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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Network as graph G = (V, E): encode pairwise relationships

I Interest here not in G itself, but in data associated with nodes in V
⇒ Object of study is a graph signal x ∈ RN (|V| = N)

⇒ As.: Signal properties related to topology of G (e.g., smoothness)
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Graph signal processing (GSP)

I Graph G with adjacency matrix A

⇒ Aij = Proximity between i and j

I Define a signal x on top of the graph

⇒ xi = Signal value at node i
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I Graph Signal Processing → Exploit structure encoded in G to process x

⇒ Our view: GSP well suited to study (network) diffusion processes

I Associated with G is the graph-shift operator S = VΛVH ∈ RN×N

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (captures local structure in G )

Ex: Adjacency A, degree D, and Laplacian L = D− A matrices
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Topology inference: Motivation and context

I Network topology inference from nodal observations [Kolaczyk’09]

⇒ Test Pearson correlations to construct graphs

⇒ Partial correlations and conditional dependence

I Key in neuroscience [Sporns’10]

⇒ Functional net inferred from activity

I Most GSP works assume that S (i.e., G ) is known [Shuman et al’13]

⇒ Analyze how the characteristics of S affect signals and filters

I We take the reverse path

⇒ How to use GSP to infer the graph topology?

⇒ Other approaches: [Dong15, Mei15, Pavez16, Pasdeloup16]
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Our approach for topology inference

I We propose a two-step approach for graph topology identification

STEP%1:% STEP%2:%
Iden-fy%the%eigenvectors%
of%the%shi9%

Iden-fy%eigenvalues%to%
obtain%a%suitable%shi9%

A"priori"info,"desired"
topological"features"

Inferred"
network"

Inferred"
eigenvectors"

Input"

I Alternative sources for spectral templates V
I Design of graph filters [Segarra et al’15]
I Graph sparsification
I Network deconvolution [Feizi et al’13]
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Step 1: Obtaining the eigenvectors

I x is a stationary process on the unknown graph S

⇒ Observed {xi} are random realizations of x

⇒ Eigenvectors V can be recovered from covariance Cx

I Signal x is the response of a linear diffusion process to a white input

x = α0

∞∏
l=1

(I− αlS)w =
∞∑
l=0

βlS
lw =

( N−1∑
l=0

hlS
l

)
w := Hw

I Common generative model. Heat diffusion if αk constant

I H is a graph filter on the unknown graph

I H diagonalized by the eigenvectors V of the shift operator S
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Step 1: Obtaining the eigenvectors

I The covariance matrix of the signal x is

Cx = E
[(

Hw
(
Hw
)H)]

= HE
[(

wwH
)]

HH = HHH

I Since H is diagonalized by V, so is the covariance Cx

Cx = V

∣∣∣∣ L−1∑
l=0

hlΛ
l

∣∣∣∣2 VH

I Any shift with eigenvectors V can explain x

⇒ G and its specific eigenvalues have been obscured by diffusion

Observations

(a) Identifying S → Identifying the eigenvalues

(b) Correlation methods → Eigenvalues are kept unchanged

(c) Precision methods → Eigenvalues are inverted
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Step 2: Obtaining the eigenvalues

I We can use extra knowledge/assumptions to choose one graph

⇒ Of all graphs, select one that is optimal in some sense

S∗ := argmin
S,λ

f (S,λ) s. to S =
N∑

k=1

λkvkvH
k , S ∈ S (1)

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}

⇒ Can accommodate Laplacian matrices as well

I Problem is convex if we select a convex objective f (S,λ)

Ex: Minimum energy (f (S) = ‖S‖F ), fast mixing (f (λ) = −λ2)
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Sparse recovery

I Whenever the feasibility set of (1) is non-trivial

⇒ f (S,λ) determines the features of the recovered graph

Ex: Identify sparsest shift S∗0 that explains observed signal structure

⇒ Set the cost f (S,λ) = ‖S‖0

I Non-convex problem, relax to `1-norm minimization, e.g., [Tropp’06]

S∗1 := argmin
S,λ

‖S‖1 s. to S =
N∑

k=1

λkvkvH
k , S ∈ S

I Does the solution S∗1 coincide with the `0 solution S∗0?
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Recovery guarantee

I Define W :=V � V, where � is the Khatri-Rao product

⇒ Denote by D the index set such that vec(S)D = diag(S)

I Build M := (I−WW†)Dc the orthogonal projector onto range(W)

⇒ Construct R := [M, e1 ⊗ 1N−1]

⇒ Denote by K the indices of the support of s∗0 = vec(S∗0)

S∗1 and S∗0 coincide if the two following conditions are satisfied:
1) rank(RK) = |K|; and
2) There exists a constant δ > 0 such that

ψR := ‖IKc (δ−2RRT + ITKc IKc )−1ITK‖∞ < 1.

