus-based RLS algorithm was put forth in [46]. To enable task parallelization via

AD-MoM while ensuring that estimates agree across the whole WSN, the approach in [46]

judiciously reformulates (4.1) by relying on a bridge sensor subset. Such approach is related

to the one followed in Chapter 2 when developing the D-LMS algorithm, and builds on the

framework originally proposed in [45,49]. Not only setting-up – but readjusting the bridge

sensor set, e.g., when sensors inevitably fail in battery-limited WSN deployments – requires

additional coordination among sensors with an associated communication overhead. Com-

pared to [46], the approach followed here does not require such a bridge sensor set, and in

this sense, it offers a fully distributed, robust, and resource efficient RLS-type algorithm for

use in ad hoc WSNs.

4.3.2 Communication and Computational Costs

Next, we analyze the communication and computational costs associated with D-RLS, and

compare them with those incurred by existing approaches. Per D-RLS iteration each sensor

transmits p(|Nj | + 1) scalars corresponding to the multipliers {vj′
j }j′∈Nj

, and the local

estimate sj . In diffusion RLS [8], each sensor transmits 2p+1 scalars per iteration. However,

when considering the reception cost it can be seen that while in D-RLS each sensor receives

2|Nj |p scalars per recursion, in diffusion RLS the number of received scalars increases to

|Nj |(2p + 1) per iteration. Even though the transmission cost is arguably greater than the

one related to reception, it will be corroborated via numerical examples that the higher
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transmission cost in D-RLS pays off in improved convergence rates and robustness in the

presence of communication noise.

The communication cost for I-RLS in [44] is O(p2), since each sensor has to transmit

to its successor in the Hamiltonian cycle a p × p covariance matrix; similar complexity is

incurred by the scheme in [63]. A low communication cost I-RLS is also proposed in [44]

in which each sensor within the cycle transmits and receives p scalars per iteration, though

the challenges related to I-RLS remain as the WSN scales.

In comparison to the D-LMS algorithm in Chapter 3, D-RLS incurs the same commu-

nication cost. This is the case since the communication steps in both schemes are identical

(cf. Algorithm 2 in Chapter 3 and Algorithm 4).

Next, we focus on the computational complexity involved in implementing (4.16)-(4.17).

Updating the multipliers incurs complexity in the order of O(|Nj |p). In determining sj(t +

1), the dominating cost arises from calculating Φ−1
j (t + 1). Recall that when λ = 1,

matrix Φ−1
j (t + 1) can be computed recursively with a complexity of O(p2). If λ < 1, then

the complexity for determining Φ−1
j (t + 1) is O(p3). In diffusion RLS, the computational

complexity is also dominated by the cost of recursively updating the inverse of the regression

covariance matrix, and is of order O(|Nj |p2). Thus, for λ = 1 the computational complexity

per iteration is smaller than the one in diffusion RLS. For λ < 1, the way D-RLS and

diffusion RLS compare in terms of computational complexity depends on the relative size

of {|Nj |}J
j=1 and p. Specifically, if p < |Nj | (e.g., in localization applications where p ≤ 3),

then D-RLS incurs smaller complexity. While, if p > |Nj | diffusion RLS is less complex

computationally.

Finally, we point out that the D-LMS algorithm in Chapter 3 incurs lower complexity

when compared to D-RLS. This is also the case for their centralized counterparts; see,

e.g., [43, 52]. While the Lagrange multiplier recursions are identical in both schemes, the

local estimate updates for D-LMS in (3.14) incur a complexity in the order of O(p). As

already mentioned, the corresponding updates for D-RLS can attain O(p2) in the (most

favorable) infinite memory case (λ = 1).

Remark 4.4 (Communication noise resilience) Despite the fact that the computa-
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Figure 4.1: An ad hoc WSN with J = 30 sensors.

tional complexity of (ST)D-RLS depends on the estimation setting, the novel algorithm

enjoys communication noise resilience, not present in existing alternatives. This property

makes (ST)D-RLS a viable candidate for estimation/tracking in WSNs. It is also an ex-

pected feature since both algorithms rely on the AD-MoM, which exhibits robustness in the

presence of communication noise [49].

4.3.3 Numerical Tests

Here we test the novel D-RLS and STD-RLS algorithms in the spectral application setting

described in Section 4.2.1, conducting several performance comparisons with: i) I-RLS [44];

ii) diffusion RLS using Metropolis weights [8]; iii) local (L-) RLS, whereby each sensor runs

an independent RLS algorithm solely based on its own data (no inter-sensor communica-

tions); and iv) D-LMS with step-size µ = 10−2 (cf. Algorithm 2). For J = 30 sensors,

an ad-hoc WSN is generated by using the random geometric graph model in [0, 1]2, with

communication range r = 0.6; see Fig. 4.1. For the examples with noisy links, additive

white Gaussian noise (AWGN) with variance σ2
η = 10−1 is added at the receiving end. The

source θ(t) is an AR(4) process with coefficients s0 = [−0.31, 1.14, 0.28, 0.22]T and driving

noise variance σ2
w = 10−2, which yields a spectrum with a single peak at ω = π/2. The
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Figure 4.2: Global network performance in a distributed power spectrum estimation task:

(left) MSE (learning curve); (right) MSD.

source-sensor channels have order Lj = 2, and the channels to the sensors 3, 7, 15 and 27

vanish at the frequency ω = π/2. The observation AWGN has a spatial variance profile

σ2
ε̄j

= αj × 10−4, where the coefficients αj ∼ U [0, 1] (uniformly distributed) are i.i.d. across

sensors.

Thirty consensus steps are ran per acquired observation in D-RLS, in order to ensure a

fair comparison with I-RLS in terms of processing delay. The delay is due to the estimation

cycle over all J = 30 sensors, that should be completed before new information can be incor-

porated. With λ = 1 and cj = 7/|Nj | in both D-RLS and STD-RLS, Fig. 4.2 (left) compares

the global MSE evolution (learning curve) obtained as J−1
∑J

j=1 E[(xj(t)−hT
j (t)sj(t−1))2],

whereas the expectation is approximated by averaging over 250 realizations of the experi-

ment. Similar curves are shown in Fig. 4.2 (right), in this case for the global mean-square

deviation (MSD) metric given by J−1
∑J

j=1 E[‖sj(t)−s0‖2]. I-RLS and D-RLS behave sim-

ilarly providing a performance benchmark, while D-LMS – a first-order method – converges

much slower than all distributed RLS schemes. STD-RLS outperforms diffusion RLS in

terms of convergence rate, and most importantly, it does not suffer from the catastrophic
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Figure 4.3: Local (per-sensor) performance in a distributed power spectrum estimation task.

noise accumulation exhibited by diffusion RLS when the links are not ideal.

With regards to local performance in steady-state, for λ = 0.9 we illustrate in Fig.

4.3 the figures of merit which are customary in the adaptive literature [8, 43, 48]: i) MSE

E[(xj(t)− hT
j (t)sj(t− 1))2]; ii) excess-MSE (EMSE) E[(hT

j (t)(sj(t− 1)− s0))2]; and MSD

E[‖sj(t)−s0‖2]. With reference to Remark 4.2, it is apparent that a scheme devoid of sensor

collaboration such as L-LMS, fails to obtain satisfactory estimates at the sensors affected

by the channel fades. On the other hand, STD-RLS exploits the available spatial diversity

to attain improved estimation performance, see, e.g., the local MSD curves.

