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2 CHAPTER 1 Inference of Graph Topology

Table 1.1 Notation
.x vector with i-th entry xi

X matrix with (i, j)-th entry Xi j

I set
XI submatrix of X formed by the rows indexed by I
(·)T matrix transpose
(·)† matrix pseudo-inverse
vec(·) matrix vectorization operator
σmin(·) minimum singular value of argument matrix
⊗ Kronecker product
� Khatri-Rao (columnwise Kronecker) product
tr{·} matrix trace
‖x‖p vector `p-norm
‖X‖p vector `p-norm of the vectorized form of X
‖X‖M(p) induced matrix `p-norm
‖X‖F :=

√
tr{XT X} matrix Frobenius norm

diag(x) diagonal matrix with (i, i)-th entry xi

I identity matrix
0 all-zero vector
1 all-one vector

1.1 INTRODUCTION
Coping with the challenges found at the intersection of Network Science and Big
Data necessitates fundamental breakthroughs in modeling, identification, and con-
trollability of distributed network processes – often conceptualized as signals defined
on graphs [1, 2, 3]. For instance, graph-supported signals can model vehicle trajecto-
ries over road networks [4]; economic activity observed over a network of production
flows between industrial sectors [5, 6]; infectious states of individuals susceptible to
an epidemic disease spreading on a social network [7]; gene expression levels defined
on top of gene regulatory networks [8, 9, 10]; brain activity signals supported on
brain connectivity networks [11, 12, 13]; and media cascades that diffuse on online
social networks [14, 15], to name a few. There is an evident mismatch between our
scientific understanding of signals defined over regular domains (time or space) and
graph-valued signals. Knowledge about time series was developed over the course of
decades and boosted by real needs in areas such as communications, speech, or con-
trol. On the contrary, the prevalence of network-related signal processing problems
and the access to quality network data are recent events [1].

Under the assumption that the signals are related to the topology of the graph
where they are supported, the goal of graph signal processing (GSP) is to develop
algorithms that fruitfully leverage this relational structure, and can make inferences
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1.2 Graph inference: A historical overview 3

about these relationships when they are only partially observed [5, 16, 10]. Most GSP
efforts to date assume that the underlying network is known, and then analyze how
the graph’s algebraic and spectral characteristics impact the properties of the graph
signals of interest. However, such assumption is often untenable in practice and
arguably most graph construction schemes are largely informal, distinctly lacking an
element of validation. In studies of e.g., functional brain connectivity or regulation
among genes, inference of nontrivial pairwise interactions between signal elements
(i.e., blood-oxygen-level dependent time series per voxel or gene expression levels,
respectively) is often the goal per se.

In this chapter we present a framework to leverage information available from
graph signals to learn the underlying undirected graph topology. The unknown graph
represents direct relationships between signal elements, which one aims to recover
from observable indirect relationships generated by a diffusion process on the graph.
The fresh look advocated here leverages concepts from convex optimization and
stationarity of graph signals, in order to identify the graph-shift operator (a matrix
representation of the graph) given only its eigenvectors. These spectral templates can
be obtained, e.g., from the sample covariance of independent graph signals diffused
on the sought network. The novel idea is to find a graph-shift operator that, while
being consistent with the provided spectral information, endows the network with
certain desired properties such as sparsity or minimum-energy edge weights.

1.2 GRAPH INFERENCE: A HISTORICAL OVERVIEW
Network topology inference is a prominent problem in Network Science [10, 17].
Since networks typically encode similarities between nodes, several topology in-
ference approaches construct graphs whose edge weights correspond to nontrivial
correlations or coherence measures between signal profiles at incident nodes. In this
vein, informal (but widely popular) scoring methods rely on ad hoc thresholding of
user-defined score functions such a Pearson product-moment correlation, Spearman
rank correlation or mutual information. Formal hypothesis testing methods to as-
sess non-trivial correlations have been proposed as well [10, Ch. 7.3.1]. Since in
graph inference settings one performs a hypothesis test per node pair, the problem of
multiple testing is prevalent and often addressed via e.g., false discovery rate (FDR)
procedures.

Acknowledging that the observed correlations can be due to latent network ef-
fects, alternative statistical methods rely on inference of full partial correlations to
eliminate potential confounding variables [10, Ch. 7.3.2]. Under Gaussianity as-
sumptions, this line of work has well-documented connections with covariance se-
lection [18] and sparse precision matrix estimation [19, 20, 21, 22, 23], as well as
high-dimensional sparse linear regression [24]. Extensions to directed graphs in-
clude structural equation models (SEMs) [25, 14, 26], Granger causality [27, 17], or
their nonlinear (e.g., kernelized) variants [28, 29].
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4 CHAPTER 1 Inference of Graph Topology

Recent GSP-based network inference frameworks postulate instead that the net-
work exists as a latent underlying structure, and that observations are generated as
a result of a network process defined in such graph [30, 31, 32, 33, 34, 35]. For
instance, network structure is estimated in [33] to unveil unknown relations among
nodal time series adhering to an autoregressive model involving graph filter dynam-
ics. Different from [32, 34, 33, 35] that operate on the graph domain, the goal
here is to identify graphs that endow the given observations with desired spectral
(frequency-domain) characteristics. Two works have recently explored this approach
by identifying a graph-shift operator given its eigenvectors [30, 31], and rely on ob-
servations of stationary graph signals [36, 37, 38]. Different from [34, 35, 39, 40]
that infer structure from signals assumed to be smooth over the sought graph, here
the measurements are assumed related to the graph via filtering (e.g., modeling the
diffusion of an idea or the spreading of a disease). Smoothness models are sub-
sumed as special cases encountered when diffusion filters have a low-pass frequency
response.

