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Abstract: We develop online graph learning algorithms from streaming network data. Our goal
is to track the (possibly) time-varying network topology, and affect memory and computational
savings by processing the data on-the-fly as they are acquired. The setup entails observations
modeled as stationary graph signals generated by local diffusion dynamics on the unknown network.
Moreover, we may have a priori information on the presence or absence of a few edges as in the link
prediction problem. The stationarity assumption implies that the observations’ covariance matrix
and the so-called graph shift operator (GSO—a matrix encoding the graph topology) commute under
mild requirements. This motivates formulating the topology inference task as an inverse problem,
whereby one searches for a sparse GSO that is structurally admissible and approximately commutes
with the observations’ empirical covariance matrix. For streaming data, said covariance can be
updated recursively, and we show online proximal gradient iterations can be brought to bear to
efficiently track the time-varying solution of the inverse problem with quantifiable guarantees.
Specifically, we derive conditions under which the GSO recovery cost is strongly convex and
use this property to prove that the online algorithm converges to within a neighborhood of the
optimal time-varying batch solution. Numerical tests illustrate the effectiveness of the proposed
graph learning approach in adapting to streaming information and tracking changes in the sought
dynamic network.

Keywords: network topology inference; graph signal processing; proximal gradient algorithm;
online optimization; streaming data

1. Introduction

Network data supported on the vertices of a graph G representing pairwise interactions among
entities are nowadays ubiquitous across disciplines spanning engineering as well as social and the
bio-behavioral sciences; see e.g., ([1], Ch. 1). Such data can be conceptualized as graph signals,
namely high-dimensional vectors with correlated entries indexed by the nodes of G. Graph-supported
signals abound in real-world applications of complex systems, including vehicle congestion levels over
road networks, neurological activity signals supported on brain connectivity networks, COVID-19
incidence in different geographical regions linked via mobility or social graphs, and fake news that
spread on online social networks. Efficiently mining information from unprecedented volumes of
network data promises to prevent or limit the spread of epidemics and diseases, identifying trends in
financial markets, learning the dynamics of emergent social–computational systems, and also protect
critical infrastructure including the smart grid and the Internet’s backbone network [2]. In this context,
the goal of graph signal processing (GSP) is to develop information processing algorithms that fruitfully
exploit the relational structure of said network data [3]. However, oftentimes G is not readily available
and a first key step is to use nodal observations (i.e., measurements of graph signals) to identify the
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underlying network structure, or, a useful graph model that facilitates signal representations and
downstream learning tasks; see [4,5] for recent tutorials on graph learning with a signal processing
flavor and ([1], Ch. 7) for a statistical treatment. Recognizing that many of these networks are not only
unknown but also dynamic, there is a growing need to develop online graph learning algorithms that
can process network information streams in an efficient manner.

1.1. Identifying the Structure of Network Diffusion Processes

Consider a weighted, undirected graph G consisting of a node set N of cardinality N,
and symmetric adjacency matrix A ∈ RN×N+ with entry Aij=Aji ≠0 denoting the edge weight between
node i and node j. We assume that G contains no self-loops; i.e., Aii =0. The adjacency matrix encodes
the topology of G. One could generically define a graph-shift operator (GSO) S ∈ RN×N as any matrix
capturing the same sparsity pattern as A on its off-diagonal entries. Beyond A, common choices
for S are the combinatorial Laplacian L ∶= diag(A1)−A as well as their normalized counterparts [3].
Henceforth we focus on S=A and aim to recover the sparse adjacency matrix of the unknown graph
G. Other GSOs can be accommodated in a similar fashion. The graph can be dynamic with a slowly
time-varying GSO St, t = 1, 2, . . . (see also Section 2.2), but for now we omit any form of temporal
dependency to simplify exposition.

Our goal is to develop an online framework to estimate sparse graphs that explain the structure
of a class of streaming random signals. At some time instant, let y = [y1, . . . , yN]T ∈ RN be a zero-mean
graph signal in which the i-th element yi denotes the signal value at node i of the unknown graph G
with shift operator S. Further, consider a zero-mean white signal x. We state that the graph S represents
the structure of the signal y ∈ RN if there exists a diffusion process in the GSO S that produces the
signal y from the input signal x [6], that is

y = α0∏
∞
l=1(IN − αlS)x = ∑

∞
l=0 βlSl x. (1)

Under the assumption that Cx = E [xxT] = IN (identity matrix), (1) is equivalent to the stationarity
of y in S; see e.g., ([7], Def. 1), [8,9]. The product and sum representations in (1) are common
(and equivalent) models for the generation of random network processes. Indeed, any process that
can be understood as the linear propagation of a white input through G can be written in the form
in (1), and subsumes heat diffusion, consensus and the classic DeGroot model of opinion dynamics as
special cases. The justification to say that S represents the structure of y is that we can think of the
edges of G, i.e., those few non-zero entries in S, as direct (one-hop) relations between the elements
of the signal. The diffusion in (1) modifies the original correlation by inducing indirect (multi-hop)
relations in Cy = E [yyT]. At a high level, the problem studied in this paper is the following [6,10].

Problem. Recover the direct relations described by a sparse GSO S from a set {yt}
T
t=1 of T independent

samples of the random signal y adhering to (1).

We consider the challenging setup when we have no knowledge of the diffusion coefficients {αl}

(or {βl}), nor do we get to observe the specific realizations of the driving inputs {xt}
T
t=1. The stated

inverse problem is severely underdetermined and nonconvex. It is underdetermined because for every
observation y we have the same number of unknowns in the input x on top of the unknown diffusion
coefficients and the shift S, the latter being the quantity of interest. Moreover, y is not only stationary
in S, but also with respect to all powers of the GSO; see also Section 2.1.1. The problem is nonconvex
because the observations depend on the product of our unknowns and, notably, on powers of S [cf. (1)].
Our main contribution is to develop novel algorithms to address these technical challenges in several
previously unexplored settings.
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1.2. Technical Approach and Paper Outline

We tackle the network topology inference problem of the previous section in two fundamental
settings. We start in Section 2.1 with the batch (offline) case where observations {yt}

T
t=1 are all available

for joint processing as in [6,10]. Here though we exploit the implications of stationarity from a
different angle which leads to a formulation amenable to efficient solutions via proximal gradient
(PG) algorithms; see e.g., [11,12]. Specifically, as we show in Section 2.1.1 stationarity implies that
the covariance matrix Cy of the observations commutes with S under mild requirements; see also [7].
This motivates formulating the topology inference task as an inverse problem, whereby one searches
for a sparse S that is structurally admissible and approximately commutes with the observations’
empirical covariance matrix Ĉy. In [6,10], the algorithmic issues were not thoroughly studied and
relied mostly on off-the-shelf convex solvers whose scalability could be challenged. Unlike [13] but
similar to link prediction problems ([1], Ch. 7.2), [14], here we rely on a priori knowledge about the
presence (or absence) of a few edges; conceivably leading to simpler algorithmic updates and better
recovery performance. We may learn about edge status via limited questionnaires and experiments,
or, we could perform edge screening prior to topology inference [15]; see also the discussion in
Section 4. The batch PG algorithm developed in Section 2.1.3 to recover the network topology is
computationally more efficient than existing methods for this (and related) problem(s). It also serves
as a fundamental building block to construct online iterations, which constitutes the second main
contribution of this paper.

