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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
» Network as graph G = (1, £): encode pairwise relationships

> Interest here not in G itself, but in data associated with nodes in V
= Object of study is a graph signal x € RV
= As.: Signal properties related to topology of G (e.g., smoothness)
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Graph signal processing (GSP)

» Graph G with adjacency matrix A
= Aj = Proximity between / and j

X4
e

» Define a signal x on top of the graph e
= x; = Signal value at node i

D_0
» Graph Signal Processing — Exploit structure encoded in G to process x

X5

= Our view: GSP well suited to study (network) diffusion processes
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Graph signal processing (GSP)

» Graph G with adjacency matrix A
= Aj = Proximity between / and j

X4
e

» Define a signal x on top of the graph e
= x; = Signal value at node i

» Graph Signal Processing — Exploit structure encoded in G to process x

= Our view: GSP well suited to study (network) diffusion processes
» Associated with G is the graph-shift operator S = VAV ¢ RVxN

= S =0fori#jand (i,j) & & (captures local structure in G)
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Ex: Adjacency A, degree D, and Laplacian L = D — A matrices
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Topology inference: Motivation and context

» Network topology inference from nodal observations [Kolaczyk'09]
= Test Pearson correlations to construct graphs
= Partial correlations and conditional dependence

» Key in neuroscience [Sporns'10]

= Functional net inferred from activity

=] F = £ DA
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Topology inference: Motivation and context

» Network topology inference from nodal observations [Kolaczyk'09]
= Test Pearson correlations to construct graphs

= Partial correlations and conditional dependence

» Key in neuroscience [Sporns'10]

= Functional net inferred from activity

» Most GSP works assume that S (i.e., G) is known [Shuman et al'13]
= Analyze how the characteristics of S affect signals and filters
> We take the reverse path

= How to use GSP to infer the graph topology?
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= Other approaches: [Dongl5, Meil5, Pavez16, Pasdeloupl6]
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Our approach for topology inference

» We propose a two-step approach for graph topology identification

Inferred
network S

.................... ".2 ﬁ
STEP 1:

STEP 2:
Identify the eigenvectors I:> Zz; eel:s:ctary Identify eigenvalues to
of the shift

obtain a suitable shift

» Alternative sources for spectral templates V

> Design of graph filters [Segarra et al'15]
> Graph sparsification

> Network deconvolution [Feizi et al'13]
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Step 1: Obtaining the eigenvectors

> X is a stationary process on the unknown graph S

= Observed {x;} are random realizations of x

= Eigenvectors V can be recovered from covariance C,

» Signal x is the response of a linear diffusion process to a white input
oo
X =

ag H(I — oS)w

[eS) N—-1
= ZB/S’W = <Z h,S’) w = Hw
=1 1=0 1=0
» Common generative model. Heat diffusion if «, constant
» H is a graph filter on the unknown graph
Santiago Segarra

» H diagonalized by the eigenvectors V of the shift operator S
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Step 1: Obtaining the eigenvectors

» The covariance matrix of the signal x is

C. =E | (Hw(Hw)")| = HE [(ww")] H¥ = HH
» Since H is diagonalized by V, so is the covariance C,
L—1
> N
1=0

2
C, =V v

> Any shift with eigenvectors V can explain x

= G and its specific eigenvalues have been obscured by diffusion
Observations

(a) ldentifying S — Identifying the eigenvalues
(b) Correlation methods — Eigenvalues are kept unchanged
(c) Precision methods — Eigenvalues are inverted

Santiago Segarra
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Step 2: Obtaining the eigenvalues

» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense

S* :=argmin (S, )

N
S, A

s.to S=) Awvf, Ses (1)
k=1
» Set S contains all admissible scaled adjacency matrices
§:={S]5; >0, SeMN 5; =0, 33, 5,;=1}

= Can accommodate Laplacian matrices as well
» Problem is convex if we select a convex objective (S, A)
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Ex: Minimum energy (f(S) = ||S||r), fast mixing (f(A) = —X\2)

[m]
Asilomar 2016



Sparse recovery

> Whenever the feasibility set of (1) is non-trivial
= (S, \) determines the features of the recovered graph
Ex: Identify sparsest shift S that explains observed signal structure
= Set the cost (S, \) = ||S||o

)

S := argmin ||S|1
S,A

» Non-convex problem, relax to ¢;-norm minimization, e.g., [Tropp'06]
N

s.to S= Z)\kvkvfj, SesS
k=1
» Does the solution S7 coincide with the ¢, solution S{§?

Santiago Segarra
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Recovery guarantee

» Define W:=V © V, where ® is the Khatri-Rao product
= Denote by D the index set such that vec(S)p = diag(S)

» Build M := (I - WWT)pc the orthogonal projector onto range(W)
= Construct R :=[M, e; ® 1y_1]
= Denote by K the indices of the support of s; = vec(S;)

i and S{ coincide if the two following conditions are satisfied:
1) rank(Rx) = |K|; and
2) There exists a constant ¢ > 0 such that

YR = (0 2RRT + 1 chee) T oo < 1.