1.3 GRAPH INFERENCE FROM DIFFUSED SIGNALS
A weighted and undirected graph G consists of a node set N of cardinality N, an
edge set E of unordered pairs of elements in N , and edge weights Ai j ∈ R such that
Ai j = A ji , 0 for all (i, j) ∈ E. The edge weights Ai j are collected as entries of the
symmetric adjacency matrix A and the node degrees in the diagonal matrix D :=
diag(A1). These are used to form the combinatorial Laplacian matrix Lc := D − A
and the normalized Laplacian L := I − D−1/2AD−1/2. More broadly, one can define
a generic graph-shift operator (GSO) S ∈ RN×N as any matrix whose off-diagonal
sparsity pattern is equal to that of the adjacency matrix of G [2]. Although the choice
of S can be adapted to the problem at hand, most existing works set it to either A,
Lc, or L.

1.3.1 STRUCTURE OF A NETWORK DIFFUSION PROCESS
The main focus of this chapter is on identifying graphs that explain the structure
of a random signal. Formally, let x = [x1, ..., xN]T ∈ RN be a graph signal in which
the i-th element xi denotes the signal value at node i of an unknown graph G with
symmetric shift operator S. Further suppose that we are given a zero-mean white
signal w with covariance matrix E

[
wwT

]
= I. We say that S represents the structure

of the signal x if there exists a diffusion process in the GSO S that produces the
signal x from the white signal w, that is

x = α0

∞∏
l=1

(I − αlS)w =

∞∑
l=0

βlSlw. (1.1)
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1.3 Graph inference from diffused signals 5

While S encodes only one-hop interactions, each successive application of the shift
percolates (correlates) the original information across an iteratively increasing neigh-
borhood; see e.g. [41]. The product and sum representations in (1.1) are common
– and equivalent – models for the generation of random signals. Indeed, any pro-
cess that can be understood as the linear propagation of a white input through a
static, undirected graph can be written in the form in (1.1). These include processes
generated by graph filters with time-varying coefficients or those generated by the
so-called diffusion Laplacian kernels [42], to name a few.

The justification to say that S is the structure of x is that we can think of the edges
of S as direct (one-hop) relationships between the elements of the signal. The diffu-
sion described by (1.1) generates indirect relationships. In this context, the network
topology inference problem is to recover the fundamental relationships described by
S from a set X := {xr}

R
r=1 of R independent samples of the random signal x. We show

next that this is an underdetermined problem.
Since we focus on the inference of undirected graphs, the shift operator S is sym-

metric and diagonalizable. Hence, upon defining the orthogonal eigenvector matrix
V := [v1, . . . , vN] and the eigenvalue matrix Λ := diag(λ) with λ := [λ1, . . . , λN]T , it
holds that

S = VΛVT = Vdiag(λ)VT . (1.2)

Further observe that while the diffusion expressions in (1.1) are polynomials on the
GSO of possibly infinite degree, the Cayley-Hamilton theorem implies that they are
equivalent to polynomials of degree smaller than N. Upon defining the vector of
coefficients h := [h0, . . . , hL−1]T and the graph filter H ∈ RN×N as H :=

∑L−1
l=0 hlSl,

the generative model in (1.1) can be rewritten as

x =

( L−1∑
l=0

hlSl
)

w = Hw, (1.3)

for some particular h and L. Since a graph filter H is a polynomial on S [2], graph
filters are linear graph-signal operators that have the same eigenvectors as the shift
(i.e., the operators H and S commute). More important for the arguments here, the
filter representation in (1.3) can be used to show that the eigenvectors of S are also
eigenvectors of the covariance matrix Cx := E

[
xxT

]
. To that end, notice that because

w is white the said covariance is given by

Cx = E
[
Hw

(
Hw

)T
]

= HE
[
wwT

]
HT = HHT . (1.4)

If we further use the spectral decomposition of the shift in (1.2) to express the filter
as H =

∑L−1
l=0 hl(VΛVT )l = V(

∑L−1
l=0 hlΛ

l)VT , we can write the covariance matrix as

Cx = V
( L−1∑

l=0

hlΛ
l
)2

VT . (1.5)

A consequence of (1.5) is that the eigenvectors of the shift S and the covariance Cx
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6 CHAPTER 1 Inference of Graph Topology

are the same. Alternatively, one can say that the difference between Cx in (1.5),
which includes indirect relationships between components, and S in (1.2), which
includes exclusively direct relationships, is only on their eigenvalues. While the
diffusion in (1.1) obscures the eigenvalues of S, the eigenvectors V remain present in
Cx as templates of the original spectrum.

Identity (1.5) also shows that the problem of finding a GSO that generates x from
a white input w with unknown coefficients [cf. (1.1)] is underdetermined. As long
as the matrices S and Cx have the same eigenvectors, filter coefficients that generate
x through a diffusion process on S exist. In fact, the covariance matrix Cx itself is a
GSO that can generate x through a diffusion process and so is the precision matrix
C−1

x . To sort out this ambiguity, which amounts to selecting the eigenvalues of the
shift, we assume that the GSO of interest is optimal in some sense. This pursuit is
the subject of the next section, where we formally state the graph inference problem.

Remark 1 (Graph stationarity meets topology inference). Recently, a group of works
has generalized the definition of stationarity to graph processes [36, 37, 38]. In a
nutshell, a graph signal is stationary in a particular GSO S if either the signal can
be expressed as the output of a graph filter with white inputs [36, Def. 2], or if
its covariance matrix is simultaneously diagonalizable with S [36, Def. 3]. These
are precisely the conditions in (1.3) and (1.5), respectively. Hence, our problem of
identifying a GSO that explains the fundamental structure of x is equivalent to the
problem of identifying a shift S in which the signal x is stationary. Advances dealing
with identification of undirected networks from diffused non-stationary graph signals
are outlined in Section 1.5.