Next, we illustrate the capabilities of STD-RLS when it comes to tracking a time varying

parameter s0(t). For p = 6 and for the same WSN setup, we simulate a large amplitude

slowly time-varying process s0(t) = (1 − ρ1)s0(t − 1) + ν(t) with ρ1 = 0.9 and ν(t) ∼
N (0, 10−2I6) (multivariate normal distribution). A linear model is adopted for the sensor

observations, i.e., xj(t) = hT
j (t)s0(t)+ζj(t) with ζj(t) ∼ N (0, 10−4) for all j ∈ J . Regressors

are temporally correlated, as hj(t) = [hj(t) . . . hj(t−5)]T with entries which evolve according

to hj(t) = (1− ρ2)βjhj(t− 1) +
√

ρ2νj(t). We choose ρ2 = 0.7, the βj ∼ U [0, 1] are i.i.d. in

space, and the driving white noise νj(t) ∼ U [−√3σνj ,
√

3σνj ] has a spatial variance profile

given by σ2
νj

= 10−1γj , with γj ∼ U [0, 1] and i.i.d. For λ = 0.5 and cj = 7/|Nj |, Fig. 4.4
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Figure 4.4: Tracking with STD-RLS.

depicts the second entry of s0(t) as well as the corresponding estimate for a representative

sensor closely tracking the true variations. In the presence of communication noise, the

larger estimate fluctuations are a direct manifestation of the (expected) increased MSE, as

evidenced by the learning curves in Fig. 4.4.

The scheme in [63] has not been included in the numerical comparisons because a com-

plete data model is not available for the power spectrum estimation problem. Specifically,

the variance of the aggregate observation noise term εj(t) is unknown (cf. Section 4.2.1).

Further, the algorithm in [63] is incapable of tracking s0(t) due to its diminishing step-size.

4.4 Reduced Complexity Distributed RLS Algorithms

This section deals with a pair of reduced complexity variants to the (ST)D-RLS algorithm.

In the first case, communication and computational savings can be effected under the as-

sumption of ideal inter-sensor links, i.e., when ηj′
j (t) = η̄j′

j (t) = 0 in (4.16)-(4.17). A second

algorithm is developed by minimizing (4.4) using the alternating minimization algorithm

(AMA) in [59], instead of the AD-MoM described in Section 4.3.1. The improved AMA-

based D-RLS algorithm yields local estimate updates that incur computational complexity
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in the order of O(p2), for all values of the forgetting factor λ ∈ (0, 1].

4.4.1 D-RLS Algorithm with Ideal Links

When communication noise is not present as in the scenarios considered in [8,44,63], D-RLS

can be modified such that its corresponding communication complexity becomes lower than

the one incurred by diffusion RLS. Specifically, note that if the multipliers vj′
j are initialized

such that vj′
j (t; 0) = −vj

j′(t; 0), then in the absence of noise vj′
j (t; k) = −vj

j′(t; k) for all k

and t [cf. (4.7)]. Similarly, for the STD-RLS it follows that if vj′
j (0) = −vj

j′(0) and noise is

not present, then vj′
j (t) = −vj′

j (t) for all t. Taking into account this equality, and setting

η̄j′
j (t) = ηj′

j (t) = 0, the recursion for sj(t + 1) in STD-RLS is rewritten as [(4.12) can be

reformulated in the same way]

sj(t + 1) = Φ−1
j (t + 1)ψj(t + 1) +

c

2
Φ−1

j (t + 1)
∑

j′∈Nj

[
sj(t) + sj′(t)

]−Φ−1
j (t + 1)

∑

j′∈Nj

vj′
j (t).

(4.18)

The last summand in (4.18) incorporates only local multipliers stored at sensor j. Thus,

each sensor does not exchange multipliers with its neighbors to update sj(t + 1). When

using the modified STD-RLS comprising recursions (4.16) and (4.18), each sensor transmits

p scalars and receives |Nj |p scalars per iteration. The communication overhead is smaller

than the one associated with diffusion RLS (cf. the discussion in Section 4.3.2). However,

as in diffusion RLS the low transmission cost is counterbalanced by the lack of resilience in

the presence of communication noise; see also Remark 3.3 in Chapter 3.

Because sj(t + 1) in (4.18) is a function of pj(t) :=
∑

j′∈Nj
vj′

j (t), there is no need to

separately update all multipliers {vj′
j }j′∈Nj

as in (4.16). It suffices to keep track of a single

local vector pj(t) instead, whose updating rule follows immediately from (4.16). The final
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recursions per sensor j ∈ J are:

pj(t) = pj(t− 1) +
c

2

∑

j′∈Nj

(sj(t)− sj′(t)) (4.19)

sj(t + 1) = Φ−1
j (t + 1)ψj(t + 1) +

c

2
Φ−1

j (t + 1)
∑

j′∈Nj

[
sj(t) + sj′(t)

]−Φ−1
j (t + 1)pj(t).

(4.20)

Interestingly, (4.19)-(4.20) require each sensor to store and update only 2p scalars, regardless

of the WSN topology and corresponding neighborhood sizes. Recalling that Φ−1
j (t) and

ψj(t) need to be updated separately, the total memory requirement per sensor adds up to

p2 + 3p scalars. Recursions (4.19)-(4.20) implement Algorithm 4 exactly when links are

ideal; hence, the aforementioned savings are achieved without any performance penalty.

4.4.2 The Alternating Minimization Algorithm

With reference to (4.13), suppose for a moment that c = 0 so that

Φj(t + 1) = λΦj(t) + hj(t + 1)hT
j (t + 1). (4.21)

It is then possible to efficiently update Φ−1
j (t + 1) via (4.15) using the matrix inversion

lemma. As argued in Section 4.3.1, (4.21) does not hold for the general case c > 0, unless

λ = 1. This is due to the – from this perspective undesirable – regularization term c|Nj |Ip

in (4.13), a direct consequence of the quadratic penalty in the augmented Lagrangian.

Unfortunately, the penalty coefficient cannot be set to zero because the D-RLS algorithm

breaks down. For instance, when the initial Lagrange multipliers are null and c = 0, STD-

RLS boils down to L-LRS and consensus cannot be enforced. Motivated to further reduce

the complexity in updating sj , an improved version of the D-RLS algorithm is developed in

this section such that (4.21) holds true for all values of λ ∈ (0, 1].

Going back to the starting point of this chapter, consider minimizing (4.4) with the

consensus constraints equivalently represented as (4.5). Introduce the ordinary Lagrangian
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function

L [s, z ,v,µ] =
J∑

j=1

t∑

τ=0

λt−τ [xj(τ)− hT
j (τ)sj ]2 + J−1λt

J∑

j=1

sT
j Φ0sj

+
J∑

j=1

∑

j′∈Nj

[(
vj′

j

)T
(sj − z̄j′

j ) + (µj′
j )T (sj′ − z̃j′

j )
]

(4.22)

which does not include quadratic terms penalizing the constraint violations. Much related

to the AD-MoM is the alternating minimization algorithm (AMA), which was proposed

in [59] to tackle a class of separable convex optimization problems. The AMA solver also

entails an iterative procedure comprising three steps per iteration k = 0, 1, 2, . . .