» Cond. 1) ensures uniqueness of solution S}

» Cond. 2) guarantees existence of a dual certificate for /y optimality
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Noisy spectral templates

» We might have access to V, a noisy version of the spectral templates

= With d(-,-) denoting a (convex) distance between matrices

min ||S]1 s to =N, M0 H, SeS, d(S,8)<e
{S,A\,S}

» How does the noise in V affect the recovery?

Santiago Segarra
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Noisy spectral templates

» We might have access to V, a noisy version of the spectral templates

= With d(-,-) denoting a (convex) distance between matrices

min ||S]1 s to =N, M0 H, SeS, d(S,8)<e
{S,A,S}

» How does the noise in V affect the recovery?

» Stable (robust) recovery can be established

» Conditions 1) and 2) but based on R, guaranteed d(S*,S3) < Ce

= ¢ large enough to guarantee feasibility of S;

= Constant C depends on V and the support

Santiago Segarra

[m]
Asilomar 2016



Incomplete spectral templates

> Partial access to V. = Only K known eigenvectors [vy, .
= E.g., if (sample) covariance is rank-deficient

i)
{S,Sg, A}

min_ [IS]1 s. to S=Sz+ X Mviwit, S€S, Spvi=0

» How does the (partial) knowledge of Vk affect the recovery?

Santiago Segarra
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Incomplete spectral templates

» Partial access to V. = Only K known eigenvectors [v1, ..., vk]
= E.g., if (sample) covariance is rank-deficient

. K
o [ISH s to S =Sg+ 3 Mvewi, S €S, Sgvi =0

> How does the (partial) knowledge of V affect the recovery?

» Define P := [Py, P3] in terms of Vi, and T := [lp2, Op2 2]

S* and S§ coincide if the two following conditions are satisfied:
1) rank([P1/, P27]) = |K| + N?; and
2) There exists a constant ¢ > 0 such that

e = | Tice(62PPT + T LT iee) P |oo < 1.

» For K = N, guarantees boil down to the noiseless case
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Social graphs from imperfect templates

» Identification of multiple social networks N = 32
= Defined on the same node set of students from Ljubljana
= Synthetic signals from diffusion processes in the graphs

» Recovery for noisy (left) and incomplete (right) spectral templates
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» Error (left) decreases with increasing number of observed signals

» Error (right) decreases with increasing nr. of spectral templates
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Performance comparisons

» Comparison with graphical lasso and sparse correlation methods
» Evaluated on 100 realizations of ER graphs with N =20 and p = 0.2
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» Graphical lasso implicitly assumes a filter H; = (pl + §)™%/2

= For this filter spectral templates work, but not as well

» For general diffusion filters Hy spectral templates still work fine
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Inferring direct relations

» Our method can be used to sparsify a given network
= Keep direct and important edges or relations
= Discard indirect relations that can be explained by direct ones

> Use eigenvectors V of given network as noisy templates

Ex: Infer contact between amino-acid residues in BPT1 BOVIN
= Use mutual information of amino-acid covariation as input

o

Ground truth Mutual info. Network deconv. Our approach

» Network deconvolution assumes a specific filter model [Feizi et al'13]
= We achieve better performance by being agnostic to this
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Closing remarks

» Network topology inference cornerstone problem in Network Science

> Most GSP works analyze how S affect signals and filters
> Here, reverse path: How to use GSP to infer the graph topology?

» Our GSP approach to network topology inference
= Two step approach: i) Obtain V; ii) Estimate S given V
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Closing remarks

» Network topology inference cornerstone problem in Network Science

> Most GSP works analyze how S affect signals and filters

> Here, reverse path: How to use GSP to infer the graph topology?
» Our GSP approach to network topology inference

= Two step approach: i) Obtain V; ii) Estimate S given V
» How to obtain the spectral templates V

=- Based on covariance of diffused signals

= Other sources: network operators, network deconvolution

Santiago Segarra

Asilomar 2016



Closing remarks

» Network topology inference cornerstone problem in Network Science
> Most GSP works analyze how S affect signals and filters
> Here, reverse path: How to use GSP to infer the graph topology?

» Our GSP approach to network topology inference
= Two step approach: i) Obtain V; ii) Estimate S given V

» How to obtain the spectral templates V
=- Based on covariance of diffused signals

= Other sources: network operators, network deconvolution

» Infer S via convex optimization
= Objectives promotes desirable properties
= Constraints encode structure a priori info and structure
= Formulations for perfect and imperfect templates

= Sparse recovery results for adjacency and normalized Laplacian
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