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Abstract—This paper studies network topology inference,
which is a cornerstone problem in statistical analysis of complex
systems. The fresh look advocated here builds on recent advances
in convex optimization and graph signal processing to identify the
so-termed graph-shift operator (encoding the network topology)
given only the eigenvectors of the shift. These spectral templates
can be obtained, for example, from the covariance of a set of
graph signals defined on the particular network. The novel idea is
to find a graph shift that, while being consistent with the provided
spectral information, endows the network structure with certain
desired properties such as sparsity. To that end we develop effi-
cient inference algorithms stemming from provably-tight convex
relaxations of natural non-convex criteria. We initially propose
algorithms along with theoretical performance guarantees for the
case when the eigenbasis is perfectly known. We then investigate
setups where an imperfect (noisy) eigenbasis is available as well as
others when only a subset of the eigenvectors is known. Numerical
tests showcase the effectiveness of the proposed algorithms in
recovering real-world social networks.

Index Terms—Network topology inference, graph signal pro-
cessing, spectral graph theory, network diffusion processes

I. INTRODUCTION

Advancing a holistic theory of networks necessitates break-
throughs in modeling, identification, and controllability of
distributed network processes – often conceptualized as signals
defined on the vertices of a graph [1], [2]. Under the as-
sumption that the signal properties are related to the topology
of the graph where they are supported, the goal of graph
signal processing (GSP) is to develop algorithms that fruitfully
leverage this relational structure [3], [4]. Instrumental to that
end is the so-termed graph-shift operator (GSO) [4], a matrix
capturing the graph’s local topology and whose eigendecom-
position defines the graph Fourier transform [4]. Most GSP
works assume that the GSO (hence the graph) is known, and
then analyze how the algebraic and spectral characteristics of
the GSO affect the properties of the signals and filters defined
on such a graph. We take here the reverse path and investigate
how to use information available from graph signals and filters
to infer the underlying graph topology; see also [5], [6]. By
advocating a two-step approach, we first leverage results from
GSP theory to estimate the GSO’s eigenbasis, and then rely on
these (possibly imperfect and incomplete) spectral templates
to recover the GSO itself.

Network topology inference from a set of (graph-signal)
observations is a prominent problem in Network Science [2],
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[7], [8]. Since networks can encode similarities and dependen-
cies between nodes, a number of approaches construct graphs
whose edge weights correspond to the correlation, or the
coherence, between signal profiles at incident nodes [2, Ch. 7].
While these approaches are not without merit, they form links
taking into account only pairwise interactions, ignoring latent
network effects. Acknowledging these limitations, alternative
methods rely on partial correlations [2], [9], Gaussian graph-
ical models [10], [11], or, Granger causality [7], [12]. Differ-
ently, recent GSP-based network inference frameworks postu-
late that the network exists as a latent underlying structure,
and that observations are generated as a result of a network
process defined in such graph. For instance, network structure
is estimated in [6] to unveil unknown relations among nodal
time series adhering to an autoregressive model involving
graph-filter dynamics. A factor analysis-based approach was
put forth in [5] to infer graph Laplacians, seeking that input
graph signals are smooth over the learned topologies. Different
from [5], [6] that operate on the graph domain, the goal here
is to identify graphs that endow the given observations with
desired spectral (frequency-domain) characteristics.

We begin by surveying the required GSP background and
showing how the spectral templates can be obtained in practice
without having access to the GSO itself (Section II). We then
formulate the first version of our GSO identification problem
given spectral templates (Section III-A). The novel idea is to
search among all feasible networks for the one that endows
the resulting graph-signal transforms with prescribed spectral
properties, while the inferred graph also exhibits desirable
structural characteristics including sparsity. Conditions under
which the feasible set reduces to a singleton are derived,
convex relaxations leading to computationally-efficient algo-
rithms are proposed, and theoretical performance guarantees
are provided. We then introduce an inference method for
the pragmatic case where knowledge of the spectral tem-
plates is imperfect (Section III-B). Last but not least, we
propose a topology inference algorithm for the case where
not all the eigenvectors of the GSO are known (Section III-
C). Computer simulations highlight the effectiveness of the
proposed algorithms in identifying both synthetic and real-
world social networks (Section IV). Concluding remarks are
given in Section V.