[S1] Multiplier updates:

vj′
j (t + 1; k) = vj′

j (t + 1; k − 1) + c[sj(t + 1; k)− z̄j′
j (t + 1; k)], j ∈ J , j′ ∈ Nj

µj′
j (t + 1; k) = µj′

j (t + 1; k − 1) + c[sj′(t + 1; k)− z̃j′
j (t + 1; k)], j ∈ J , j′ ∈ Nj .

[S2] Local estimate updates:

s(t + 1, k + 1) = arg min
s
L [s, z (t + 1, k),v(t + 1, k),µ(t + 1, k)] . (4.23)

[S3] Auxiliary variable updates:

z (t + 1, k + 1) = arg min
z∈Cz

La [s(t + 1, k + 1), z ,v(t + 1, k), µ(t + 1, k)] . (4.24)

Steps [S1] and [S3] coincide with the respective ones in AD-MoM. The only difference is with

regards to the local estimate updates in [S2], where in AMA the new iterates are obtained by

minimizing the ordinary Lagrangian with respect to s. For the sake of the aforementioned

minimization, all other variables are considered fixed taking their most up to date values

{z (t + 1, k),v(t + 1, k), µ(t + 1, k)}. For the AD-MoM instead, the minimized quantity was

the augmented Lagrangian. The AMA was motivated in [59] to tackle separable problems

that are strictly convex in s, but not necessarily with respect to z . Under this assumption,

[S2] still yields a unique minimizer and the AMA is useful for those cases in which the

Lagrangian is much simpler to optimize than the augmented Lagrangian.
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Because of the regularization matrix Φ0 Â 0, the EWLS cost in (4.4) is indeed strictly

convex for all t > 0. From the results in Section 4.3.1, still

z̄j′
j (t+1, k +1) = z̃j′

j (t+1, k +1) =
1
2

[
sj(t + 1, k + 1) + sj′(t + 1, k + 1)

]
, j ∈ J , j′ ∈ Nj

while vj′
j (t+1; k) = −µj′

j (t+1; k) for all k > −1, and vj′
j (t+1; k) is given by (4.11). Moving

on to [S2], from the separable structure of (4.22) the minimization (4.23) can be split into

J subproblems

sj(t + 1, k + 1) = arg min
sj

[
t+1∑

τ=0

λt+1−τ [xj(τ)− hT
j (τ)sj ]2 + J−1λt+1sT

j Φ0sj

+
∑

j′∈Nj

[
vj′

j (t + 1, k)− vj
j′(t + 1, k)

]T
sj


 .

Since the local subproblems correspond to unconstrained quadratic minimization, they ad-

mit closed-form solutions

sj(t+1, k+1) = Φ−1
j (t+1)ψj(t+1)− 1

2
Φ−1

j (t+1)
∑

j′∈Nj

[
vj′

j (t + 1, k)− vj
j′(t + 1, k)

]
(4.25)

where ψj(t + 1) is given by (4.14), and Φj(t + 1) satisfies the desired first-order recursion

(4.21). Recursions (4.11) and (4.25) constitute the improved AMA-based D-RLS algorithm,

whereby all sensors j ∈ J keep track of their local estimate sj(t + 1; k + 1) and their

multipliers {vj′
j (t + 1; k)}j′∈Nj

, which can be arbitrarily initialized. For all values of the

forgetting factor λ, the matrix Φ−1
j (t + 1) is updated according to (4.15) with complexity

O(p2). It is recommended to initialize the matrix recursion as Φ−1
j (0) = JΦ−1

0 := δIp,

where δ > 0 is chosen sufficiently large [43]. Not surprisingly, by direct application of the

convergence results in [59, Proposition 3], it follows that:

Proposition 4.2 For arbitrarily initialized {vj′
j (t; 0)}j′∈Nj

j∈J , sj(t; 0) and c ∈ (0, cu); the

local estimates sj(t; k) generated by (4.25) reach consensus as k →∞; i.e.,

lim
k→∞

sj(t; k) = ŝewls(t), for all j ∈ J .

Remark 4.5 (On the selection of the penalty coefficient) While the AMA-based D-

RLS algorithm is less complex computationally than its AD-MoM counterpart in Section
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Algorithm 5 : AMA-based STD-RLS

Arbitrarily initialize {sj(0)}J
j=1 and {vj′

j (−1)}j′∈Nj

j∈J .

for t = 0, 1,. . . do

All j ∈ J : transmit sj(t) to neighbors in Nj .

All j ∈ J : update {vj′
j (t)}j′∈Nj

using (4.26).

All j ∈ J : transmit vj′
j (t) to each j′ ∈ Nj .

All j ∈ J : update sj(t + 1) using (4.27).

end for

4.3.1, convergence to the centralized estimator is only guaranteed if c ∈ (0, cu). The upper

bound cu is proportional to the modulus of the strictly convex cost function in (4.4), and

inversely proportional to the norm of the matrix A given in Appendix 4.6.1; further details

are in [59, Section 4]. On the other hand, the AD-MoM-based D-RLS algorithm will attain

the EWLSE for any c > 0 (cf. Proposition 4.1), and it does not require tuning the extra

parameter δ, since it is applicable when Φ0 = 0.

By running a single consensus iteration per acquired observation xj(t), i.e., letting k = t

in recursions (4.11)-(4.25), one arrives at a single time scale D-RLS algorithm which is

suitable for operation in nonstationary WSN environments. Accounting also for additive

communication noise that corrupts the exchanges of multipliers and local estimates, the per

sensor tasks comprising the novel AMA-based STD-RLS algorithm are given by

vj′
j (t) = vj′

j (t− 1) +
c

2

[
sj(t)− (sj′(t) + ηj′

j (t))
]
, j′ ∈ Nj (4.26)

sj(t + 1) = Φ−1
j (t + 1)ψj(t + 1)− 1

2
Φ−1

j (t + 1)
∑

j′∈Nj

[
vj′

j (t)− (vj
j′(t) + η̄j′

j (t))
]

(4.27)

and are tabulated as Algorithm 5. When powerful error control codes render inter-sensor

links virtually ideal, the simplifications in Section 4.4.1 are applicable to the AMA-based

(ST)D-RLS also.
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4.5 Stability and Steady-State Performance Analysis

In this section, stability and steady-state performance analyses are conducted for the STD-

RLS algorithm developed in Section 4.4.2. The techniques presented here can be utilized

with minimal modifications to analyze the AD-MoM-based D-RLS too.