Focus in Section 2.2 shifts to online recovery of S from streaming signals {y1, . . . , yt, yt+1, . . .},
each of them adhering to the generative model in (1). For streaming data, the empirical covariance
estimate Ĉy,t can be updated recursively, and in Section 2.2.1 we show that online PG iterations
can be brought to bear to efficiently track the time-varying solution of the inverse problem with
quantifiable (non-asymptotic) guarantees. Different from [13], the updates are simple and devoid
of multiple inner loops to compute expensive projections. Moreover, we establish convergence to
within a neighborhood of the optimal time-varying batch solution as well as dynamic regret bounds
(Section 2.2.2) by adapting results in [16]. The algorithm and analyses of this paper are valid even for
dynamic networks, i.e., if the GSO St in (1) is (slowly) time-varying. Indeed, we examine how the
variability and eigenvectors of the underlying graph as well as the diffusion filters’ frequency response
influence the size of the convergence radius (or misadjustment in the adaptive filtering parlance).
Numerical tests in Section 3 corroborate the efficiency and effectiveness of the proposed algorithm
in adapting to streaming information and tracking changes in the sought dynamic network. A brief
general discussion about the results obtained, the assumptions made, and the limitations, as well as
the impact this work can have on applications, is presented in Section 4. Concluding remarks are given
in Section 5.

1.3. Contributions in Context of Prior Related Work

Early topology inference approaches in the statistics literature can be traced back to the problem
of (undirected) graphical model selection ([1], Ch. 7), [4,5]. Under Gaussianity assumptions, this line
of work has well-documented connections with covariance selection [17] and sparse precision matrix
estimation [18–20], as well as neighborhood-based sparse linear regression [21]. Recent GSP-based
network inference frameworks postulate that the network exists as a latent underlying structure, and
that observations are generated as a result of a network process defined in such a graph [6,10,22–25].

Different from [22,24,26–29] that infer structure from signals assumed to be smooth over the
sought undirected graph, here the measurements are assumed related to the graph via filtering (cf. (1)
and the opening discussion in Section 2.1). Few works have recently built on this rationale to identify
a symmetric GSO given its eigenvectors, either assuming that the input is white [6,10]—equivalently
implying y is graph stationary [7–9]; or, colored [30,31]. Unlike prior online algorithms developed
based on the aforementioned graph spectral domain design [13,14], here we estimate the (possibly)
time-varying GSO directly (without tracking its eigenvectors) and derive quantifiable recovery
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guarantees; see Remark 3. Recent algorithms for identifying topologies of time-varying graphs [32,33]
operate in batch mode, they are non-recursive and hence their computational complexity grows
linearly with time. While we assume that the graph signals are stationary, the online graph learning
scheme in [34] uses observations from a Laplacian-based, continuous-time graph process. Unlike [35]
that relies on a single-pole graph filter [36], the filter structure underlying (1) can be arbitrary, but the
focus here is on learning undirected graphs. Online PG methods were adopted for directed graph
inference under dynamic structural equation models [37], but lacking a formal performance analysis.
The interested reader is referred to [38] for a comprehensive survey about topology identification of
dynamic graphs with directional links. The recovery guarantees in Section 2.2.2 are adapted from the
results in [16], obtained therein in the context of online sparse subspace clustering. Convergence and
dynamic regret analysis techniques have been recently developed to study solutions of time-varying
convex optimization problems; see [39] for a timely survey of this body of work. The impact of these
optimization advances to dynamic network topology identification is yet to fully materialize, and this
paper offers the first exploration in this direction.

In closing, we note that information processing from streams of network data has been considered
in recent work that falls under the umbrella of adaptive GSP [40,41]. Most existing results pertain
to online reconstruction of partially-observed streaming graph signals, which are assumed to be
bandlimited with respect to a known graph. An exception is [42], which puts forth an online algorithm
for joint inference of the dynamic network topology and processes from partial nodal observations.

1.4. Notational Conventions

The entries of a matrix X and a (column) vector x are denoted by Xij and xi, respectively. Sets are
represented by calligraphic capital letters and R+ denotes the non-negative real numbers. The notation
T stands for matrix or vector transposition; 0 and 1 refer to the all-zero and all-one vectors; while IN
denotes the N ×N identity matrix. For a vector x, diag(x) is a diagonal matrix whose ith diagonal entry
is xi. The operators⊗,⊙, ○, and vec(⋅) stand for Kronecker product, Khatri-Rao (columnwise Kronecker)
product, Hadamard (entrywise) product and matrix vectorization, respectively. The spectral radius of
matrix X is denoted by λmax(X) and ∥X∥p stands for the `p norm of vec(X). Lastly, for a function f ,
denote ∥ f ∥∞=supX ∣ f (X)∣.

2. Materials and Methods

2.1. Identifying Graph Topologies from Observations of Stationary Graph Signals

We start with batch (offline) estimation of a time-invariant network topology as considered in [6].
This context is useful to better appreciate the alternative formulation in Section 2.1.1 and the proposed
algorithm in Section 2.1.3. Together, these two elements will be instrumental in transitioning to the
online setting studied in Section 2.2.

To state the problem, recall the symmetric GSO S ∈ RN×N associated with the undirected graph
G. Upon defining the vector of coefficients h ∶= [h0, . . . , hL−1]

T ∈ RL and the polynomial graph filter
H ∶= ∑

L−1
l=0 hlSl ∈ RN×N [3,36], the Cayley-Hamilton theorem asserts that the model in (1) can be

equivalently reparameterized as
y = (∑

L−1
l=0 hlSl) x = Hx, (2)

for some particular h and filter order L ≤ N. Since S is a local (one-hop) diffusion operator, L specifies
the (multi-hop) range of vertex interactions when generating y from x. It should now be clear that we
are constraining ourselves to observations of signals generated via graph filtering. As we explain next,
this assumption leads to a tight coupling between S and the second-order statistics of y.