1.3.2 OPTIMAL GRAPH SHIFT OPERATOR
Given estimates V̂ of the filter eigenvectors (e.g., obtained from observations X :=
{xr}

R
r=1 via the eigenvectors of the sample covariance Ĉx = 1

R
∑R

r=1 xrxT
r ), recovery

of S amounts to selecting its eigenvalues Λ and to that end we assume that the shift
of interest is optimal in some sense. At the same time, we should account for the
discrepancies between V̂ and the actual eigenvectors of S, due to finite sample size
constraints and noise corrupting the observations in X. Accordingly, we seek a shift
operator S that: (a) is optimal with respect to (often convex) criteria f (S); (b) belongs
to a convex set S that specifies the desired type of shift operator (e.g., the adjacency
A or Laplacian L); and (c) is close to V̂ΛV̂T as measured by a convex matrix distance
d(·, ·). Formally, one can solve

S∗ := argmin
Λ,S∈S

f (S), s. to d(S, V̂ΛV̂T ) ≤ ε, (1.6)

which is a convex optimization problem provided f (S) is convex, and ε is a tun-
ing parameter chosen based on a priori information on the imperfections. Within
the scope of the signal model (1.1), the formulation (1.6) entails a general class of
network topology inference problems parametrized by the choices in (a)-(c) above.
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1.4 Robust network topology inference 7

Following a formal statement of the problem, we briefly outline the spectrum of al-
ternatives for points (a)-(c), while concrete choices are made for the analysis and
numerical tests in Sections 1.4 and 1.5.

Problem statement. Given a set X := {xr}
R
r=1 of R independent samples of the

random signal x adhering to (1.1), estimate the optimal description of the structure
of x in the form of the graph-shift operator S∗ ∈ S defined in (1.6).

Criteria. The selection of f (S) allows to incorporate physical characteristics of the
desired graph into the formulation, while being consistent with the spectral templates
V̂. For instance, the matrix pseudo-norm f (S) = ‖S‖0 which counts the number of
nonzero entries in S can be used to minimize the number of edges towards identi-
fying sparse graphs (e.g., of direct relations among signal elements); f (S) = ‖S‖1 is
a convex proxy for the aforementioned edge cardinality function. Alternatively, the
Frobenius norm f (S) = ‖S‖F can be adopted to minimize the energy of the edges in
the graph, or f (S) = ‖S‖∞ can be selected to obtain shifts S associated with graphs
of uniformly low edge weights. This can be meaningful when identifying graphs
subject to capacity constraints.

Constraints. The constraint S ∈ S in (1.6) incorporates a priori knowledge about
S. If we let S = A represent the adjacency matrix of an undirected graph with non-
negative weights and no self-loops, we can explicitly write S as follows

SA := {S | S i j ≥ 0, S∈MN , S ii = 0,
∑

j S j1 =1}. (1.7)

The first condition in SA encodes the non-negativity of the weights whereas the
second condition incorporates that G is undirected, hence, S must belong to the set
MN of real and symmetric N×N matrices. The third condition encodes the absence
of self-loops, thus, each diagonal entry of S must be null. Finally, the last condition
fixes the scale of the admissible graphs by setting the weighted degree of the first
node to 1, and rules out the trivial solution S=0. Other GSOs such as the normalized
Laplacian L can be accommodated in this framework via minor adaptations to S;
see [30].

The form of the convex matrix distance d(·, ·) depends on the particular applica-
tion. For instance, if ‖S − V̂ΛV̂T ‖F is chosen, the focus is more on the similarities
across the entries of the shifts, while ‖S − V̂ΛV̂T ‖M(2) focuses on their spectrum.

1.4 ROBUST NETWORK TOPOLOGY INFERENCE
This section deals with robust network inference problems from imperfect (noisy or
incomplete) spectral templates.
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1.4.1 NOISY SPECTRAL TEMPLATES
We first address the case where knowledge of an approximate version of the spectral
templates V̂ = [v̂1, . . . , v̂N] is available, e.g., from the eigenvectors of a sample co-
variance matrix Ĉx. For the particular case of sparse shifts, adopting f (S) = ‖S‖1 as
criterion in (1.6) and d(S, V̂ΛV̂T ) = ‖S − V̂ΛV̂T ‖F yields

S∗1 := argmin
Λ,S∈S

‖S‖1, s. to ‖S − V̂ΛV̂T ‖F ≤ ε (1.8)

Note that ‖S‖1 in (1.8) refers to the `1 norm of the vectorized version of S. Moreover,
further uncertainties can be introduced in the definition of the feasible set S, e.g. in
the scale of the admissible graphs for the case of S = SA (cf. Proposition 1 and [30]
for additional details).

To assess the effect of the noise in recovering the sparsest S (henceforth denoted
as S∗0, the solution of (1.8) when f (S) = ‖S‖0), some additional notation must be
introduced. Define Ŵ := V̂ � V̂∈RN2×N , where � denotes the Khatri-Rao product.
Let s∗0 := vec(S∗0), denote by D the diagonal indices such that (s∗0)D = diag(S∗0) and
partition its complementDc into K and K c, with the former indicating the positions
of the nonzero entries of s∗0Dc := (s∗0)Dc , where matrix calligraphic subscripts select
rows. Denoting by † the matrix pseudo-inverse, we define M̂ := (I − ŴŴ†)Dc ∈

RN2−N×N2
, i.e., the orthogonal projector onto the kernel of ŴT constrained to the

off-diagonal elements in Dc. With e1 denoting the first canonical basis vector, we
construct

R̂ := [M̂, e1 ⊗ 1N−1] ∈ RN2−N×N2+1, (1.9)

by horizontally concatenating M̂ and a column vector of size |Dc| with ones in the
first N − 1 positions and zeros elsewhere. Further, we drop the non-negativity con-
straint in SA – to obtain S̃A – and incorporate the scale ambiguity by augmenting
d(S,S′) as d̃(S,S′) = (d(S,S′)2 + (

∑
j S j1 − 1)2)1/2. With this notation, the following

result on robust recovery of network topologies holds (see [30] for a proof).