Performance evaluation of the D-RLS algorithm is much more involved than that of

D-LMS. The challenges are well documented for the classical (centralized) LMS and RLS

filters [43, 52], and results for the latter are less common and typically involve simplifying

approximations. What is more, the distributed setting studied in this thesis introduces

unique challenges in the analysis. These include space-time sensor data and multiple sources

of additive noise, a consequence of imperfect sensors and communication links. When

dealing with D-RLS, the main complications are rooted in the stochastic matrix Φ−1
j (t)

present in the local estimate updates (4.27). Recalling that

Φj(t) :=
t∑

τ=0

λt−τhj(τ)hT
j (τ) + J−1λtΦ0 (4.28)

it is apparent that Φ−1
j (t) depends upon the whole history of local regression vectors

{hj(τ)}t
τ=0. Even obtaining Φ−1

j (t)’s distribution or computing its expected value is a

formidable task in general, due to the matrix inversion operation. It is for these reasons

that some simplifying approximations will be adopted in the sequel, to carry out the analysis

that otherwise becomes intractable.

In order to proceed, some modeling assumptions are introduced which delineate the

scope of the ensuing stability and performance results. For all j ∈ J , it is assumed that:

(a1) Sensor observations obey xj(t) = hT
j (t)s0 + εj(t), where the zero-mean white noise

{εj(t)} has variance σ2
εj

;

(a2) Vectors {hj(t)} are spatio-temporally white with covariance matrix Rhj Â 0p×p; and

(a3) Vectors {hj(t)}, {εj(t)}, {ηj′
j (t)}j′∈Nj

and {η̄j′
j (t)}j′∈Nj

are independent.

Assumptions (a1)-(a3) comprise the widely adopted independence setting, for sensor obser-

vations that are linearly related to the time-invariant parameter of interest; see e.g., [52, pg.
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110], [43, pg. 448]. Clearly, (a2) can be violated in, e.g., FIR filtering of signals (regressors)

with a shift structure as in the distributed power spectrum estimation problem described in

Section 4.2.1. Nevertheless, the steady-state performance results extend accurately to the

pragmatic setup that involves time-correlated sensor data; see also the numerical tests in

Section 4.5.3.

Neglecting the regularization term in (4.28) that vanishes exponentially as t → ∞,

the matrix Φj(t) is obtained as an exponentially weighted moving average (EWMA). The

EWMA can be seen as an average modulated by a sliding window of equivalent length

1/(1−λ), which clearly grows as λ → 1. This observation in conjunction with (a2) and the

strong law of large numbers, justifies the approximation

Φj(t) ≈ E[Φj(t)] =
Rhj

1− λ
, 0 ¿ λ < 1 and t →∞. (4.29)

The mean of Φ−1
j (t), on the other hand, is considerably harder to evaluate. To overcome

this challenge, we will invoke the following approximation [8, 43]

E[Φ−1
j (t)] ≈ E[Φj(t)]−1 ≈ (1− λ)R−1

hj
, 0 ¿ λ < 1 and t →∞. (4.30)

It is clearly a crude approximation at first sight, because E
[
X−1

] 6= E[X]−1 for any random

variable X. However, experimental evidence suggests that the approximation is sufficiently

accurate for all practical purposes, when the forgetting factor approaches unity [43, p. 319].

Our approach to steady-sate performance analysis relies on an ‘averaged’ error-form

system representation of D-RLS, where Φ−1
j (t) in (4.27) is replaced by the approximation

(1 − λ)R−1
hj

. It is then straightforward to establish that local estimates obtained via the

AMA-based D-RLS are asymptotically unbiased, the subject dealt with next.

4.5.1 Mean Stability

Aiming at representing the approximate ‘averaged’ D-RLS system as a first-order difference

equation, introduce the local estimation errors {y1,j(t) := sj(t)− s0(t)}J
j=1 and multiplier-

based quantities {y2,j(t) := 1
2

∑
j′∈Nj

(vj′
j (t−1)−vj

j′(t−1))}J
j=1. It turns out that a conve-

nient global state capturing the spatio-temporal dynamics of D-RLS in (4.26)-(4.27) can be
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defined as y(t) := [yT
1 (t) yT

2 (t)]T = [yT
1,1(t) . . .yT

1,J(t) yT
2,1(t) . . .yT

2,J(t)]T . To concisely cap-

ture the effects of both observation and communication noise on the estimation errors across

the WSN, define the Jp×1 noise vectors ε(t) :=
∑t

τ=0 λt−τ [hT
1 (τ)ε1(τ) . . .hT

J (τ)εJ(τ)]T and

η̄(t) := [η̄T
1 (t) . . . η̄T

J (t)]T , where vectors {η̄j(t)}j∈J are given by

η̄j(t) :=
1
2

∑

j′∈Nj

η̄j′
j (t). (4.31)

Their respective covariance matrices are easily computable under (a2)-(a3). For in-

stance, Rε(t) := E[ε(t)εT (t)] = 1−λ2(t+1)

1−λ2 bdiag(Rh1σ
2
ε1 , . . . ,RhJ

σ2
εJ

) while the structure

of Rη̄ := E[η̄(t)η̄T (t)] is given in Appendix 4.6.3. Two additional Jp × 1 commu-

nication noise supervectors are needed, namely ηα(t) :=
[
(ηα

1 (t))T . . . (ηα
J (t))T

]T and

ηβ(t) :=
[
(ηβ

1 (t))T . . . (ηβ
J(t))T

]T
, where for j ∈ J

ηα
j (t) :=

c

4

∑

j′∈Nj

ηj′
j (t), ηβ

j (t) :=
c

4

∑

j′∈Nj

ηj
j′(t). (4.32)

Finally, let (c/2)L ⊗ Ip ∈ RJp×Jp be a matrix capturing the WSN connectivity pattern

through the (scaled) graph Laplacian matrix L, and define R−1
h := bdiag(R−1

h1
, . . . ,R−1

hJ
).

Based on these definitions, it is possible to establish the following important lemma.

Lemma 4.1 Let (a1) and (a2) hold. Then for t ≥ t0 with t0 sufficiently large while 0 ¿
λ < 1, the global state y(t) approximately evolves according to

y(t + 1) = bdiag((1− λ)R−1
h , IJp)



Υy(t) +


 IJp

0


 ε(t + 1) +


 IJp

0


 η̄(t)

+


 IJp

−IJp


ηα(t)−


 IJp

−IJp


ηβ(t)



 (4.33)

where the 2Jp × 2Jp matrix Υ consists of the Jp × Jp blocks [Υ]11 = −[Υ]21 = −Lc

and [Υ]12 = −[Υ]22 = −IJp. The initial condition y(t0) should be selected as y(t0) =

bdiag(IJp,Lc)y′(t0), where y′(t0) is any vector in R2Jp.

Proof: After replacing Φ−1
j (t) in (4.27) with the approximation (4.30) for its expected

value, the arguments in Appendix 3.7.2 apply directly to yield the desired result. In the

interest of brevity, the details of the proof are omitted. ¤
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Based on Lemma 4.1, it follows that D-RLS achieves consensus in the mean sense on

the parameter s0. The proof of the following mean stability result is deferred to Appendix

4.6.2.