The covariance matrix of y = Hx is given by [recall (2) and Cx = IN]

Cy ∶= E [yyT] = E [Hx(Hx)T] = HE [xxT]H = H2. (3)
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We relied on the symmetry of H to obtain the third equality, as H is a polynomial in the symmetric
GSO S. Using the spectral decomposition of S = VΛVT to express the filter as H = ∑

L−1
l=0 hl(VΛVT)l =

V(∑
L−1
l=0 hlΛ

l
)VT , we can readily diagonalize the covariance matrix in (3) as

Cy = V (∑
L−1
l=0 hlΛ

l
)

2
VT . (4)

Such a covariance expression is the requirement for a graph signal to be stationary in
S ([7], Def. 2.b). In other words, if y is graph stationary (equivalently if Cx = IN), (4) shows that
the eigenvectors of the shift S, the filter H, and the covariance Cy are all the same. Thus given a
batch of observations {yt}

T
t=1 comprising independent realizations of (4), the approach in [6] advocates:

(i) forming the sample covariance Ĉy = 1
T ∑

T
t=1 ytyT

t and extracting its eigenvectors V̂ as spectral templates
of G; then (ii) recover S that is optimal in some sense by estimating its eigenvalues Λ = diag(λ1, . . . , λN).
Namely, one solves the inverse problem

min
Λ,S∈S

f (S), subject to d(S, V̂ΛV̂T
) ≤ ε, (5)

which is convex for appropriate choices of the function f (S), the constraint set S and the matrix
distance d(⋅, ⋅) ∶ RN×N ×RN×N ↦ R+. The tuning parameter ε > 0 accounts for the (finite) sample
size-induced errors in estimating V, and could be set to zero if the eigenvectors were perfectly known.
The formulation (5) entails a general class of network topology inference problems parameterized by
the choices of f , d and S; see [6] for additional details on various application-dependent instances.
Particular cases of (5) with ε = 0 were independently studied in [10].

In this paper, we consider a different formulation from (5), which is amenable to efficient
algorithms. For concreteness, we also make specific choices of f , d and S as described next.

2.1.1. Revisiting Stationarity for Graph Learning

As a different take on the shared eigenspace property, observe that stationarity of y also implies
CyS = SCy, thus forcing the covariance Cy to be a polynomial in S [cf. (3)]. This commutation identity
holds under the pragmatic assumption that all the eigenvalues of S are simple and ∑L−1

l=0 hlλ
l
i ≠ 0,

for i = 1, . . . , N. It is also a natural characterization of (second-order) graph stationarity, requiring that
second-order statistical information is shift invariant [7]. Since one can only estimate Ĉy from data
{yt}

T
t=1, our idea to recover a sparse GSO is to solve (cf. (5))

S∗ ∶= argmin
S∈S

∥S∥1, subject to ∥SĈy − ĈyS∥
2
F ≤ ε. (6)

The inverse problem (6) is intuitive. The constraints are such that one searches for an admissible
S ∈ S that approximately commutes with the observations’ empirical covariance matrix Ĉy. To recover
a sparse graph we minimize the `1-norm of S, the workhorse convex proxy to the intractable cardinality
function ∥S∥0 counting the number of non-zero entries (edges) in the GSO. The sparsity prior is well
justified to recover various real-world networks, or, to learn parsimonious and interpretable models
of pairwise relationships among signal elements [4,5]. Moreover, it follows from the arguments in
Section 2.1 that if a signal is stationary with respect to S, it will also be stationary with respect to S2

and all other higher powers of the GSO. Since Sl , l = 2, 3, . . . are likely to be dense matrices, exploiting
the sparsity in S is particularly important towards lifting this under-determinacy. Different from (5)
in [6], the formulation (6) circumvents computation of eigenvectors (an additional source of errors
beyond covariance estimation), and reduces the number of optimization variables. More importantly,
as we show in Section 2.1.3 that it offers favorable structure to invoke a proximal gradient solver with
convergence guarantees, even in an online setting where the signals yt arrive in a streaming fashion.

In closing, we elaborate on S as the means to enforce the GSO is structurally admissible as
well as to incorporate a priori knowledge about S. Henceforth we let S = A represent the adjacency
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matrix of an undirected graph with non-negative weights (Sij = Sji ≥ 0) and no self-loops (Sii = 0).
Unlike [6,10], we investigate the effect of having additional prior information about the presence
(or absence) of a few edges, or even their corresponding weights. This is well-motivated in studies
where one can afford to explicitly measure a few of the pairwise relationships among the objects
in N . Examples include social network studies involving questionnaire-based random sampling
designs ([1], Ch. 5.3), or experimental testing of suspected regulatory interactions among selected pairs
of genes ([1], Ch. 7.3.4). Since (6) is a sparse linear regression problem, one could resort to so-termed
variable screening techniques to drop edges prior to solving the optimization; see e.g., [15]. Either way,
one ends up with extra constraints Sij=sij, for a few vertex pairs (i, j) in the set Ω ⊂ N ×N of observed
edge weights sij. Accordingly, we can write the convex set of admissible adjacency matrices as

S ∶={S ∣Sij = Sji ≥ 0, (i, j) ∈ N ×N ; Sii = 0, i ∈ N ; Sij=sij, (i, j) ∈ Ω}. (7)

Under this formulation, we require the existence of at least one (i, j) ∈ Ω for which sij > 0, meaning
we should have observed at least one edge in G prior to solving (6). Otherwise, the solution of (6) will
be S∗ = 0. In Remark 2 we outline generalizations of this approach to accommodate setting where
Ω = ∅ (no a priori connectivity information), which may require redefining S to avoid the trivial
all-zeros solution. Other GSOs can be accommodated as well using appropriate modifications to the
admissibility set.

2.1.2. Size of the Feasible Set

Here, we examine the feasibility set and the degrees of freedom of the GSO S under the assumption
that the perfect output covariance Cy is available and S ∈ S (cf. (7)). This would shed light on the
dependency of the feasibility set’s structure and dimensionality (hence the difficulty of recovering
S) on the number ∣Ω∣ of observed edges. This dependency can serve as a guideline to the number
of edges we may seek to observe prior to graph inference. As we show next, the feasibility set may
potentially reduce to a singleton (the graph S ∈ S is completely specified by Cy), or more generally
to a low-dimensional subspace. In the latter (more interesting) case, or more pragmatically when we
approximate Ĉy with the observations’ sample covariance, we solve the convex optimization problem
as in (6) to search for a sparse and structurally admissible GSO.

Given the (ensemble) output covariance Cy, consider the mapping SCy=CyS which stems from
the stationarity of y (cf. the opening discussion in Section 2.1.1). This identity implies that Cy and S
are simultaneously diagonalizable. Thus, the eigenvectors V of S are known and coincide with those
of Cy. Given the GSO eigenvectors V, consider the mapping S=VΛVT between S and Λ. This can
precisely be rewritten as vec(S) = (V ⊙V)λ = Wλ, where ⊙ denotes the Khatri–Rao (column-wise
Kronecker) product, λ∈RN collects the diagonal entries of Λ, and W ∶=V⊙V∈RN2×N . Recall that S ∈ S

and accordingly the entries of vec(S) corresponding to the diagonal of S are zero. Upon defining the
set D ∶={N(i − 1)+i ∣ i ∈{1, . . . , N}}, we have the mapping WDλ= 0 to the null diagonal entries of S,
where WD ∈RN×N is a submatrix of W that contains rows indexed by the set D. Thus, it follows that
WD is rank-deficient and λ ∈ ker(WD), where ker(.) denotes the null-space of its matrix argument.
In particular, assume that rank(WD)=N−k, 1≤k< N, which implies λ lives in a k-dimensional subspace.
As some of the entries in S are known according to S, intuitively we expect that by observing k = ∣Ω∣

“sufficiently different” edges, the feasible set may boil down to a singleton resulting in a unique
feasible S ∈ S. To quantify the effect of the partial connectivity constraints on the size of the feasible
set, letM ∶={N(j − 1)+i ∣ (i, j) ∈Ω} correspond to the known entries of vec(S). Then upon defining
U∈RN×k comprising the basis vectors of ker(WD), the condition rank(WMU)=k would be sufficient
to determine S uniquely in the k-dimensional null space of WD as stated in the following proposition.