Proposition 1. Assuming that there exists at least one S′ such that d̃(S∗0,S
′) ≤ ε, the

solution ŝ∗1 := vec(Ŝ∗1) to (1.8) for S = S̃A with scale ambiguity satisfies

‖ŝ∗1 − s∗0‖1 ≤ Cε, with C = 2C1 + 2C2C3, (1.10)

if the two following conditions are satisfied:
1) rank(R̂K ) = |K|; and
2) There exists a constant δ > 0 such that

ψ := ‖IK c (δ−2R̂R̂T + IT
K c IK c )−1IT

K
‖∞ < 1. (1.11)

Constants C1, C2, and C3 are given by

C1 =

√
|K|

σmin(R̂T
K

)
, C2 =

1 + ‖R̂T ‖2C1

1 − ψ
, C3 =‖R̂†‖2N, (1.12)
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where σmin(·) denotes the minimum singular value of the argument matrix.

When given noisy versions V̂ of the spectral templates of our target GSO, Propo-
sition 1 quantifies the effect that the noise has on the recovery. More precisely, the
recovered shift is guaranteed to be at a maximum distance from the desired shift
bounded by the tolerance ε times a constant, which depends on R̂ and the support
K . This also implies that as the number of observed signals increases we recover
the true GSO. In particular, as the number of observed signals increases, the sam-
ple covariance Ĉx tends to the covariance Cx and, for the cases where the latter has
no repeated eigenvalues, the noisy eigenvectors V̂ tend to the eigenvectors V of the
desired shift; see, e.g., [43, Th. 3.3.7]. In particular, with better estimates V̂ the
tolerance ε in (1.8) needed to guarantee feasibility can be made smaller, entailing a
smaller discrepancy between the recovered S∗1 and the sparsest shift S∗0. In the limit
when V̂ = V and under no additional uncertainties, the tolerance ε can be made zero
and (1.10) guarantees perfect recovery under conditions 1) and 2).

1.4.2 INCOMPLETE SPECTRAL TEMPLATES
Thus far we have assumed that (an estimate of) the entire set of eigenvectors V =

[v1, . . . , vN] is known. However, there are scenarios where only some of the eigen-
vectors (say K out of N) are available. This would be the case when e.g., V is found
as the eigenbasis of Cx and the given signal ensemble is bandlimited. More gener-
ally, if Cx contains repeated eigenvalues there is a rotation ambiguity in the definition
of the associated eigenvectors. Hence, in this case, we keep the eigenvectors that can
be unambiguously characterized and, for the remaining ones, we include the rotation
ambiguity as an additional constraint in our optimization problem.

Formally, assume that the K first eigenvectors VK = [v1, ..., vK] are those which
are known. For simplicity of exposition, suppose as well that VK is estimated er-
ror free. Then, the network topology inference problem with incomplete spectral
templates can be formulated as

S̄∗1 := argmin
S∈S,SK̄ ,λ

‖S‖1, s. to S = SK̄ +
∑K

k=1λkvkvT
k , SK̄VK = 0 (1.13)

where we already particularized the objective to the `1-norm convex relaxation. The
formulation in (1.13) enforces S to be partially diagonalized by the known spectral
templates VK , while its remaining component SK̄ is forced to belong to the orthog-
onal complement of range(VK). Notice that, as a consequence, the rank of SK̄ is at
most N − K. An advantage of using only partial information of the eigenbasis as op-
posed to the whole V is that the set of feasible solutions in (1.13) is larger than that
in (1.6). This is particularly important when the templates do not come from a pre-
scribed GSO but, rather, one has the freedom to choose S provided it satisfies certain
spectral properties (see [41] for examples in the context of distributed estimation).

GSO recovery guarantees can be derived for (1.13) [30]. To formally state these,
define WK := VK � VK and Υ := [IN2 , 0N2×N2 ]. Also, define matrices B(i, j) ∈ RN×N
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for i < j such that B(i, j)
i j = 1, B(i, j)

ji = −1, and all other entries are zero. Based on this,

we denote by B ∈ R(N
2)×N2

a matrix whose rows are the vectorized forms of B(i, j) for
all i, j ∈ {1, 2, . . . ,N} where i < j. In this way, Bs = 0 when s is the vectorized form
of a symmetric matrix. Further, we define the following matrices

P1 :=


I −WKW†

K
ID
B

0NK×N2

(e1 ⊗ 1N)T



T

, P2 :=


WKW†

K − I
0N×N2

0(N
2)×N2

I ⊗ VT
K

01×N2



T

, (1.14)

and P := [PT
1 ,P

T
2 ]T . With this notation and denoting by J the indices of the support

of s∗0 = vec(S∗0), the following result is proved in [30].

Proposition 2. Whenever S = SA and assuming problem (1.13) is feasible, S̄∗1 = S∗0
if the two following conditions are satisfied:
1) rank([P1

T
J
,PT

2 ]) = |J| + N2; and
2) There exists a constant δ > 0 such that

η := ‖ΥJc (δ−2PPT + ΥT
JcΥJc )−1ΥT

J‖∞ < 1. (1.15)

The proposition provides sufficient conditions for the relaxed problem in (1.13) to
recover the sparsest graph, even when not all the eigenvectors are known. In practice
it is observed that for smaller number K of known spectral templates the value of η
in (1.15) tends to be larger, indicating a less favorable setting for recovery.

Notice that scenarios that combine the settings in Secs. 1.4.1 and 1.4.2, i.e., where
the knowledge of the K templates is imperfect, can be handled by combining the
formulations in (1.8) and (1.13). This can be achieved upon implementing the fol-
lowing modifications to (1.13): considering the shift S′ as a new optimization vari-
able, replacing the first constraint in (1.13) with S′ = SK̄ +

∑K
k=1λkvkvT

k , and adding
d(S,S′) ≤ ε as a new constraint [cf. (1.8)].