Proposition 4.3 Under (a1)-(a3) and for 0 ¿ λ < 1, the D-RLS algorithm achieves

consensus in the mean, i.e.,

lim
t→∞E[y1,j(t)] = 0p, ∀ j ∈ J

provided the penalty coefficient is chosen such that

0 < c <
4

(1− λ)λmax(R−1
h (L⊗ Ip))

. (4.34)

Before concluding this section, a comment is due on the sufficient condition (4.34). When

performing distributed estimation under 0 ¿ λ < 1, the condition is actually not restrictive

at all since a 1−λ factor is present in the denominator. When λ is close to one, any practical

choice of c > 0 will result in asymptotically unbiased sensor estimates.

4.5.2 MSE Performance in Steady-State

In order to assess the steady-state MSE performance of the D-RLS algorithm, we will eval-

uate the figures of merit introduced in Section 3.4.2 of Chapter 3, when investigating the

performance of D-LMS. The limiting values of both the local (per sensor) and global (net-

work) MSE, excess mean-square error (EMSE) and mean-square deviation (MSD) will be

assessed. To this end, it suffices to derive a closed-form expression for the global estimation

error covariance matrix Ry1(t) := E[y1(t)yT
1 (t)], as already argued in Chapter 3.

The next result provides an equivalent representation of the approximate D-RLS global

recursion (4.33), that is more suitable for the recursive evaluation of Ry1(t). First, introduce

the p(
∑J

j=1 |Nj |)× 1 vector

η(t) :=
[{(η1

j′(t))
T }j′∈N1 . . . {(ηJ

j′(t))
T }j′∈NJ

]T
(4.35)

which comprises the receiver noise terms corrupting transmissions of local estimates across

the whole network at time instant t, and define Rη := E[η(t)ηT (t)]. For notational conve-

nience, let R−1
h,λ := (1− λ)R−1

h .



4.5 Stability and Steady-State Performance Analysis 117

Lemma 4.2 Under the assumptions stated in Lemma 4.1, the global state y(t) in (4.33)

can be equivalently written as

y(t + 1) = bdiag(IJp,Lc)z(t + 1) +


 R−1

h,λ

0Jp×Jp


 η̄(t) +


 R−1

h,λ(Pα −Pβ)

Pβ −Pα


η(t) (4.36)

where the inner state z(t) := [zT
1 (t) zT

2 (t)]T is arbitrarily initialized at time instant t0 and

updated according to

z(t+1) = Ψz(t)+Ψ


 R−1

h,λ(Pα −Pβ)

C


η(t−1)+Ψ


 R−1

h,λ

0


 η̄(t−1)+


 R−1

h,λ

0


 ε(t+1)

(4.37)

and the 2Jp × 2Jp transition matrix Ψ consists of the blocks [Ψ]11 = [Ψ]12 = −R−1
h,λLc

and [Ψ]21 = [Ψ]22 = LcL
†
c. The matrix C is chosen such that LcC = Pβ − Pα, where the

structure of the time-invariant matrices Pα and Pβ is given in Appendix 4.6.3.

Proof: The equivalence follows by induction, replicating the steps in Appendix 3.7.2. ¤

Focusing now on the calculation of Ry1(t), observe from the upper Jp×1 block of y(t+1)

in (4.36) that y1(t + 1) = z1(t + 1) + R−1
h,λ[η̄(t) + (Pα −Pβ)η(t)]. Under (a3), z1(t + 1) is

independent of the zero-mean {η̄(t), η(t)}; hence,

Ry1(t) = Rz1(t) + R−1
h,λ

[
Rη̄ + (Pα −Pβ)Rη(Pα −Pβ)T

]
R−1

h,λ (4.38)

based on which we obtain Rz(t) := E[z(t)zT (t)]. We wish to extract its upper-left Jp× Jp

matrix block [Rz(t)]11 = Rz1(t). To this end, define the vectors

η̄λ(t) :=


 R−1

h,λ

0Jp×Jp


 η̄(t), ηλ(t) :=


 R−1

h,λ(Pα −Pβ)

C


η(t) (4.39)

whose respective covariance matrices Rη̄λ
:= E[η̄λ(t)η̄T

λ (t)] and Rηλ
:= E[ηλ(t)ηT

λ (t)] have

a structure detailed in Appendix 4.6.3. Also recall that ε(t) depends on the entire history of

regressors up to time instant t. Starting from (4.37) and capitalizing on the independence

setting assumptions (a2)-(a3), it is straightforward to obtain a first-order matrix recursion



4.5 Stability and Steady-State Performance Analysis 118

to update Rz(t) as

Rz(t) =ΨRz(t− 1)ΨT + ΨRη̄λ
ΨT + ΨRηλ

ΨT +


 R−1

h,λ

0Jp


Rε(t)


 R−1

h,λ

0Jp




T

+ ΨRzε(t)


 R−1

h,λ

0Jp


 +


ΨRzε(t)


 R−1

h,λ

0Jp







T

(4.40)

=ΨRz(t− 1)ΨT + Rν(t) (4.41)

where the cross-correlation matrix Rzε(t) := E[z(t− 1)εT (t)] is recursively updated as

Rzε(t) = λΨRzε(t− 1) + λ


 R−1

h,λ

0Jp


Rε(t− 1). (4.42)

For notational simplicity in what follows, Rν(t) in (4.41) denotes all the covariance forcing

terms in the right hand side of (4.40). The fundamental result of this section pertains to

MSE stability of the D-RLS algorithm, and provides a checkable sufficient condition under

which the global error covariance matrix Ry1(t) has bounded entries as t →∞.

Proposition 4.4 Under (a1)-(a3) and for 0 ¿ λ < 1, the D-RLS algorithm is MSE stable,

i.e., limt→∞Ry1(t) has bounded entries, provided that c > 0 is chosen so that Ψ is a stable

matrix.

Proof: First observe that because λ ∈ (0, 1), it holds that

lim
t→∞Rε(t) = lim

t→∞

(
1− λ2(t+1)

1− λ2

)
bdiag(Rh1σ

2
ε1 , . . . ,RhJ

σ2
εJ

)

=
(

1
1− λ2

)
bdiag(Rh1σ

2
ε1 , . . . ,RhJ

σ2
εJ

) =: Rε(∞) (4.43)

If c > 0 is selected such that Ψ is a stable matrix, then clearly λΨ is also stable and hence

the matrix recursion (4.42) converges to the bounded limit

Rzε(∞) = (I2Jp − λΨ)−1


 λR−1

h,λ

0Jp


Rε(∞). (4.44)

Based on the previous arguments, it follows that the forcing matrix Rν(t) in (4.40) will also

attain a bounded limit as t →∞, denoted as Rν(∞). Next, we show that limt→∞Rz(t) has
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bounded entries by studying its equivalent vectorized dynamical system. Upon vectorizing

(4.41), it follows that

vec[Rz(t)] =vec[ΨRz(t− 1)ΨT ] + vec[Rν(t)]

= (Ψ⊗Ψ) vec[Rz(t− 1)] + vec[Rν(t)]

where in obtaining the last equality we used the property vec[RST] =
(
TT ⊗R

)
vec[S].