Proposition 1. Suppose the GSO eigenvectors V are given. If rank(WD)=N−k and rank(WMU)=k, then S
is a singleton.
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Proof. Since λ ∈ker(WD), there exists an α ∈Rk such that λ= Uα. From the known entries of vec(S)

denoted by w ∶=[vec(S)]M we have WMλ=WMUα=w. Thus, to uniquely identify α and equivalently
λ (and S), it is sufficient to have rank(WMU)=k.

Proposition 1 further implies that rank(WM)≥k under the assumption that (WMU)=k. This is
due to the inequality rank(WMU) ≤ min{rank(WM), rank(U)}. Observing k “sufficiently different”
edges for unique recovery of S is the intuition behind the rank constraint on WM. In real-world
graphs, we have observed that k is typically much smaller than N; see also Section 3 and ([6], Section 3).
This would make it feasible to uniquely identify the graph, given only its eigenvectors and the status
of k edges. However, in practice we may not know about the status of those many edges, or, the output
covariance Cy may only be imperfectly estimated via sample covariance matrix Ĉy. This motivates
searching for an optimal graph while accounting for the (finite sample size) approximation errors and
the prescribed structural constraints, the subject dealt with next.

2.1.3. Proximal Gradient Algorithm for Batch Topology Identification

Exploiting the problem structure in (6), a batch proximal gradient (PG) algorithm is
developed in this section to recover the network topology; see [11] for a comprehensive tutorial
treatment on proximal methods. Based on this module, an online algorithm for tracking the
(possibly dynamically-evolving) GSO from streaming graph signals is obtained in Section 2.2.
PG methods have been popularized for `1-norm regularized linear regression problems, through the
class of iterative shrinkage-thresholding algorithms (ISTA); see e.g., [43–45]. The main advantage of
ISTA over off-the-shelf interior point methods is its computational simplicity. We show this desirable
feature can permeate naturally to the topology identification context of this paper, addressing the open
algorithmic questions in ([6], Section IV).

To make the graph learning problem amenable to this optimization method, we dualize the
constraint ∥SĈy − ĈyS∥2

F ≤ ε in (6) and write the composite, non-smooth optimization

S⋆ ∈ argmin
S∈S

F(S) ∶= ∥S∥1+
µ

2
∥SĈy − ĈyS∥

2
F

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g(S)

. (8)

The quadratic function g(⋅) is convex and M-smooth [i.e., ∇g(⋅) is M-Lipschitz continuous] and
µ > 0 is a tuning parameter. Notice that (8) and (6) are equivalent optimization problems, since for
each ε there exists a value of µ such that the respective minimizers coincide.

To derive the PG iterations, first notice that the gradient of g(S) in (8) has the simple form

∇g(S) = µ[(SĈy − ĈyS)Ĉy − Ĉy(SĈy − ĈyS)], (9)

which is Lipschitz continuous with constant M=4µλ2
max(Ĉy). With α > 0 and S a convex set, introduce

the proximal operator of a function α f (⋅) ∶ RN×N → R evaluated at matrix M ∈ RN×N as

Z(M) = proxα f ,S(M) ∶= argmin
X∈S

[ f (X)+
1

2α
∥X −M∥

2
F] . (10)

With these definitions, the PG updates with fixed step size γ < 2
M to solve the batch problem (8)

are given by (k = 1, 2, . . . denote iterations)

Sk+1 ∶= proxγ∥⋅∥1,S (Sk − γ∇g(Sk)) . (11)

It follows that GSO refinements are obtained through the composition of a gradient-descent step
and a proximal operator. Instead of directly optimizing the composite cost in (8), the PG update rule
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in (11) can be interpreted as the result of minimizing a quadratic overestimator of F(S) at judiciously
chosen points (here the current iterate Sk); see [12] for a detailed justification.

Evaluating the proximal operator efficiently is key to the success of PG methods. For our specific
case of sparse graph learning with partial connectivity information, i.e., S as defined in (7) and
f (S) = ∥S∥1, the proximal operator Z in (10) has entries given by

Zij(Mij) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, i = j
sij, (i, j) ∈ Ω

max(0, Mij − α), otherwise.
(12)

The resulting entry-wise separable nonlinear map nulls the diagonal entries of Sk+1, sets the edge
weights corresponding to Ω to the observed values sij, and applies a non-negative soft-thresholding
operator to update the remaining entries. Note that for symmetric S, the gradient (9) will also be
a symmetric matrix. So if the algorithm is initialized with, say, a very sparse random symmetric
matrix, then all subsequent iterates Sk, k ≥ 1, will be symmetric without requiring extra projections.
The resulting iterations are tabulated under Algorithm 1, which will serve as the basis for the online
algorithm in the next section.

Algorithm 1 Proximal gradient (PG) for batch topology identification.

Require: Ĉy, µ > 0.
1: Initialize S0 ≠ 0 as a sparse, random symmetric matrix, γ = 1/[4µλ2

max(Ĉy)], k = 0.
2: while not converged do
3: Compute ∇g(Sk) = µ[(SkĈy − ĈySk)Ĉy − Ĉy(SkĈy − ĈySk)].
4: Take gradient descent step Dk = Sk − γ∇g(Sk).
5: Update Sk+1 = proxγ∥⋅∥1,S (Dk) via the proximal operator in (12).
6: k = k + 1.
7: end while
8: return S⋆ = Sk.

The computational complexity is dominated by the gradient evaluation in (9), incurring a cost of
O(∥Sk∥0N2) per iteration k. The iterates Sk tend to become (and remain) quite sparse at early stages of
the algorithm by virtue of the soft-thresholding operations (a sparse initialization is useful to this end),
hence reducing the complexity of the matrix products in (9). As k →∞ the sequence of iterates (11)
provably converges to a minimizer S⋆ [cf. (8)]; see e.g., [46]. Moreover, F(Sk)− F(S⋆)→ 0 due to the
continuity of the composite objective function F(⋅)—a remark on the convergence rate is now in order.

Remark 1. Results in [47] assert that convergence speedups can be obtained through the so-termed accelerated
(A)PG algorithm; see [12] for specifics in the context of ISTA that are also applicable here. Without increasing
the computational complexity of Algorithm 1, one can readily devise an accelerated variant with a (worst-case)
convergence rate guarantee of O(1/

√
ε) iterations to return an ε-optimal solution measured by the objective

value F(⋅) (cf. Algorithm 1 instead offering a O(1/ε) rate).