II. FILTERED GRAPH SIGNALS AND SPECTRAL TEMPLATES

Here we introduce basic GSP tools and explain how the
graph topology may influence properties of graph signals.

Graphs. Let G denote an undirected graph with a set of nodes
N (with cardinality N ) and a set of links E , such that if node
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i is connected to j, then both (i, j) and (j, i) belong to E .
The set Ni := {j |(j, i) ∈ E} stands for the neighborhood
of i. For any given G, its adjacency matrix A ∈ R

N×N is a
sparse matrix with nonzero elements Aij = Aji if and only
if (i, j) ∈ E . The values of Aji can be binary, or real in the
weighted case to capture the strength of the link from i to j.
Graph signals and shift operator. Graph signals defined
on the nodes of G are functions f : N �→ R, equivalently
represented as vectors x = [x1, ..., xN ]T ∈ R

N , where xi

denotes the signal value at node i. Since x does not account
explicitly for the structure of the graph where the signal is
defined, G is endowed with the graph-shift operator S [4]. The
shift S ∈ R

N×N is a matrix whose entry Sij can be nonzero
only if i = j or if (i, j) ∈ E . The sparsity pattern of S captures
the local structure of G, but we make no specific assumptions
on the values of its nonzero entries. The shift S can also be
understood as a linear transformation that can be computed
locally at the nodes of the graph. More rigorously, if y is
defined as y = Sx, then node i can compute yi provided that
it has access to the value of xj at j ∈ Ni. Typical choices for
S are the adjacency matrix A [4], the (normalized) Laplacian
L [3], and their respective generalizations [13]. We assume
henceforth that S is symmetric, so that S = VΛVT with
Λ ∈ R

N×N being diagonal, but our results hold for any
normal GSO. This spectral decomposition can be leveraged
to represent signals in the frequency domain as x̂ := VTx.
Graph filters. The shift S can be used to define linear, shift-
invariant graph-signal operators of the form

H :=
∑L−1

l=0 hlS
l, (1)

which are called graph filters [4]. For a given input x, the
output of the filter is simply y = Hx. The coefficients
of the filter are collected in h := [h0, . . . , hL−1]

T , with
L−1 denoting the filter degree. Graph filters are of particular
interest because they represent linear transformations that can
be implemented locally [14], [15]. Moreover, since H is a
polynomial of S, it is diagonalized by V. Hence, it can be

written as H = Vdiag(ĥ)VT , where ĥ ∈ R
N is the so-called

frequency response of the filter [4], [15].
Network diffusion processes. Graph filters can be used to
model network diffusion processes. Specifically, the signal at
node i during the step (l+1) of a linear diffusion process can
be written as [14], [16]

x
(l+1)
i = αiix

(l)
i +

∑
j∈Ni

αijx
(l)
j , (2)

where αij are the diffusion coefficients; see e.g., [16]. Lever-
aging the GSP framework, (2) implies that the graph signal
x(l+1) = Sx(l) at iteration l + 1 is the shifted version of
x(l), for a shift S with entries Sij = αij if either i = j or
(i, j) ∈ E , and Sij = 0 otherwise. For instance, if we set
S = I− βL and let the signal of interest be x := x(∞), then
x solves the heat diffusion equation. However, more complex
diffusion dynamics such as x = Π∞l=0(I − βlS)x

(0) and
x=

∑∞
l=0 γlx

(l)=
∑∞

l=0 γlS
lx(0), could also be of interest.