Because the eigenvalues of Ψ ⊗ Ψ are the pairwise products of those of Ψ, stability of

Ψ implies stability of the Kronecker product. As a result, the vectorized recursion will

converge to the limit

vec[Rz(∞)] =
(
I(2Jp)2 −Ψ⊗Ψ

)−1
vec[Rν(∞)] (4.45)

which of course implies that limt→∞Rz(t) = Rz(∞) has bounded entries. From (4.38), the

same holds true for Ry1(t), and the proof is completed. ¤

Proposition 4.4 asserts that the AMA-based D-RLS algorithm is stable in the mean-

square sense, even when the WSN links are challenged by additive noise. It also provides

theoretical support for the comments in Remark 4.4, and the results of the numerical

experiments in Section 4.3.3. Noise resilience however, is not a feature of the diffusion RLS

algorithm in [8], which under non-ideal links yields local sensor estimates with unbounded

variance (asymptotically in time).

As a byproduct, the proof of Proposition 4.4 also provides part of the recipe towards

evaluating the steady-state MSE performance of the D-RLS algorithm. In detail, by plug-

ging (4.43) and (4.44) into (4.40) one obtains the steady-state covariance matrix Rν(∞).

It is then possible to evaluate Rz(∞), by reshaping the vectorized identity (4.45). Matrix

Rz1(∞) can be extracted from the upper-left Jp × Jp matrix block of Rz(∞), and the

desired global error covariance matrix Ry1(∞) becomes available via (4.38). Closed-form

evaluation of the MSE(∞), EMSE(∞) and MSD(∞) for every sensor j ∈ J is now possible

given Ry1(∞), by resorting to the formulae in Section 3.4.2.
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D−RLS w/noise: empirical evolution 

D−RLS w/noise: empirical evolution 

D−RLS: empirical evolution 

D−RLS: empirical evolution 

D−RLS theoretical s.s. values 

D−RLS theoretical s.s. values 

Figure 4.5: Global steady-state performance evaluation. D-RLS is ran with ideal links and

when communication noise with variance σ2
η = 10−1 is present.

4.5.3 Numerical Tests

Here we validate the analytical results of Section 4.5.2 through numerical experiments.

Even though based on simplifying assumptions and approximations, the usefulness of the

analysis is corroborated since the predicted steady-state MSE figures of merit accurately

match the empirical D-RLS limiting values. For J = 15 sensors, a connected ad hoc WSN

is generated as a realization of the random geometric graph model on the unity square, with

communication range r = 0.3. For non-ideal links, additive white Gaussian noise (AWGN)

with variance σ2
η = 10−1 is added at the receiving end.

With p = 4 and s0 = 1p, observations obey a linear model [cf. (a1)] with sensing

WGN of spatial variance profile σ2
εj

= 10−3αj , where αj ∼ U [0, 1] (uniform distribution)

and i.i.d.. The regression vectors hj(t) = [hj(t) . . . hj(t − p + 1)]T have a shift structure

and entries which evolve according to hj(t) = (1 − ρ)βjhj(t − 1) +
√

ρωj(t) for all j ∈ J .

We choose ρ = 5 × 10−1, the βj ∼ U [0, 1] i.i.d. in space, and the driving white noise

ωj(t) ∼ U [−√3σωj ,
√

3σωj ] with spatial variance profile given by σ2
ωj

= 2γj with γj ∼ U [0, 1]

and i.i.d.. Observe that the data is temporally-correlated, implying that (a2) does not hold
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Figure 4.6: Local steady-state performance evaluation. D-RLS is compared to the D-LMS

algorithm in Chapter 3.

here.

For all experimental performance curves obtained by running the algorithms, the en-

semble averages are approximated by sample averaging 200 runs of the experiment.

First, with λ = 0.99, c = 0.1 and δ = 100 for the AMA-based D-RLS algorithm, Fig. 4.5

depicts the network performance through the evolution of the EMSE(t) and MSD(t) figures

of merit. Both noisy and ideal links are considered, while for the latter the D-RLS variant

in Section 4.4.1 has been used. The steady-state limiting values found in Section 4.5.2

are extremely accurate, even though the simulated data does not adhere to (a2), and the

results are based on simplifying approximations. As intuitively expected and analytically

corroborated via the noise-related additive terms in (4.38) and (4.40), the performance

penalty due to non-ideal links is also apparent.

We also utilize the analytical results developed throughout this thesis to contrast the

per sensor performance of D-RLS and the D-LMS algorithm in Chapter 3. In particular,

the parameters chosen for D-LMS are µ = 5× 10−3 and c = 1. Fig. 4.6 shows the values of

the EMSEj(∞) and MSDj(∞) for all j ∈ J . As expected, the second-order D-RLS scheme

attains improved steady-state performance uniformly across all sensors in the simulated
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WSN. In this particular simulated test, gains as high as 10dB in estimation error can be

achieved at the price of increasing computational burden per sensor.
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4.6 Appendices

4.6.1 Proof of Proposition 4.1

From the equivalence between the optimization problems (4.1) and (4.4), it suffices to show

that for all t the iterates sj(t, k) generated by (4.12) converge to ŝj(t) in (4.4). To this end,

observe that (4.4) with its equivalent set of constraints in (4.5) can be written as [7, eq.

4.77, p.255]

min
x,z

G1(x) + G2(z) (4.46)

s. t. x ∈ C1, z ∈ C2, Ax = z

with the identifications

x =
[
sT
1 . . . sT

J

]T
, C1 = RJp

z =
[
z̄T z̃T

]T
, C2 = Cz

G1(x) =
t∑

τ=0

J∑

j=1

λt−τ [xj(τ)− hT
j (τ)sj ]2 + J−1λt

J∑

j=1

sT
j Φ0sj , G2(z) = 0

where

z̄ :=
[
(z̄i1(1)

1 )T . . . (z̄i1(|N1|)
1 )T . . . (z̄iJ (1)

J )T . . . (z̄iJ (|NJ |)
J )T

]T

and likewise for z̃. The integer valued functions ij : {1, . . . , |Nj |} → J are such that ij(j′) is

the index of the j′th neighbor of node j. The linear constraint matrix is A = [AT
1 AT

2 AT
3 ]T ,

with matrix blocks A1 := IJp and

A2 :=




A21

...

A2J


 , A2j :=

(
1|Nj |b

T
J,j

)
⊗ Ip, j ∈ J

A3 :=




A31

...

A3J


 , A3j :=




bT
J,ij(1)

...

bT
J,ij(|Nj |)


⊗ Ip, j ∈ J

Thus, the three steps used to construct the D-RLS algorithm correspond to the AD-MoM [7,

eqs. 4.79-4.81, p.255].
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With the identifications above, it is straightforward to check that G1 and G2 are convex

functions, C1 and C2 are nonempty polyhedral sets and ATA is invertible (because A is

full column rank). By virtue of [7, Proposition 4.2, p.256], for every value of c > 0 and time

instant t the iterates generated by (4.12) converge to the optimal solution ŝj(t) = ŝewls(t),

j ∈ J of problem (4.4). ¤

4.6.2 Proof of Proposition 4.3

Based on the independence setting assumptions (a1)-(a3) and since the data is zero-

mean, one obtains after taking expectations on (4.33) that E[y(t)] = bdiag((1 −
λ)R−1

h , IJp)ΥE[y(t − 1)]. The following lemma characterizes the spectrum of the tran-

sition matrix Ω := bdiag((1− λ)R−1
h , IJp)Υ

Lemma 4.3 Regardless of the value of c > 0, matrix Ω := bdiag((1 − λ)R−1
h , IJp)Υ ∈

R2Jp×2Jp has p eigenvalues equal to one. Further, the left eigenvectors associated with

the unity eigenvalue have the structure vT
i =

[
01×Jp qT

i

]
where qi ∈ nullspace(Lc) and

i = 1, . . . , p. The remaining eigenvalues are equal to zero, or else have modulus strictly

smaller than one provided c satisfies the bound 4.34.