Laplacian graph shift operators. Counterparts to the optimizations in (1.8) and
(1.13) as well as for the recovery guarantees in Propositions 1 and 2 can be derived
for the case of (normalized) Laplacian operators. This requires changing the defini-
tion of S and accounting for the fact that the Laplacian has a zero eigenvalue; see the
numerical tests in the following section and [30] for further details.

1.4.3 NUMERICAL TESTS
Here we test the proposed topology inference methods on different synthetic and
real-world graphs. A comprehensive performance evaluation is carried out through
comparisons with state-of-the-art methods and a test case to illustrate how our frame-
work can promote sparsity on a given network.
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FIGURE 1.1 Comparison with baseline statistical methods

Performance comparison between the proposed SpecTemp approach (1.8), graphical lasso [19],
and correlation-based recovery. For general filters, SpecTemp outperforms the competing alter-
natives.

Comparison with baseline statistical methods. First we analyze the per-
formance of the topology inference algorithm (1.8) (henceforth referred to as
SpecTemp) in comparison with two workhorse statistical methods, namely, (thresh-
olded) correlation networks [10, Ch. 7.3.1] and graphical lasso [19]. The goal is
to recover the adjacency matrix of an undirected and unweighted graph with no
self-loops from the observation of filtered graph signals X := {xr}

R
r=1. For the imple-

mentation of SpecTemp, we use the eigendecomposition of the sample covariance
Ĉx in order to extract noisy spectral templates V̂. We then solve problem (1.8) for
S = SA, where ε is selected as the smallest value that admits a feasible solution. For
the correlation-based method, we keep the absolute value of the sample correlation
of the observed signals, force zeros on the diagonal and set all values below a certain
threshold to zero. This threshold is determined during a training phase; see [30] for
additional details. Lastly, for graphical lasso we follow the implementation in [19]
based on Ĉx and select the tuning parameter ρ (see [19]) during the training phase.
We then force zeros on the diagonal and keep the absolute values of each entry.

We test the recovery of adjacency matrices S=A of Erdős-Rényi (ER) random
graphs with N =20 nodes and edge probability p=0.2. We vary the number of ob-
served signals from 101 to 106 in powers of 10. Each signal is generated by passing
white Gaussian noise through a graph filter H. Two different types of filters are con-
sidered. As a first type we consider a general filter H1 = Vdiag(̂h1)VT , where the
entries of ĥ1 are independent and chosen randomly between 0.5 and 1.5. The second
type is a specific filter of the form H2 = (δHI + S)−1/2, where the constant δH is cho-
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sen so that δHI + S is positive definite to ensure that H2 is real and well-defined. Ac-
cording to (1.4), this implies that the precision matrix of the filtered signals is given
by C−1

x = H−2
2 = δHI + S, which coincides with S in the off-diagonal elements. For

each combination of filter type and number of observed signals, we generate 10 ER
graphs that are used for training and 20 ER graphs that are used for testing. Based
on the 10 training graphs, the optimal threshold for the correlation method and pa-
rameter ρ for graphical lasso are determined and then used for the recovery of the 20
testing graphs. Given that for SpecTemp we are fixing ε beforehand, no training is
required.

As figure of merit we use the F-measure, i.e. the harmonic mean of edge pre-
cision and edge recall, that solely takes into account the support of the recovered
graph while ignoring the weights. In Fig. 1.1 we plot the performance of the three
methods as a function of the number of filtered graph signals observed for filters
H1 and H2, where each point is the mean F-measure over the 20 testing graphs.
When considering a general graph filter H1, SpecTemp clearly outperforms the other
two. For instance, when 105 signals are observed, our average F-measure is 0.81
while the measures for correlation and graphical lasso are 0.29 and 0.25, respec-
tively. Moreover, of the three methods, the proposed approach in (1.8) is the only
consistent one, i.e., achieving perfect recovery with increasing number of observed
signals. Although striking at a first glance, the deficient performance of the baseline
statistical methods was expected. For general filters H1, neither the correlation nor
the precision matrices are sparse or share the support of the GSO to be recovered
S. When analyzing the specific case of graph filters H2, where the precision matrix
exactly coincides with the desired graph-shift operator, graphical lasso outperforms
both SpecTemp and the correlation-based method. This is not surprising since graph-
ical lasso was designed for the recovery of sparse precision matrices and is optimal
(in the maximum-likelihood sense) for Gaussian signals. Notice however that for
large number of observations SpecTemp, without assuming any specific filter model,
also achieves perfect recovery and yields an F-measure equal to 1. Consequently, if a
practitioner knows a priori that the sought graph is (close to) the precision matrix and
Gaussian signal assumptions are tenable, then graphical lasso will be the preferred
method. However, for the general case in which this information is unavailable,
SpecTemp is a more prudent alternative.

Comparison with GSP methods. Here we compare the network topology in-
ference approach (1.6) with the state-of-the art algorithms in [34] and [35], which
are designed to identify the Laplacian of a graph from observations of smooth graph
signals. We select f (S) = ‖S‖1 and d(S1,S2) = ‖S1 − S2‖

2
F in (1.6), resulting in the

SpecTemp formulation in (1.8). We study the recovery of the combinatorial Lapla-
cian S = Lc of Barabási-Albert preferential attachment graphs [44], with N =20 gen-
erated from m0 = 4 initially placed nodes, where each new node is connected to
m = 3 existing ones. Following [35] we adopt two models for smooth graph sig-
nals: i) multivariate normal signals with covariance given by the pseudo-inverse
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TABLE 1.2 Comparison with GSP methods

Performance comparison between the proposed SpecTemp approach (1.8), Kalofolias [35], and
Dong et al [34].