The Cayley-Hamilton theorem guarantees that the afore-
mentioned infinite-horizon processes can be equivalently de-
scribed by a filter of degree N . Accordingly, several works

have recognized that the steady-state signal x generated by
a diffusion process can be modeled as the output of a graph

filter H =
∑N−1

l=0 hlS
l with input (seed) x(0) [14], [16]. This

key insight is used next to relate the statistical and spectral
properties of x and H (hence the graph topology via S).
Spectral templates from diffusion processes. Consider the
diffused (steady-state) signal x given by x = Hx(0). Under
the assumption that the seed signal x(0) is white (with identity
covariance matrix) and zero-mean, the covariance matrix of the
output Cx := E

[
xxT

]
is given by

Cx = HE
[
x(0)(x(0))T

]
HT = HHT = Vdiag(|ĥ|2)VT , (3)

where the last equality leverages the frequency interpretation
of a graph filter. Identity (3) reveals that the eigenvectors of the
covariance matrix Cx and those of S are the same. Thus, if Cx

is known, the spectral templates V can be readily obtained.
More commonly, if Cx is unknown but we have access to
a set of M diffused signals {xm}Mm=1, we may approximate

Cx with the sample covariance Ĉx = 1/M
∑M

m=1 xmxT
m and

estimate the eigenvectors of S, also termed spectral templates.
These will serve as inputs to the algorithms in the ensuing
section.1

III. SHIFT INFERENCE FROM SPECTRAL TEMPLATES

Given V = [v1, . . . ,vN ], our goal is to find a graph shift
S that is diagonalized by V. Since the postulated problem
has infinitely many solutions, we further impose conditions
on S promoting desirable properties such as sparsity, or a
priori information on the graph of interest such as non-negative
edge weights. Note that by definition, S encodes the local
structure of the graph it represents, thus, its recovery implies
a successful identification of the graph topology of interest.

A. Sparsest shift from perfect spectral templates
With λ = [λ1, ..., λN ]T collecting the unknown eigenvalues

of S, we seek to identify S by solving

min
{S,λ}

‖S‖0 s. to S =
∑N

k=1 λkvkv
T
k , S ∈ S, (4)

where the objective function aims at recovering a sparse S. The
first constraint encodes the definition of a general graph shift
S = VΛVT . The second constraint has a twofold motivation:
a) incorporating a priori knowledge about S into S; and b)
preventing the trivial solution S = 0. As can be seen from
(4), when all eigenvectors {vk}Nk=1 are given the design of S
amounts to finding the N eigenvalues in λ. If we let S = A
represent the adjacency matrix of an undirected graph with
non-negative weights and no self-loops, we can explicitly write
S as follows, where ij span all values in N ×N and i′j′ only
a subset I of these,

S :={S |Sij ∈ [0, 1], S∈MN , Sii = 0, Si′j′ =αi′j′}. (5)

The first condition in (5) encodes the fact that S is an adja-
cency matrix with non-negative weights, thus, every entry of

1Diffusion processes are used here as a relevant example that illustrates how
to obtain V without having access to S. Recent GSP results show that there
are a number of scenarios where that is also the case, with examples ranging
from stationary graph processes [17] to the design of network operators [15].
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S must lie between 0 and an arbitrary normalization constant
which we fix to 1. The second condition incorporates the fact
that the unknown graph is undirected, hence, S must belong
to the set MN of real and symmetric N×N matrices. The
third condition in S encodes that the graph has no self-loops,
thus, each diagonal entry of S must be null. Finally, the last
condition in (5) incorporates potential a priori knowledge on
S by assuming that we know the nonzero values 0<αi′j′ ≤1
that S takes for (possibly multiple) indices i′j′. We assume
that at least one nonzero entry of S is known a priori, which
conveniently rules out the undesirable solution S = 0 of
problem (4). For cases where we have no a priori knowledge
of specific entries of S, the trivial solution S = 0 can be
discarded by, e.g., imposing S1 ≥ β which assumes that every
node has a minimum degree of connectivity with its neighbors.

An interesting property of the proposed optimization in (4)
is that its feasible set is generally small. To be rigorous,
some notation must be introduced first. Define the matrix
W := V � V ∈ R

N2×N , where � denotes the Khatri-Rao
product. Notice that from the definition of S we can write
s := vec(S) as s = Wλ. Hence, each row of W represents
the N weighting coefficients that map λ to the corresponding
entry of S. Further, define the set D containing the indices of
s corresponding to the diagonal entries of S, and the set I
of indices corresponding to the known entries of S [cf. (5)].
Those sets can be used to select the corresponding rows of W
to form WD∈R

N×N and WI ∈R
|I|×N . We finally construct

W̃ by vertically concatenating matrix [0N ,WD] and matrix
[α,WI ], where α ∈ R

|I| collects the values αi′j′ in (5).
Using these conventions, the following result holds.