2.2. Online Network Topology Inference

Additional challenges arise with real-time network data collection, where analytics must often be
performed “on-the-fly” and without the opportunity to revisit past graph signal observations due to
e.g., staleness or storage constraints [2]. Consider now the online estimation of S (or even tracking St

in a dynamic setting) from streaming data {y1, . . . , yt, yt+1, . . .}. To this end, a viable approach is to
solve at each time instant t = 1, 2, . . . , the composite, time-varying optimization problem (cf. (8))
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S⋆t ∈ argmin
S∈S

Ft(S) ∶= ∥S∥1+
µ

2
∥SĈy,t − Ĉy,tS∥

2
F

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gt(S)

. (13)

In writing Ĉy,t we make explicit that the covariance matrix is estimated with all signals acquired
by time t. As data come in, the covariance estimate will fluctuate and hence the time dependence of
the objective function Ft(S) through its smooth component gt. Notice that even as t becomes large,
the squared residuals in gt remain roughly of the same order due to data averaging (rather than
accumulation) in Ĉy,t. Thus a constant regularization parameter µ > 0 tends to suffice because gt(S)

will not dwarf the `1-norm term in (13).
The solution S⋆t of (13) is the batch network estimate at time t. Accordingly, a naive sequential

estimation approach consists of solving (13) using Algorithm 1 repeatedly. However online operation
in delay-sensitive applications may not tolerate running multiple inner PG iterations per time interval,
so that convergence to S⋆t is attained for each t as required by Algorithm 1. If G is dynamic it may
not be even prudent to obtain S⋆t with high precision (hence incurring high delay and unnecessary
computational cost), since at time t + 1 a new datum arrives and the solution S⋆t+1 may deviate
significantly from the prior estimate. These reasons motivate devising an efficient online and recursive
algorithm to solve the time-varying optimization problem (13). We are faced with an interesting
trade-off that emerges with time-constrained data-intensive problems, where a high-quality answer
that is obtained slowly can be less useful than a medium-quality answer that is obtained quickly.

2.2.1. Algorithm Construction

Our algorithm construction approach entails two steps per time instant t = 1, 2, . . ., where we:
(i) recursively update the observations’ covariance matrix Ĉy,t in O(N2) complexity; and then (ii) run
a single iteration of the batch graph learning algorithm developed in Section 2.1.3 to solve (13)
efficiently. Different from recent approaches that learn dynamic graphs from the observation of smooth
signals [32,33], the resulting algorithm’s memory storage requirement and computational cost per data
sample yt does not grow with t. A similar idea to the one outlined in (ii) was advocated in [16] to
develop an online sparse subspace clustering algorithm; see also [37] for dynamic SEM estimation
from traces of information cascades.

Step (i) is straightforward, and the sample covariance Ĉy,t−1 is recursively updated once yt

becomes available through a rank-one correction as follows

Ĉy,t =
1
t
((t − 1)Ĉy,t−1 + ytyT

t ) . (14)

This so-termed infinite memory sample estimate is appropriate for time-invariant settings,
i.e., when the graph topology remains fixed for all t. To track dynamic graphs, it is prudent to
eventually forget about past observations (cf. (14) incorporates all signals {yτ}

t
τ=1). This can be

accomplished via exponentially-weighted empirical covariance estimators or by using a (fixed-length)
sliding window of data, both of which can be updated recursively via minor modifications to (14).
Initialization of the covariance estimate Ĉy,0 can be performed in practice via sample averaging of a
few signals collected before the algorithm runs, or simply as a scaled identity matrix.

To solve (13) online by building on the insights gained from the batch solver (cf. step (ii)), we let
iterations k = 1, 2, . . . in Algorithm 1 coincide with the instants t of data acquisition. In other words,
at time t we run a single iteration of (11) to update St before the new datum yt+1 arrives at time t + 1.
Specifically, the online PG algorithm takes the form

St+1 ∶= proxγt∥⋅∥1,S(St − γt∇gt(St)), (15)
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where the step size γt is chosen such that γt <
2

Mt
= 1

2µλ2
max(Ĉy,t) . Recall that the gradient ∇gt(St)

is given by (9), and it is a function of the updated covariance matrix Ĉy,t (cf. (14)). The proximal
operator for the `1−norm entails the pointwise nonlinearity in (12), with a threshold γt that will
in general be time varying. If the signals arrive faster, one can create a buffer and perform each
iteration of the algorithm on a Ĉy,t updated with a sliding window of all newly observed signals (in a
way akin to processing a minibatch of data). On the other hand, for a slower arrival rate additional
PG iterations during (t − 1, t] would likely improve recovery performance; see also the discussion
following Theorem 1. The proposed online scheme is tabulated under Algorithm 2; the update of Ĉy,t

can be modified to accommodate tracking of dynamic graph topologies.

Algorithm 2 PG for online topology identification.

Require: {y1, . . . , yt, yt+1, . . .}, Ĉy,0, µ > 0.
1: Initialize S1 ≠ 0 as a sparse, random symmetric matrix, γ0 = 1/[4µλ2

max(Ĉy,0)], k = 0.
2: for t = 1, 2, . . . do
3: Update Ĉy,t =

1
t ((t − 1)Ĉy,t−1 + ytyT

t ) and γt.
4: Compute ∇gt(St) = µ[(StĈy,t − Ĉy,tSt)Ĉy,t − Ĉy,t(StĈy,t − Ĉy,tSt)].
5: Take gradient descent step Dt = St − γt∇gt(St).
6: Update St+1 = proxγt∥⋅∥1,S (Dt) via the proximal operator in (12).
7: end for
8: return St+1.

Remark 2. If one has no prior connectivity information about G (i.e., Ω = ∅), then we can still adopt the
formulation (13) to recover the topology after modifying the feasible set S to rule out the trivial solution S⋆ = 0.
For example, [6] defines S ∶={S ∣Sij = Sji ≥ 0, (i, j) ∈ N ×N ; Sii = 0, i ∈ N ; ∑N

j=1 Sj1 =1} instead. The added

constraint ∑N
j=1 Sj1 =1 fixes the scale of the admissible graphs by setting the weighted degree of the first node

(w.l.o.g) to 1. With this modification the algorithmic construction steps of this section carry over unaltered,
provided the proximal operator in (12) is replaced with

Zij(Mij) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0, i = j
△j−1([M12, . . . , M1N]), i = 1, j = 2, . . . , N
△i−1([M21, . . . , MN1]), i = 2, . . . , N, j = 1

max(0, Mij − α), otherwise

, (16)

where △(⋅) ∶ RN−1 → [0, 1]N−1 is a projection onto the N − 1 dimensional probability simplex enforcing
∑j Sj1 =1. Since △ is an N − 1 dimensional vector, the notation △i used in (16) refers to the ith entry of said
vector. The projection can be computed efficiently and in closed form using the method in ([48], Algorithm 1),
and does not affect the overall complexity of Algorithms 1 and 2. All the theoretical guarantees derived in
Section 2.2.2 would still be valid as stated. Graph recovery performance comparisons between the settings with
and without prior connectivity information are provided in Section 3.2.