Inverse Laplacian Diffusion

Barabási-Albert Proposed Kalofolias Dong et al Proposed Kalofolias Dong et al
F-measure 0.926 0.855 0.873 0.945 0.845 0.894
edge error 0.143 0.173 0.209 0.135 0.154 0.235

degree error 0.108 0.124 0.169 0.109 0.092 0.188

of Lc, i.e., x1 ∼ N(0,L†c); and ii) white signals filtered through an autoregressive
(diffusion) process, that is x2 = (I + Lc)−1w, where w ∼ N(0, I). For both settings
we generate 10 training graphs, 100 testing graphs, and for every graph we gener-
ate R = 1000 graph signals. The training set is used to set the parameters in [34]
and [35], and it serves the purpose of selecting the best ε [cf. (1.8)]. To increase
the difficulty of the recovery task, every signal x is perturbed as x̂ = x + σ x ◦ z, for
σ = 0.1 and z ∼ N(0, I). We assess performance via the F-measure, the `2 relative
error of recovery of the edges, and the `2 relative error of recovery of the degrees.
The performance achieved by each method in the testing sets is summarized in Ta-
ble 1.2. In all but one case, SpecTemp attains the highest F-measures and the lowest
errors for both signal models. Similar results were found for ER graphs; see [30].

Network deconvolution. The network deconvolution problem is the identifica-
tion of an adjacency matrix S = A that encodes direct dependencies when given an
adjacency T that includes indirect relationships. The problem is a generalization
of channel deconvolution and can be solved by making T = S (I − S)−1 [45]. This
solution assumes a diffusion as in (1.1) but for the particular case of a single-pole-
single-zero graph filter. A more general approach is to assume that T can be written
as a polynomial of S but be agnostic to the form of the filter. This leads to problem
formulation (1.8) with V given by the eigenvectors of T. Note that here matrix T is
not necessarily an empirical covariance matrix.

In this context, our goal is to identify the structural properties of proteins from
a mutual information graph of the co-variation between the constitutional amino-
acids [46]; see [45] for details. For example, for a particular protein, we want to
recover the structural graph in Fig. 1.2 (a - left) when given the graph of mutual
information in Fig. 1.2 (a - right). Notice that the structural contacts along the first
four sub-diagonals of the graphs were intentionally removed to assess the capability
of the methods in detecting the contacts between distant amino-acids. The graph
recovered by network deconvolution [45] is illustrated in Fig. 1.2 (b - left) whereas
the one recovered using SpecTemp is depicted in Fig. 1.2 (b - right). Comparing both
recovered graphs, SpecTemp leads to a sparser graph that follows more closely the
desired structure to be recovered. To quantify this latter assertion, in Fig. 1.2 (c) we
plot the fraction of the real contact edges recovered for each method as a function of
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FIGURE 1.2 Identifying the structural properties of proteins

(a) Real and (b) inferred contact networks between amino-acid residues for protein BPT1 BOVIN.
Ground truth contact network (a - left), mutual information of the co-variation of amino-acid
residues (a - right), contact network inferred by network deconvolution (b - left), contact net-
work inferred the proposed SpecTemp approach (1.8) (b - right). (c) Fraction of the real contact
edges between amino-acids recovered for each method as a function of the number of edges
considered. (d) Counterpart of (c) for protein YES HUMAN.

the number of edges considered, as done in [45]. For example, if for a given method
the 100 edges with largest weight in the recovered graph contain 40% of the edges in
the ground truth graph we say that the 100 top edge predictions achieve a fraction of
recovered edges equal to 0.4. As claimed in [45], network deconvolution improves
the estimation when compared to raw mutual information data. Nevertheless, from
Fig. 1.2 (c) it follows that SpecTemp outperforms network deconvolution. Notice
that when ε = 0 [cf. (1.8)] we are forcing the eigenvectors of S to coincide exactly
with those of the matrix of mutual information S′. However, since S′ is already a
valid adjacency matrix, we end up recovering S = S′. By contrast, for larger values
of ε the additional flexibility in the choice of the eigenvectors allows us to recover
shifts S that more closely resemble the ground truth. For example, when considering
the top 200 edges, the mutual information and the network deconvolution methods
recover 36% and 43% of the desired edges, respectively, while our method for ε=1
achieves a recovery of 53%. In Fig. 1.2 (d) we present this same analysis for a
different protein and similar results can be appreciated.
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1.5 NON-STATIONARY DIFFUSION PROCESSES
We now deal with more general non-stationary signals x that adhere to linear dif-
fusion dynamics (1.1) in G, but where the input covariance Cw = E

[
wwT

]
can be

arbitrary. In other words, we relax the assumption of w being white, which led to the
stationary signal model dealt with so far (cf. Remark 1). Such a broader model is
for instance relevant to (geographically) correlated sensor network data, or to models
of opinion dynamics, where (even before engaging in discussion) the network agents
can be partitioned into communities according to their standing on the subject matter.

For generic (non-identity) input covariance matrix Cw, we face the challenge that
the signal covariance [cf. (1.4)]

Cx = HCwHT (1.16)

is no longer simultaneously diagonalizable with S. This rules out using the eigenvec-
tors of the sample covariance Ĉx as spectral templates of S. Still, as argued following
(1.3) the eigenvectors of the GSO coincide with those of the graph filter H that gov-
erns the underlying diffusion dynamics. This motivates using snapshot observations
X := {xr}

R
r=1 together with additional information on the excitation input w (either re-

alizations of the graph signal, sparsity assumptions, or its covariance matrix Cx [26])
to identify the filter H, with the ultimate goal of estimating its eigenvectors V [47].
These spectral templates are then used as inputs to the GSO identification problem
(1.6), exactly as in the stationary setting of Sections 1.3 and 1.4. Accordingly, focus
is henceforth placed on the graph filter (i.e., system) identification task.

1.5.1 LINEAR GRAPH FILTER IDENTIFICATION
Consider m = 1, . . . ,M diffusion processes on G, and assume that the observed non-
stationary signal xm corresponds to an input wm diffused by an unknown graph filter
H =

∑L−1
l=0 hlSl, which encodes the structure of the network via S. In this section we

show how additional knowledge about realizations of the input signals wm can be
used to identify H and, as a byproduct, its eigenvectors V.