Proposition 1 Assume that (4) is feasible and denote by Q
the number of singular values of W̃ that are zero, then it
holds that:
a) The nullspace of W̃ has dimension at least one, i.e., Q ≥ 1.
b) If Q = 1, the feasible set of (4) is a singleton.

Proof (sketch): The key of the proof resides in noting that,
from the definitions of D and I, we may write WDλ =
diag(S)= 0 and WIλ = α for all feasible λ. Moreover, if

we define λ̃ := [−1,λT ]T , the previous two equalities imply

that W̃λ̃ = 0. Thus, feasibility implies Q ≥ 1. If Q = 1, λ̃
is unique up to a scaling factor, however, the unique λ (and
hence S) is obtained by setting this scaling factor so that the
first entry of λ̃ is −1. �

Whenever Q = 1, Proposition 1 asserts that the objective
in (4) is inconsequential since there exists one and only one
feasible S. For more general cases, however, the formulation
in (4) recovers the sparsest S among the feasible ones.

Convex �1-norm relaxation. Non-convexity of the �0 norm
renders the solution of (4) challenging. Hence, we relax the
�0 norm with the �1 norm (closest convex approximant), i.e.,

min
{S,λ}

‖S‖1 s. to S =
∑N

k=1 λkvkv
T
k , S ∈ S. (6)

Since S is a convex set [cf. (5)], problem (6) is convex
and can be efficiently solved. More importantly, under certain

conditions we can ensure that the solution S∗1 to the relaxed
problem (6) coincides with the solution S∗0 to the original
problem (4). To be more specific, denote by Q an orthogonal
matrix whose columns span ker(WD) and define Ψ := WQ.
Further, define the set J containing the indices identifying the
support of s∗0 := vec(S∗0) and denote by J c its complement.
Recalling that matrix subscripts select rows, the following
recovery result holds.2

Theorem 1 Problem (6) recovers the sparsest solution [cf.
(4)] if the two following conditions are satisfied:
1) rank(WJ c) = N − 1; and
2) There exists a constant δ > 0 such that

‖ΨJ c(δ−2ΨT
IΨI +ΨT

J cΨJ c)−1ΨT
J ‖∞ < 1. (7)

The theorem states sufficient conditions under which the
relaxation is tight. Simulations in Section IV reveal that the
bound in condition 2) is tight by providing examples where
the �∞ norm is exactly one and for which recovery fails. The
proof of Theorem 1 builds on recent advances for solving �1-
analysis problems [18]. Condition 1) ensures that the solution
to (6) is unique, a necessary requirement to guarantee sparse
recovery. Condition 2) is derived from the construction of a
dual certificate specially designed to ensure that the unique
solution to (6) also has minimum �0 norm.

Remark 1 (General shifts) The proposed formulation can
be broadened to accommodate shifts S other than the ad-
jacency matrix. To that end, one can modify the set S in
(4) so that it accounts for the properties of the particular
GSO. Consider for example a scenario where S represents
a normalized Laplacian [3]. The associated S would then be

SLap:={S |Sij ∈ [−1, 0] for i 	=j, S∈MN
+ , Sii=1 for all i,

Si′j′ =αi′j′ , i
′j′∈I}. (8)

In (8) we encode the facts that S is symmetric and positive
semi-definite, that its diagonal entries are 1 and its off-diagonal
entries are non-positive. Moreover, since S is a normalized
Laplacian we know that the vector

√
d containing as entries

the square roots of the degrees of the graph is an eigenvector
whose eigenvalue is zero, and this can be incorporated as
a constraint. The eigenvector

√
d can be easily identified

since it is the only one whose entries have all the same sign
[19]. Finally, properties other than sparsity can be sought by
modifying the objective function in the proposed formulations,
such as obtaining Laplacians with good mixing conditions by
maximizing their second smallest eigenvalue [20].