Another viable approach is to modify the objective function Ft(S) in lieu of S in (13). One idea is to add a
logarithmic barrier term on the degree sequence S1 (e.g., 1T log(S1)) to augment the differentiable component
gt(S) of the cost. This regularization technique will prevent the trivial all-zeros solution when Ω = ∅, and was
proposed in [24]. We will not pursue this direction here, but from an algorithmic perspective the only modification
will be in the gradient computation steps of Algorithms 1 and 2. Accordingly, since the objective function
changes one should revisit the strong convexity property of gt(S) in order to claim convergence as per Theorem 1.
The dynamic regret bounds in Theorem 2 will continue to hold as stated; see Section 2.2.2.

Remark 3. In conference precursors to this paper [13,14], different algorithms were developed to track graph
topologies from streaming stationary signals. The ADMM-based scheme in [13] minimizes an online criterion
stemming from (5) and hence one needs to track sample covariance eigenvectors; the same is true for the online



Algorithms 2020, 13, 228 11 of 19

alternating-minimization algorithm in [14]. The merits of working with the inverse problem (6) are outlined in
Section 2.1.1. Moreover, enforcing some of the admissibility constraints in S requires an inner ADMM loop to
compute nontrivial projection operators, which could hinder applicability in delay-sensitive environments [13].
Neither of these schemes offers convergence guarantees to the solutions of the resulting time-varying optimization
problems. For Algorithm 2, these types of results are established in the ensuing section.

2.2.2. Convergence and Regret Analysis

The key difference between the batch algorithm (11) and its online counterpart (15) is the
variability of gt per iteration in the latter. Ideally, we would like Algorithm 2 to closely track the
sequence of minimizers {S⋆t } for large enough t, something we corroborate numerically in Section 3.
Following closely the analysis in [16], we derive recovery (i.e., tracking error) bounds ∥St − S⋆t ∥F under
the pragmatic assumption that gt is strongly convex and S⋆t is the unique minimizer of (13), for each t.
Before stating the main result in Theorem 1, the following proposition (proved in Appendix A) offers a
condition for strong convexity of gt.

Proposition 2. Let set D contain the indices of vec(S) corresponding to the diagonal entries of S; i.e., D ∶=
{N(i − 1)+i ∣ i∈{1, . . . , N}}, and let Dc be the complement of D. Define Ψt = Ĉy,t ⊗ IN − IN ⊗ Ĉy,t ∈ RN2×N2

.

If Ψt,Dc ∈ RN2×N(N−1) (the submatrix of Ψt that contains columns indexed by the set Dc) is full column rank,
then gt(S) in (13) is strongly convex with constant mt > 0 being the smallest (nonzero) singular value of Ψt,Dc .

Consider the eigendecomposition Ĉy,t = V̂tΛ̂tV̂T
t of the sample covariance matrix at time t,

with V̂t denoting the matrix of orthogonal eigenvectors and Λ̂t the diagonal matrix of non-negative
eigenvalues. Exploiting the structure of Ψt it follows that the strong convexity condition stated in
Proposition 2 will be satisfied if (i) all eigenvalues of Ĉy,t are distinct; and (ii) the matrix V̂t ○ V̂t

is non-singular. Recalling the covariance expression in (4), the aforementioned conditions (i)–(ii)
immediately translate to properties of the diffusion filter’s (squared) frequency response and the GSO
eigenvectors. In extensive simulations involving several synthetic and real-world graphs, we have
indeed observed that Ψt,Dc is typically full column rank and thus gt is strongly convex.

Under the strong convexity assumption, we have the following (non-asymptotic) performance
guarantee for Algorithm 2. The result is adapted from ([16], Theorem 1) ; see Appendix B for a proof.

Theorem 1. Let νt ∶=∥S⋆t+1−S⋆t ∥F capture the variability of the optimal solution of (13). If gt in (13) is strongly
convex with constant mt, then for all t ≥ 1 the iterates St generated by Algorithm 2 satisfy

∥St − S⋆t ∥F ≤ L̃t−1
⎛

⎝
∥S0 − S∗0 ∥F +

t−1
∑
τ=0

ντ

L̃τ

⎞

⎠
, (17)

where Lt = max{∣1− γtmt∣ , ∣1− γt Mt∣} , L̃t =∏
t
τ=0 Lτ . In terms of the objective values, it can be shown that

Ft (St)− Ft (S⋆t ) ≤
Mt
2 ∥St − S⋆t ∥

2
F; see ([45], Theorem 10.29).

As expected, Theorem 1 asserts that the higher the variability in the underlying graph, the higher
the recovery performance penalty. Even if the graph G (and hence the GSO) is time-invariant, then νt

will be non-zero especially for small t since the solution S∗t may fluctuate due to insufficient data.
Much like classic performance results in adaptive signal processing [49], here there is misadjustment
due to the “dynamics-induced noise” νt and hence the online algorithm will only converge to within a
neighborhood of S⋆t .

To better distill what determines the size of the convergence radius, define L̂t ∶= maxτ=0,...,t Lτ ,
ν̂t ∶= maxτ=0,...,t ντ and sum the geometric series in the right-hand side of (17) to obtain the
simplified bound

∥St − S⋆t ∥F ≤ (L̂t−1)
t
∥S0 − S⋆0 ∥F +

ν̂t

1− L̂t−1
. (18)
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Further suppose mτ ≥ m and Mτ ≤ M and the step-size chosen as γτ = 2/(mτ + Mτ), for all
τ = 0, . . . , t,. Then it follows that L̂t ≤ (M −m)/(M +m) < 1. The misadjustment ν̂t/(1 − L̂t−1) in (18)
grows with ν̂t as expected, and will also increase when the problem is badly conditioned (M → ∞

or m → 0) because L̂t → 1. If one could afford taking it PG iterations (instead of a single one as
in Algorithm 2) per time step t, the performance gains can be readily evaluated by substituting
L̃t =∏

t
τ=0 Liτ

τ in Theorem 1 to use the bound (17).
In closing, we state dynamic regret bounds which are weaker than the performance guarantees

in (17)–(18), but they do not require strong convexity assumptions. The proof of the following result
can be found in [16] and is omitted here in the interest of brevity.