Proof: Recall the structure of matrix Ω given in Lemma 4.1. A vector vT
i =

[
vT

1,i vT
2,i

]

with {vj,i}2
j=1 ∈ RJp×1 is a left eigenvector of Ω associated to the eigenvalue one, if an only

if it solves the following linear system of equations

−vT
1,i(1− λ)R−1

h Lc + vT
2,iLc = vT

1,i

−vT
1,i(1− λ)R−1

h + vT
2,i = vT

2,i

The second equation can only be satisfied for v1,i = 0Jp, and upon substituting this value

in the first equation one obtains that v2,i ∈ nullspace(Lc) = nullspace(L⊗ Ip) for all values

of c > 0. Under the assumption of a connected ad hoc WSN, then nullspace(L) = span(1J)

and hence nullspace(L⊗ Ip) is a p-dimensional subspace.

Following steps similar to those in [49, Appendix H], it is possible to express the eigen-

values of Ω that are different from one as the roots of a second-order polynomial. Such
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polynomial does not have an independent term, so that some eigenvalues are zero. With

respect to the rest of the eigenvalues, it is possible to show that their magnitude is upper

bounded by λmax(IJp − (1− λ)R−1
h Lc). Note that

R1/2
h

[
(1− λ)R−1

h Lc

]
R−1/2

h =
c

2
(1− λ)R−1/2

h (L⊗ Ip)R
−1/2
h (4.47)

has the same eigenvalues as (1 − λ)R−1
h Lc because these are invariant under similarity

transformations. Focusing on the right hand side of (4.47), from Sylvester’s law of inter-

tia [19, p. 403] it follows that all eigenvalues of (1 − λ)R−1
h Lc are real and nonnegative.

Hence, it is possible to select c > 0 such that λmax(IJp− (1−λ)R−1
h Lc) < 1, or equivalently

|1− (1− λ)λmax(R−1
h Lc)| < 1 which is the same as condition 4.34. ¤

Back to establishing the mean stability result, let {ui} and {vT
i } respectively denote

the collection of p right and left eigenvectors of Ω associated with the eigenvalue one. By

virtue of Lemma 4.3 we have that limt→∞Ωt =
∑p

i=1 uivT
i and consequently

lim
t→∞E[y(t)] =

(
p∑

i=1

uivT
i

)
y(t0)

=

(
p∑

i=1

uivT
i

)
bdiag(IJp,Lc)y′(t0)

=

(
p∑

i=1

ui

[
01×Jp qT

i Lc

]
)

y′(t0) = 02Jp.

In obtaining the second equality, we used the structure for y(t0) that is given in Lemma

4.1. The last equality follows from the fact that qi ∈ nullspace(Lc) as per Lemma 4.3. ¤

4.6.3 Structure of Matrices Pα, Pβ, Rη̄λ
and Rηλ

In order to relate the noise vectors ηα(t) and ηβ(t) present in (4.33) with η(t) in (4.35),

we introduce two Jp × (
∑J

j=1 |Nj |)p matrices Pα := [p1 . . .pJ ]T and Pβ := [p′1 . . .p′J ]T .

The (
∑J

j=1 |Nj |)p × p submatrices pj , p′j are given by pj := [(pj,1)T . . . (pj,J)T ]T and
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p′j := [(p′j,1)
T . . . (p′j,J)T ]T , with pj,r,pj′,r defined for r = 1, . . . , J as

pT
j,r :=





c
4b

T
|Nr|,r(j) ⊗ Ip if j ∈ Nr

0p×|Nr|p if j /∈ Nr

(p′j,r)
T :=





c
411×|Nr| ⊗ Ip if r = j

0p×|Nr|p if r 6= j
.

Note that r(j) ∈ {1, . . . , |Nr|} denotes the order in which ηr
j(t) appears in {ηr

j′(t)}j′∈Nr [cf.

(4.35)]. It is straightforward to verify that ηα(t) = Pαη(t) and ηβ(t) = Pβη(t).

Now we focus on the structure of the noise covariance matrices Rη̄λ
and Rηλ

. From

(4.39) we have

Rη̄λ
=


 R−1

h,λ

0Jp×Jp


Rη̄


 R−1

h,λ

0Jp×Jp




T

Rηλ
=


 R−1

h,λ(Pα −Pβ)

C


Rη


 R−1

h,λ(Pα −Pβ)

C




T

so that it suffices to focus on the structure of Rη̄ and Rη. From the definition in (4.31)

and recalling that communication noise vectors are assumed uncorrelated in space, it follows

that

Rη̄ =
1
4
bdiag


 ∑

j′∈N1\{1}
Rη1,j′ , . . . ,

∑

j′∈NJ\{J}
RηJ,j′


 .

The structure of Rη is given in Appendix 3.7.3.
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Chapter 5

Conclusions and Future Work

In this dissertation we dealt with distributed adaptive estimation using ad hoc WSNs. In

this final chapter we provide a summary of the main results in the thesis, and point out

possible directions for future research.

5.1 Thesis Summary

In Chapter 2, a distributed LMS-type of adaptive algorithm is developed for WSN based

tracking applications. Inter-sensor communications are constrained to single-hop neighbor-

ing sensors and are challenged by the effects of additive receiver noise. The desired LMS

estimator is posed as a convex optimization problem, which is reformulated into an equiva-

lent constrained form whose structure lends itself naturally to decentralized implementation.

This favorable structure is exploited by resorting to the AD-MoM, while using stochastic

approximation tools in the process to finally arrive at simple recursions. The resulting in-

network processing per sensor was interpreted as a local-LMS adaptation rule superimposed

to the output of a tunable PI regulator, which drives the local estimate to consensus as dic-

tated by a network-wide information enriched reference. Numerical examples illustrated

that D-LMS outperforms comparable adaptive schemes, and has the potential of tracking

nonstationary processes.

The challenging problem of algorithm stability in a stochastic sense has been also ad-
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dressed. The distributed stability results obtained parallel those available for the centralized

setting. For observations adhering to a linear model, stationary ergodic regressors, and a

fixed step-size below a positive threshold, D-LMS provably incurs local estimation errors sat-

isfying the WSB property even in the presence of additive inter-sensor communication noise.

In the absence of noise, D-LMS estimates were shown almost surely exponentially conver-

gent to the true parameter of interest. With regards to performance analysis, a stochastic

trajectory locking result was established which shows that for small step-sizes, the D-LMS

estimation error trajectories closely follow the ones of its time-invariant ‘averaged’ system

mate. An ‘averaged’ system estimation error covariance matrix was obtained in closed form,

that provided a means of accurately approximating the actual D-LMS estimation MSE as

corroborated by numerical simulations.