B. Shift inference from noisy spectral templates

Oftentimes the spectral templates V are not known perfectly
but, rather, only a noisy version V̂ = [v̂1, . . . , v̂N ] of them is
available. This occurs if, e.g., the templates are obtained as the
eigenvectors of the sample covariance of a diffusion process.

2Due to space constraints, the proof can be found in an online appendix at
http://www.seas.upenn.edu/∼ssegarra/wiki/uploads/Research/AsilTopID.pdf
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The question then is how to update the formulation in (4)
– or its convex relaxation in (6) – to accommodate for the
discrepancies between the estimated spectral templates and
the actual eigenvectors of S. A possible reformulation is to
include V = [v1, . . . ,vN ] as decision variables and postulate
the following optimization problem

min
{S,λ,V}

‖S‖1 (9)

s. to S =
∑N

k=1 λkvkv
T
k , S ∈ S, maxk d(vk, v̂k) ≤ ε,

where we directly stated the relaxation with the �1 norm in
the objective function and d(·, ·) is a convex vector distance
function, such as the �p norm of the vector difference for
p ≥ 1. The idea in (9) is to find a sparse S that satisfies
the desired properties in S while its eigenvectors vk are
each of them close to the observed ones v̂k. This problem
is more challenging than its noiseless counterpart (6) since
the first constraint is non-convex given that both λk and vk

are optimization variables. A more tractable alternative is to

form Ŝ :=
∑N

k=1 λkv̂kv̂
T
k and look for shifts S that possess

the desired properties while being close to Ŝ. Formally,

min
{S,λ,Ŝ}

‖S‖1 (10)

s. to Ŝ =
∑N

k=1 λkv̂kv̂
T
k , S ∈ S, d(S, Ŝ) ≤ ε,

where d(·, ·) is a convex matrix distance function.

C. Shift inference from incomplete spectral templates

Our last contribution is to study scenarios where only some
of the eigenvectors are available, e.g., if V is found from the
sample covariance of bandlimited graph signals. Supposing
that the K first eigenvectors VK = [v1, ...,vK ] are those
which are known, the goal in this case is to solve [cf. (4)]

min
{S,SK̄ ,λ}

‖S‖0, s. to S ∈ S, (11)

S = SK̄ +
∑K

k=1λkvkv
T
k , SK̄ ∈ MN

K , SK̄vk = 0,

where MN
K is the set of symmetric N × N matrices with

rank at most N −K. In addition to requiring SK̄ ∈ MN
K , the

last constraint in (11) enforces the given spectral templates to
lie in the null space of SK̄ . Our approach to deal with the
constraint SK̄ ∈ MN

K is to add to the objective a nuclear-
norm regularizer η‖SK̄‖∗, with higher values of η promoting
solutions with lower rank. This leads to the convex problem

min
{S,SK̄ ,λ}

η‖SK̄‖∗ + ‖S‖1 s. to S ∈ S, (12)

S = SK̄ +
∑K

k=1λkvkv
T
k , SK̄vk = 0.

Noisy and incomplete spectral templates can be handled by
combining the formulations in (10) and (12). In practice, the
recovery performance of the convex relaxations presented in
(6), (10), and (12) can be improved by replacing the �1 and
nuclear norms with their iteratively reweighted versions [21].

IV. NUMERICAL EXPERIMENTS

Through synthetic and real-world graphs, we validate our
theoretical claims and illustrate the performance when infer-
ring topologies given noisy and incomplete spectral templates.

Conditions for noiseless recovery. We draw Erdős-Rényi
random graphs [22] of size N = 20 and edge-formation
probability p = 0.1, and try to recover their adjacency matrices
A from the corresponding spectral templates V by solving (6).
We assume that the position of one random edge is known
a priori, i.e., |I| = 1. For each graph, we make sure that
the associated W̃ matrix (cf. Proposition 1) has a nullspace
of dimension greater than 1 – to rule out the cases where
the feasible set is a singleton –, and that the first condition
in Theorem 1 is satisfied. In Fig. 1(a) we plot the number
of successes and failures in recovering the adjacency as a
function of the �∞ norm in (7). The number of realizations is
1000, and for each of them the constant δ in (7) is chosen to
minimize the �∞ norm. Fig. 1(a) clearly depicts the result of
Theorem 1 in that, for all cases in which the norm of interest
is smaller than one, relaxation (6) achieves perfect recovery.
Equally important, from the figure it is clear that the bound
stated in (7) is tight since a large proportion of the realization
with norms exactly equal to 1 or just above this value led to
failed recoveries.