Theorem 2. Let Ŝ⋆t = 1
t ∑

t−1
τ=0 S⋆τ be the average trajectory of the optimal solutions of (13), and introduce

ρt(τ) ∶= ∥Ŝ⋆t − S⋆τ∥ to capture the deviation of instantaneous solutions from this average trajectory.
Define δt ∶=∥gt+1 − gt∥∞ as a measure of the variability in Ft. Suppose Mτ ≤ M and set the step-size γτ =

1
M ,

for all τ = 0, . . . , t. Then for all t ≥ 1 the iterates St generated by Algorithm 2 satisfy

1
t

t−1
∑
τ=0

(Fτ (Sτ)− Fτ (S⋆τ)) ≤
M
2t

∥S0 − Ŝ∗t ∥
2
F

+
1
t

⎡
⎢
⎢
⎢
⎣

F0 (S0)− Ft−1 (St)+
t−2
∑
τ=0

δτ +
t−1
∑
τ=0

ρt(τ) (N +
M
2

ρt(τ))
⎤
⎥
⎥
⎥
⎦

. (19)

To interpret the result of Theorem 2, define ρ̂t ∶= maxτ=0,...,t−1 ρt(τ) and δ̂t ∶= maxτ=0,...,t−2 δτ .
Using these definitions, the following simplified regret bound is obtained immediately from (19)

1
t

t−1
∑
τ=0

(Fτ(Sτ)− Fτ(S⋆τ)) ≤
1
t
[

M
2

∥S0 − Ŝ⋆t ∥
2
+ F0(S0)− Ft−1(St)]+

Mρ̂2
t

2
+ Nρ̂t + δ̂t. (20)

If δ̂t and ρ̂t are well-behaved (i.e., the cost function changes slowly and so does its optimal solution
S∗t ) then, on average, Ft (St) hovers within a constant term of Ft (S∗t ). The network size N and the
problem conditioning (as measured by the Lipschitz constant upper bound M) also play a natural role.

3. Results

Here we assess the performance of the proposed algorithms in recovering sparse real-world
graphs. To that end, we: (i) illustrate the scalability of Algorithm 1 using a relatively large-scale
Facebook graph with thousands of nodes in a batch setup; (ii) evaluate the performance of the
proposed online Algorithm 2 in settings with streaming signals; and (iii) demonstrate the effectiveness
of Algorithm 2 in adapting to the dynamical behavior of the network.

Throughout this section, we infer unweighted real-world networks from the observation of
diffusion processes that are synthetically generated via graph filtering as in (2). For the graph shift
S =A, the adjacency matrix of the sought network, we consider a second-order filter H =∑

2
l=0 hlSl ,

where the coefficients {hl} are drawn uniformly from [0, 1]. To measure the edge-support recovery,
we compute the F-measure defined as the harmonic mean of edge precision and recall (precision is the
percentage of correct edges in Ŝ, and recall is the fraction of edges in S that are retrieved).

3.1. Facebook Friendship Graph: Batch

To evaluate the scalability of Algorithm 1, consider a directed network of N = 2888 Facebook
users, where the 2981 edges represent friendships among the users [50,51]. More precisely, an edge
from node i to node j exists if user i is a friend of the user j. To make the graph amenable to our
framework, we assume that the friendships are bilateral and ignore the directions. First, we notice that
rank(WD) = 2882 (cf. Proposition 1). This means that knowing the GSO’s eigenvectors and k=6 suitably
chosen edges as a priori information would lead to a singleton feasibility set. To test Algorithm 1 in
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recovering this reasonably large-scale graph, the performance is averaged over 10 experiments wherein
we assume that we know the existence of ∣Ω∣ = 5 randomly sampled edges in each experiment. We then
generate T = 103, 104, 105, or 106 synthetic random signals {yt}

T
t=1 adhering to generative diffusion

process in (2), where the entries of the inputs {xt}
T
t=1 are drawn independently from the standard

Gaussian distribution to yield stationary observations. We obtain Ĉy via a sample covariance estimate.
For the aforementioned different values of T, the recovered Ŝ obtained after running Algorithm 1
results in the following F-measures.

Number of observations (T) 103 104 105 106

F-measure 0.45 0.77 0.87 0.94

As the number of observations increases, the estimate Ĉy becomes more reliable which leads to a
better performance in recovering the underlying GSO; recall that perfect support recovery corresponds
to an F-measure of 1. This is visually apparent from Figure 1, where we depict the ground-truth
Facebook network along with the estimated graphs for T = 104, 105, and 106. Moreover, the reported
results corroborate the effectiveness of Algorithm 1 in recovering large-scale graphs. Off-the-shelf
algorithms utilized to solve related topology inference problems in [6] are not effective for graphs with
more than a few hundred nodes.

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(a)
0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(b)

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

(c)

0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

(d)

Figure 1. Recovery of Facebook friendship graph with N = 2882 nodes. Adjacency matrix of
(a) ground-truth network; and estimates for (b) T=104; (c) T=105; and (d) T=106. It is apparent how
recovery performance markedly improves as the sample size increases; see also the accompanying
table with the corresponding F-measure values.
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3.2. Zachary’s Karate Club: Online

Next, we consider the social network of Zachary’s karate club ([1], Ch. 1.2.2) represented by a
graph G consisting of N = 34 nodes or members of the club and 78 undirected edges symbolizing
friendships among them. We seek to infer this graph from the observation of diffusion processes that
are synthetically generated via graph filtering as in (2). The rank of WD (cf. Proposition 1) for this
graph is 32. This implies that the knowledge of the perfect output covariance Cy leaves the GSO S in
a 2-dimensional subspace which can lead to singleton feasibility set by observing only two different
edges. However, here we work with a noisy sample covariance Ĉy. We observe one of the 78 edges
(chosen uniformly at random) and aim to infer the rest of the edges. At each time step, 10 synthetic
signals {yp} are generated through a diffusion process H where the entries of the inputs {xp} are
drawn independently from the standard Gaussian distribution. In the online case, upon sensing
10 signals at each time step, we first update the sample covariance Ĉy,t and then carry out it = 10 PG
iterations as Algorithm 2. To examine the tracking capability of the online estimator, after 5000 time
steps, we remove 10% of the existing edges and add the same number of edges elsewhere. This would
affect the graph filter H accordingly.

To corroborate the assumption in Theorem 1, it is worth mentioning that throughout the
process we observed that Ψt,Dc was full column rank and thus the cost in (13) was strongly convex;
see Proposition 2. Figure 2a depicts the running objective value Ft(St) [cf. (13)] averaged over
10 experiments as a function of the time steps and the available a priori knowledge—two randomly
chosen edges as well as the case where we have no a priori information on the edges (Ω = ∅).
For the latter case, we modify the feasible set S as suggested in Remark 2 as well as Algorithm 2 by
implementing the proximal operator in (16). We also superimpose Figure 2a with the optimal objective
value Ft(S⋆t ) at each time step. First, we notice that the objective value trajectory converges to a region
above the optimal trajectory. We observe that after 5000 iterations, the performance deteriorates at
first due to the sudden change of the network structure, but after observing enough new samples
Algorithm 2 can adapt and track the batch estimator as well. This demonstrates the effectiveness of the
developed online algorithm when it comes to adapting to network perturbations.
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Figure 2. Recovery of Zachary’s karate club graph with N =34 nodes. (a) Evolution of the objective
values for the online and batch estimators in inferring a karate club. (b) Ground-truth adjacency matrix
and corresponding estimates after 5000 time steps, for different prior connectivity information settings.
Knowledge of at least one edge in the graph can markedly improve support recovery performance as
indicated by the obtained F-measure values.