To complement the D-LMS estimation framework in Chapter 2, a fully-distributed vari-

ant to the algorithm therein is developed in Chapter 3. The improved D-LMS algorithm

does not require a subset of bridge sensors, hence all nodes perform identical tasks in the

process of consenting on the network-wide estimates adaptively. Different from existing

alternatives, the novel scheme does not require a Hamiltonian cycle and can tackle linear

regression problems in which a statistical data model is not available. When communica-

tion noise is not an issue, a cost-effective variant of D-LMS can be used which circumvents

communicating Lagrange multipliers yet incurs no performance penalty.

A detailed MSE tracking performance analysis was conducted for D-LMS, when the pa-

rameter fluctuations adhere to a stable first-order AR model. By deriving an exact recursion

for the global error covariance matrix under the white Gaussian setting assumptions, the

network-wide and per-sensor performance metrics became available for any t, and in par-

ticular as t → ∞. D-LMS was shown stable in the mean and MSE-sense in the presence

of additive receiver noise, provided µ > 0 is sufficiently small. As a corollary, the resulting

local estimation errors satisfy the WSB property and hence remain within a finite interval

with overwhelming probability. The tracking analysis led to the conclusion that – differ-

ent from the time-invariant case whereby one should decrease µ to reduce the steady-state

error – for a slowly time-varying parameter there exists an optimal µ?. While a vanishing
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step-size renders D-LMS incapable of adapting to the underlying variations, a large one

amplifies both observation and communication noise. Numerical simulations demonstrated

that these analytical findings carry over to more pragmatic setups, including temporally

correlated (non-)Gaussian sensor data as considered in the analysis presented in Chapter 2.

Chapters 2 and 3 dealt with distributed least mean-square estimation and tracking for

ad hoc WSNs. Simplicity is a fundamental asset of the D-LMS algorithms proposed. Small

step-sizes may be required to attain sufficiently small steady-state estimation errors, hence

leading to reduction in the speed of convergence. This motivated the D-RLS algorithms of

Chapter 4, which are specially well suited for WSN applications in which fast convergence

rates are at a premium, yet increased computational burdens per sensor can be afforded.

In Chapter 4, distributed RLS-like algorithms are developed for adaptive estima-

tion/tracking using WSNs in which sensors communicate via single-hop noisy links. The

approach adopted involves: (i) reformulating in a separable way the exponentially weighed

least-squares cost involved in the classical RLS algorithm; and (ii) applying either the

AD-MoM or the AMA schemes to minimize this separable cost in a distributed fashion.

The resulting algorithms entail only local computational tasks across sensors that simply

exchange messages with single-hop neighbors only. In particular, it was shown that the

AMA-based D-RLS algorithm incurs reduced computational complexity per sensor when

compared to its AD-MoM-based counterpart.

In order to accommodate nonstationary applications, STD-RLS is derived from D-RLS

and turns out to afford single consensus recursion per time instant t. Different from existing

approaches, (ST)D-RLS exhibits robustness to inter-sensor communication noise at the

expense of a slightly higher communication complexity. When noise is less of an issue,

(ST)D-RLS can be modified to lower communication overhead relative to adaptive diffusion

estimation schemes. Numerical examples demonstrate the noise robustness of (ST)D-RLS,

as well as its convergence and tracking capabilities in comparison with existing alternatives.
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5.2 Future research

The results in this thesis motivate a number of future research topics. Next, we outline two

of them that we are currently pursuing. The first one is a direct extension to the performance

analysis carried out for D-RLS in Chapter 4. The second on pertains to distributed (possibly

adaptive) estimation of sparse signals via `1-norm penalized optimization methods.

5.2.1 D-RLS Performance Analysis Extensions

In Chapter 4, a steady-state MSE performance analysis was carried out for the D-RLS

algorithm when λ < 1. For the infinite memory case in which λ = 1, numerical simu-

lations indicate that D-RLS provides mean-square sense-consistent estimates, even in the

presence of communication noise. This is a well-known result in classical (centralized) least-

squares estimation, and establishes a further connection between the classical RLS and the

distributed counterparts proposed in this thesis. By formally establishing this property,

D-RLS becomes an even more appealing alternative for distributed parameter estimation in

stationary environments. While the approximations used in Chapter 4 are no longer valid

when λ = 1, for Gaussian independent and identically distributed regressors, the matrix

Φ−1(t) is Wishart distributed with known moments. Under these assumptions, consistency

analysis is a subject of ongoing investigation.

To carry out the analysis in Chapter 4, the parameter sought was assumed to be time-

invariant. By relying on the approximation Φ−1(t) ≈ (1−λ)R−1
h to construct an ‘averaged’

system closely related to D-RLS, it is possible to mimic the techniques in Chapter 3 to deal

with the slowly time-varying AR(1) parameter model




s0(t) = s0 + s̆(t)

s̆(t) = Θs̆(t− 1) + ζ(t)
.

Quantifying the steady-state MSE tracking performance of D-RLS enables a fair comparison

with D-LMS when it comes to nonstationary operation, and provides an objective means

of selecting the most appropriate algorithm for operation in dynamic ad hoc WSNs.
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5.2.2 Distributed Lasso for Estimation and Tracking of Sparse Signals

In statistics, the least absolute shrinkage and selection operator (lasso) [58]

ŝlasso = arg min
s∈Rp

J∑

j=1

‖xj −Hjs‖2
2 + λ‖s‖1 (5.1)

has well-documented merits over the workhorse LS estimates in the context of sparse linear

regression. By augmenting the LS cost with the scaled `1-norm of the unknown vector s,

the lasso estimate ŝlasso can improve prediction accuracy when it is a priori known that

many entries of s are zero. It is also attractive in terms of interpretation – especially for

the case in which p is very large – since only a few nonzero entries are retained in ŝlasso

which correspond to the strongest predictors. The amount of shrinkage is controlled by the

parameter λ. In the signal processing literature, the lasso is referred to as basis pursuit [13].

Many efficient algorithms have been developed to solve (5.1) for all values of λ > 0,

when all the regression data {xj ,Hj} is centrally available; see, e.g., [14, 22, 58]. However,

collecting all data in a central location may be impossible in many applications of interest.

In the context of statistical linear regression, this limitation may arise due to, e.g., privacy

reasons as in medical records of patients in a network of health institutions. In distributed

estimation of sparse signals, data is inherently collected by distributed wireless sensors or

cognitive radios [5], and transmissions to a central processing unit encounter the challenges

described in Chapter 1. All in all, distributed algorithms that can solve (5.1) based on

single-hop exchanges of intermediate sparse estimates are well motivated but so far relatively

unexplored. The AD-MoM-based framework utilized throughout this dissertation can be

applied to this end, and resource-efficient algorithms result that are provably convergent to

ŝlasso. Similar to the D-RLS algorithm in Chapter 4, it is also of interest to address the

problem of distributed tracking of time-varying sparse signals. Here, the least-squares cost

in (5.1) is replaced by its EWLS counterpart, a problem which has already been considered

in a centralized setting [1].
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