Input-output signal realization pairs. Suppose first that realizations of M
input-output pairs {wm, xm}

M
m=1 are available, which can be arranged in the data ma-

trices W = [w1, ...,wM] and X = [x1, ..., xM]. The goal is to identify a symmetric
filter H ∈ MN such that the observed signals xm and the predicted ones Hwm are
close in some sense. In the absence of measurement noise this simply amounts to
solving a system of M linear matrix equations

xm = Hwm, m = 1, . . . ,M. (1.17)



i
i

“Book” — 2017/10/19 — 10:15 — page 16 — #16 i
i

i
i

i
i

16 CHAPTER 1 Inference of Graph Topology

When noise is present, using the workhorse least-squares (LS) criterion the filter can
be estimated as

Ĥ = argmin
H∈MN

M∑
m=1

‖xm−Hwm‖
2
2. (1.18)

Because H is symmetric, the free optimization variables in (1.18) correspond to,
say, the lower triangular part of H, meaning the entries on and below the main
diagonal. These NH := N(N+1)/2 non-redundant entries can be conveniently ar-
ranged in the so-termed half-vectorization of H, i.e., a vector vech(H) ∈ RNH from
which one can recover vec(H) ∈ RN2

via duplication. Indeed, there exists a unique
duplication matrix DN ∈ {0, 1}N

2×NH such that one can write DNvech(H) = vec(H).
The Moore-Penrose pseudoinverse of DN , denoted as D†N , possesses the property
vech(H) = D†Nvec(H). With this notation in place, several properties of the solution
Ĥ of (1.18) are stated next.

Proposition 3. Regarding the graph filter problem (1.18), it holds that:
a) The entries of the symmetric solution Ĥ are given by

vech(Ĥ) =
[(

WT ⊗ IN
)
DN

]†
vec(X). (1.19)

b) rank
((

WT ⊗ IN
)
DN

)
≤ NH − (N − rank(W) + 1)(N − rank(W))/2.

c) The minimizer of (1.18) is unique if and only if rank(W)= N.

Proposition 3 asserts that if the excitation input set {wm}
M
m=1 is sufficiently rich –

i.e., if M ≥ N and the excitation signals are linearly independent –, the entries of
the diffusion filter H can be found as the solution of an LS problem. Interestingly,
the fact of H having only NH = N(N + 1)/2 different entries cannot be exploited to
reduce the number of input signals required to identify H. The reason being that the
matrix (WT ⊗ IN)DN is rank deficient if WT has a nontrivial nullspace. Symmetry,
however, can be exploited to enhance the estimation performance in overdetermined
scenarios with noisy observations.

Once Ĥ is estimated using (1.19), the next step is to decompose the filter as
Ĥ = V̂Λ̂V̂T and use V̂ as input for the GSO identification problem (1.6). Note that
obtaining such an eigendecomposition is always possible since filter estimates Ĥ ∈
MN are constrained to be symmetric.

1.5.2 QUADRATIC GRAPH FILTER IDENTIFICATION
In a number of applications, realizations of the excitation input wm may be challeng-
ing to acquire, but information about the statistical description of wm could still be
available. To be specific, assume that the excitation inputs are zero mean and their
covariance Cw,m = E

[
wmwT

m

]
is known. Further suppose that for each input wm, we

have access to a set of observations {x(r)
m }

Rm
r=1, which are then used to estimate the out-
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put covariance as Ĉx,m = 1
Rm

∑Rm
r=1 x(r)

m (x(r)
m )T . Since under (1.3) the true covariance is

Cx,m = E
[
xmxT

m

]
= HCw,mHT [cf. (1.16)], the aim is to identify a filter H such that

matrices Ĉx,m and HCw,mHT are close.
Assuming for now perfect knowledge of the signal covariances, the above ra-

tionale suggests studying the solutions of the following system of matrix quadratic
equations

Cx,m = HCw,mHT , m = 1, . . . ,M. (1.20)

To gain some initial insights, consider first the case where M = 1 and henceforth drop
the subindex m so that we can write (1.20) as (1.16). Given the eigendecomposition
of the symmetric and positive semidefinite (PSD) covariance matrix Cx = VxΛxVT

x ,
the principal square root of Cx is the unique symmetric and PSD matrix C1/2

x which
satisfies Cx = C1/2

x C1/2
x . It is given by C1/2

x = VxΛ
1/2
x VT

x , where Λ1/2
x stands for a

diagonal matrix with the nonnegative square roots of the eigenvalues of Cx.
With this notation in place, introduce the matrices Cwxw := C1/2

w CxC1/2
w and

Hww := C1/2
w HC1/2

w . Clearly, Cwxw is both symmetric and PSD. Regarding the
transformed filter Hww, note that by construction we have that Hww is symmetric.
Moreover, if H is assumed to be PSD, then so will be Hww. These properties will be
instrumental towards characterizing the solutions of the matrix quadratic equation
Cx = HCwHT in (1.16), which can be recovered from the solutions Hww of

Cwxw =C1/2
w CxC1/2

w =C1/2
w HCwHC1/2

w =HwwHww. (1.21)

Positive semidefinite graph filters. Suppose that H is PSD (henceforth de-
noted H ∈ M++

N ), so that Hww in (1.21) is PSD as well. Such filters arise, for exam-
ple, in heat diffusion processes of the form x = (

∑∞
l=0 β

lLl
c)w with β > 0, where the

Laplacian GSO Lc is PSD and the filter coefficients hl = βl are all positive. In this
setting, the solution of (1.21) is unique and given by the principal square root

Hww = C1/2
wxw. (1.22)

Consequently, if Cw is nonsingular the definition of Hww can be used to recover H
via

H = C−1/2
w C1/2

wxwC−1/2
w . (1.23)