Finally, we study the quality of the graph St learned in an online fashion at iteration
5000 (just before the perturbation). Figure 2b depicts the heat maps of the ground-truth and inferred
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adjacency matrices for different a priori information. Although the procedure results in a slight gap
between Ft(S⋆t ) and Ft(St), it still reveals the underlying support of A with reasonable accuracy.
Inspection of the F-measures in Figure 2b calculated on the thresholded adjacency matrices reveals
that, as expected, having a priori information on the edges aids graph recovery performance.

4. Discussion

Here we include a brief but general discussion about the approach followed (and the assumptions
made), its limitations as well as the impact this work can have to applications.

Our focus has been to develop efficient online algorithms for learning graphs from observations
of stationary signals. We adopt a fairly general model where we require that second-order statistical
dependencies of the observed signals to be explained by the unknown network structure. Stationarity
and linear graph-filtering models (cf. (1)) can be accurate for real-world signals generated through
a physical process akin to network diffusion. Examples include information cascades spreading
over social networking platforms, vehicular mobility patterns, consensus dynamics, and progression
of brain atrophy [4]. In our own prior work we have developed batch estimators of the form (5)
to effectively recover the structural properties of proteins [6], to unveil urban mobility patterns,
to cluster firms using a network learned from their historical stock prices [30], and to explore the
relationship between functional and structural brain connectivities [52]. We believe the algorithms
in this paper can have an impact on these and other related application domains, especially when
network data is acquired in a streaming fashion. This direction certainly deserves further investigation.
Relative to other useful approaches that postulate a more restricted family of generative graph filters
(e.g., the parametric heat diffusion model in [25]), the more data-driven perspective advocated here
can accommodate broader signal classes—possibly at the price of a larger sample complexity. Indeed,
as our results show, one may require in the order of a million signals to accurately estimate a graph
with N = 34 vertices.

On the relevance of graph learning with partial connectivity information, consider link prediction
that is a widely studied and canonical network topology inference problem. The goal is to infer
whether or not unobserved pairs of vertices do or do not have an edge between them (i.e., inference of
edge or non-edge status), using measurements that include a limited subset Ω of vertex pairs whose
edge/no-nedge status is already observed; see e.g., ([1], Ch. 7.2) for a more formal definition of the link
prediction problem. In this context, our rationale in this paper is to add some elements of link prediction
to the earlier treatment of graph learning from observations of diffused, stationary signals [6,10].
We believe there is value in exploring how this extra prior information—when available—could be
exploited to obtain simpler algorithmic updates and better recovery performance (see also Proposition 1
and the comparisons reported in Section 3.2).

There are various practical reasons as to why would only have access to observations of a subset
of edges. If there is a temporal component to the graph learning problem, information about edges
might be ‘missing’ only in the sense they are absent up to a certain point in time and then become
present. In many time-invariant scenarios, the status of most edges might be unavailable due to
issues of sampling (either because it is not affordable to measure all pairwise relationships, or just
unfeasible due to the scale of the system or privacy constraints). For an exhaustive list of examples
from information, biological, social and technological networks, the interested reader is referred
to ([1], Ch. 7.2). In other cases, one could have a strong prior belief on the presence or absence of a few
edges. It is thus only reasonable to include those as constraints to simplify the problem. For instance,
in related work, we have looked at the inference of urban mobility graphs from Uber pick-up data
in New York City [30]. With a very high degree of confidence, one expects there should be edges
connecting the airports (JFK, Newark, LaGuardia) to a touristic epicenter such as Times Square, so it
is prudent to add those to Ω and likely aid graph recovery performance. In any event, as explained
in Remark 2 the partial connectivity assumption is not limiting. Most of the algorithms and theory
developed here are valid when Ω = ∅.
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5. Conclusions

We studied the problem of identifying the topology of an undirected network from streaming
observations of stationary signals diffused on the unknown graph. This is an important problem,
because as a general principle network structural information can be used to understand, predict,
and control the behavior of complex systems. The stationarity assumption implies that the observations’
covariance matrix and the GSO commute under mild requirements. This motivates formulating the
topology inference task as an inverse problem, whereby one searches for a (e.g., sparse) GSO that is
structurally admissible and approximately commutes with the observations’ empirical covariance
matrix. For streaming data said covariance can be updated recursively, and we show online proximal
gradient iterations can be brought to bear to efficiently track the time-varying solution of the inverse
problem with quantifiable recovery guarantees. Ongoing work includes extensions of the online graph
learning framework to observations of streaming signals that are smooth on the sought network.
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Appendix A. Proof of Proposition 2

Strong convexity of gt(S) in (13) is equivalent to finding mt > 0 such that

⟨S1 − S2,∇gt(S1)−∇gt(S2)⟩ ≥ mt∥S1 − S2∥
2
F, (A1)

for S1, S2 ∈ S. Note that the Frobenius inner product of two real square matrices is defined as
⟨A, B⟩ = ∑i,j AijBij = trace(ATB). Substituting the time-varying counterpart of (9) in (A1) and using
properties of the Khatri–Rao product, one can write the left hand side (LHS) of (A1) as

∥(S1 − S2)Ĉy,t − Ĉy,t(S1 − S2)∥
2
F = ∥Ψtvec(S1 − S2)∥

2
2,

where vec(⋅) stands for matrix vectorization and ∥ ⋅ ∥ denotes the Euclidean distance. Since GSOs are
devoid of self-loops, we can discard the zero entries of vec(S1 − S2) corresponding to the diagonal
entries of S as well as the related columns in Ψt. This would further simplify the LHS of (A1) leading
immediately to the result in Proposition 2. Notice that ∥vec(S1 − S2)∥

2
2 = ∥S1 − S2∥

2
F.

Appendix B. Proof of Theorem 1

For any S, S′ ∈ S , we have

∥S − γt∇gt(S)− [S′ − γt∇gt (S′)]∥2
F ≤ (1− 2γtmt + γ2

t M2
t ) ∥S − S′∥2

F

≤ L2
t ∥S − S′∥2

F , (A2)

where the first inequality is due to the Lipschitz continuity of gt(⋅) with constant Mt =4µλ2
max(Ĉy,t)

along with the strong convexity condition (A1). The second inequality holds since Mt ≥ mt.
Noting that S∗t is a fixed point of (15), we have

∥St+1 − S∗t ∥F = ∥proxγt∥⋅∥1,S(St − γt∇gt(St))−proxγt∥⋅∥1,S(S∗t − γt∇gt(S∗t ))∥F

≤ ∥St − γt∇gt(St)− [S∗t − γt∇gt(S∗t )]∥F

≤ Lt ∥St − S∗t ∥F ,
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where the first inequality is due to the nonexpansiveness of the proximal operator and the second one
follows from (A2).

Leveraging the triangle inequality and the definition νt=∥S∗t+1−S∗t ∥F results in

∥St+1 − S∗t+1∥F ≤ ∥St+1 − S∗t ∥F + ∥S∗t+1 − S∗t ∥F

≤ Lt ∥St − S∗t ∥F + νt,

which can be applied recursively to obtain (17).
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