I Cond. 1) ensures uniqueness of solution S∗1
I Cond. 2) guarantees existence of a dual certificate for `0 optimality
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Noisy spectral templates

I We might have access to V̂, a noisy version of the spectral templates

⇒ With d(·, ·) denoting a (convex) distance between matrices

min
{S,λ,Ŝ}

‖S‖1 s. to Ŝ =
∑N

k=1 λk v̂k v̂kH , S ∈ S, d(S, Ŝ) ≤ ε

I How does the noise in V̂ affect the recovery?

I Stable (robust) recovery can be established

I Conditions 1) and 2) but based on R̂, guaranteed d(S∗,S∗0) ≤ Cε

⇒ ε large enough to guarantee feasibility of S∗0

⇒ Constant C depends on V̂ and the support K
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Incomplete spectral templates

I Partial access to V ⇒ Only K known eigenvectors [v1, . . . , vK ]

⇒ E.g., if (sample) covariance is rank-deficient

min
{S,SK̄ ,λ}

‖S‖1 s. to S = SK̄ +
∑K

k=1λkvkvk
H , S ∈ S, SK̄vk = 0

I How does the (partial) knowledge of VK affect the recovery?

I Define P := [P1, P2] in terms of VK , and Υ := [IN2 , 0N2×N2 ]

S∗ and S∗0 coincide if the two following conditions are satisfied:
1) rank([P1

T
K,P2

T ]) = |K|+ N2; and
2) There exists a constant δ > 0 such that

ηP := ‖ΥKc (δ−2PPT + ΥT
Kc ΥKc )−1ΥT

K‖∞ < 1.

I For K = N, guarantees boil down to the noiseless case
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Social graphs from imperfect templates

I Identification of multiple social networks N = 32

⇒ Defined on the same node set of students from Ljubljana

⇒ Synthetic signals from diffusion processes in the graphs

I Recovery for noisy (left) and incomplete (right) spectral templates
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I Error (left) decreases with increasing number of observed signals

I Error (right) decreases with increasing nr. of spectral templates
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Performance comparisons

I Comparison with graphical lasso and sparse correlation methods
I Evaluated on 100 realizations of ER graphs with N = 20 and p = 0.2
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I Graphical lasso implicitly assumes a filter H1 = (ρI + S)−1/2

⇒ For this filter spectral templates work, but not as well

I For general diffusion filters H2 spectral templates still work fine
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Inferring direct relations

I Our method can be used to sparsify a given network

⇒ Keep direct and important edges or relations

⇒ Discard indirect relations that can be explained by direct ones

I Use eigenvectors V̂ of given network as noisy templates

Ex: Infer contact between amino-acid residues in BPT1 BOVIN

⇒ Use mutual information of amino-acid covariation as input
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Ground truth Mutual info. Network deconv. Our approach

I Network deconvolution assumes a specific filter model [Feizi et al’13]

⇒ We achieve better performance by being agnostic to this
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Closing remarks

I Network topology inference cornerstone problem in Network Science
I Most GSP works analyze how S affect signals and filters
I Here, reverse path: How to use GSP to infer the graph topology?

I Our GSP approach to network topology inference

⇒ Two step approach: i) Obtain V; ii) Estimate S given V

I How to obtain the spectral templates V

⇒ Based on covariance of diffused signals

⇒ Other sources: network operators, network deconvolution

I Infer S via convex optimization

⇒ Objectives promotes desirable properties

⇒ Constraints encode structure a priori info and structure

⇒ Formulations for perfect and imperfect templates

⇒ Sparse recovery results for adjacency and normalized Laplacian
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