The previous arguments demonstrate that the assumption H ∈ M++
N gives rise to a

strong identifiability result. Indeed, if {Cx,m}
M
m=1 are known perfectly, the graph filter

is identifiable even for M = 1.
However, in pragmatic settings where only empirical covariances are available,

then observation of multiple (M > 1) diffusion processes can improve the perfor-
mance of the system identification task. Given empirical covariances {Ĉx,m}

M
m=1 re-

spectively estimated with enough samples Rm to ensure they are full rank, for each
m define Ĉwxw,m := C1/2

w,mĈx,mC1/2
w,m. The quadratic equation (1.23) motivates solving
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the LS problem

Ĥ = argmin
H∈M++

N

M∑
m=1

‖Ĉ1/2
wxw,m − C1/2

w,mHC1/2
w,m‖

2
F . (1.24)

Whenever the number of samples Rm – and accordingly the accuracy of the empirical
covariances Ĉx,m – differs significantly across diffusion processes m = 1, . . . ,M, it
may be prudent to introduce non-uniform coefficients to downweigh those residuals
in (1.24) with inaccurate covariance estimates.

1.5.3 NUMERICAL TESTS
Here we study the recovery of two real-world graphs to assess the performance of
the proposed network topology inference algorithms from non-stationary diffusion
processes.

Brain graph. Consider a brain graph G with N = 66 nodes or neural regions and
edge weights given by the density of anatomical connections between regions [48].
Denoting by S = A the weighted adjacency of the brain graph, we consider two
types of filters H1 =

∑2
l=0 hlAl and H2 = (I + αA)−1, where the coefficients hl and

α are drawn uniformly on [0, 1]. We then generate M random input-output pairs
{xm,wm}

M
m=1 (cf. Sec. 1.5.1), where signals are filtered by either H1 or H2, and esti-

mate the filter using (1.19). Problem (1.8) with V̂ given by the eigenvectors of the
estimated filter is then solved in order to infer the brain graph. In Fig. 1.3 (a - top) we
plot the recovery error ‖S∗1 − S‖F/‖S‖F as a function of M for both types of filters.
First, notice that the performance is roughly independent of the filter type. More
importantly, for M ≥ N, the optimal filter estimation is unique (cf. Proposition 3)
and leads to perfect recovery. We also consider the case where the observation of
the output signals xm is noisy; see Fig. 1.3(a - bottom). For this latter case, even
though the estimation improves with increasing M, a larger number of observations
is needed to guarantee successful recovery of the brain graph.

Social network. We consider the social network of a karate club studied by
Zachary [49], represented by a graph G consisting of N = 34 nodes or members of
the club and undirected edges symbolizing friendships among them. Denoting by
L the normalized Laplacian of G, we define the GSO S=I−αL with α=1/λmax(L),
modeling the diffusion of opinions between the members of the club. A signal x can
be regarded as a unidimensional opinion of each club member regarding a specific
topic, and each application of S can be seen as an opinion update. Our goal is to
recover L – hence, the social structure of the Karate club – from the observations of
opinion profiles. We consider M different processes in the graph – corresponding,
e.g., to opinions on M different topics – and assume that an opinion profile xm is gen-
erated by the diffusion through the network of an initial signal wm. More precisely,
for each topic m = 1, . . . ,M, we model wm as a zero-mean process with known
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FIGURE 1.3 Inference of graph topology from non-stationary signals
(a) Brain network recovery error for FIR and IIR filters versus number of observed signals in
noiseless (top) and noisy (bottom) settings. (b) Error in recovering a social network as a function
of the number of opinion profiles observed and parametrized by the number of topics M.

covariance Cw,m. We are then given a set {x(r)
m }

R
r=1 of opinion profiles generated

from different sources {w(r)
m }

R
r=1 diffused through a filter of unknown nonnegative

coefficients β. From these R opinion profiles we build an estimate Ĉx,m of the output
covariance and, leveraging the fact that S is PSD and β ≥ 0 (cf. Sec. 1.5.2), we
estimate the unknown filter Ĥ by solving (1.24). Lastly, we use the eigenvectors V̂
of Ĥ to solve (1.8), where S is modified accordingly for the recovery of a normalized
Laplacian; see [30]. In Fig. 1.3 (b) we plot the shift recovery error as a function of
the number of observations R and for three different values of M. As R increases, the
estimate Ĉx,m becomes more reliable entailing a better estimation of the underlying
filter and, ultimately, leading to more accurate eigenvectors V̂. Hence, we observe a
decreasing error with increasing R. Moreover, for a fixed R, the error in the estima-
tion of Ĉx,m can be partially overcome by observing multiple processes, thus, larger
values of M lead to smaller errors.

1.6 DISCUSSION
With S = VΛVT being the shift operator associated with an undirected graph G, we
studied the problem of identifying S (hence the topology of G) using a two-step ap-
proach where: (i) we first estimate the eigenvectors V; and (ii) we then use V as
input to find the eigenvalues Λ robustly via a convex optimization problem. Under
the assumption that observed signals X = {xr}

R
r=1 resulted from diffusion dynamics

on the graph or, equivalently, that they were (graph) stationary in S, it was shown
that V could be estimated from the eigenvectors of the sample covariance of X. As a
consequence, several well-established methods for topology identification based on
Pearson and partial correlations can be viewed as particular instances of the approach
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here presented. Contrasting with the stationary setting where S and the covariance
matrix of the observed signals are simultaneously diagonalizable, for general (non-
stationary) diffusion processes they are not. There is a workaround that entails es-
timating the unknown diffusion (graph) filter – a polynomial in the shift operator
which preserves the sought eigenbasis V. To carry out this initial system identifi-
cation step, extra information is required on the input signal driving the diffusion
process on the graph. Numerical tests showcase the effectiveness of the developed
topology inference framework in recovering synthetic and real-world graphs.
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