Inference of social graphs. Consider four social networks
defined on a common set of nodes representing 32 students
from the University of Ljubljana in Slovenia. Each network
represents different types and levels of interactions among the
students, and were built by asking each student to select a
group of preferred college mates for different situations, e.g.,
to discuss a personal issue or to invite to a birthday party3.
The considered graphs are unweighted and symmetric, and
the edge between i and j exists if either student i picked
j in the questionnaire or vice versa. We test the recovery
performance of formulation (10) for noisy spectral templates
V̂ obtained from sample covariances of signals generated
through diffusion processes (cf. Section II). Fig. 1(b) plots
the reconstruction error (averaged over 50 realizations) as a
function of the number of observed signals for the different
networks studied. We quantify the error as the proportion of
edges misidentified, i.e. ‖Ai − Âi‖0/‖Ai‖0, where Ai and

Âi are the real and estimated adjacency matrices of graph i.
Notice that for an increasing number of observed signals we
see a monotonous decrease in recovery error. For instance,
when going from 103 to 104 observations the error averaged
across the networks is (approximately) divided by five. This is
expected since a larger number of observations entails a more
reliable estimate of the covariance matrix leading to less noisy
versions of the spectral templates.

Traditional methods like graphical lasso [9] fail to recover
S from the sample covariance of filtered white signals. This
happens because the filter H introduces conditional depen-
dence between signal values more than one hop apart. For
instance, based on 105 observations, the recovery error of

3Access to the data and additional details are available in http://vladowiki.
fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
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Fig. 1. (a) Experimental validation of Theorem 1. For every realization where the �∞ norm in (7) is strictly less than 1, perfect recovery is achieved.
(b) Recovery error for four social networks as a function of the number of signals observed in the estimation of the spectral templates. (c) Recovery error for
four social networks (with N = 32 nodes) as a function of K, the number of spectral templates that are known.

graphical lasso with optimal tuning parameters and averaged
over 50 realizations is 0.548, 0.348, 0.313, and 0.429 for the
four networks studied.

Finally, we illustrate the recovery performance in the pres-
ence of incomplete spectral templates by solving (12) for
the aforementioned four networks. In Fig. 1(c) we plot the
recovery error as a function of the number K of eigenvectors
of S that are given. Each point in the plot is the average
across 50 realizations in which different K eigenvectors were
chosen as given from the N = 32 possible ones. As expected,
performance for all networks increases with the number of
spectral templates known. The performance improvement is
sharp and precipitous going from a large error of over 0.85 for
three of the networks when 17 spectral templates are known to
a perfect recovery for all the networks when 24 eigenvectors
are given. Moreover, notice that network 4 is consistently the
easiest to identify both for noisy [cf. Fig. 1(b)] and incomplete
[cf. Fig. 1(c)] spectral templates. For example, when given 19
spectral templates the error associated with network 4 is 0.224
whereas the average across the other three networks is 0.584.
This hints towards the fact that some graphs are inherently
more robust for identification when given noisy or incomplete
spectral templates. A formal analysis of this phenomenon is
left as future work.

V. CONCLUSIONS

The problem of identifying a graph-shift operator S –
encoding the topology of a graph G of interest – given its
eigenbasis V was studied. Three setups were investigated cor-
responding to varying knowledge about V, namely: 1) perfect
knowledge of V; 2) access to a noisy version of V; and 3) ac-
cess to a subset of the columns of V. We formulated optimiza-
tion problems to recover S, presented convex relaxations, and
derived theoretical results characterizing the recovery. Finally,
we illustrated the performance of the proposed approach via
the identification of real-world social graphs.
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