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ABSTRACT

We develop algorithms for online topology inference from streaming
nodal observations and partial connectivity information; i.e., a priori
knowledge on the presence or absence of a few edges may be avail-
able as in the link prediction problem. The observations are modeled
as stationary graph signals generated by local diffusion dynamics on
the unknown network. Said stationarity assumption implies the si-
multaneous diagonalization of the observations’ covariance matrix
and the so-called graph shift operator (GSO), here the adjacency ma-
trix of the sought graph. When the GSO eigenvectors are perfectly
obtained from the ensemble covariance, we examine the structure of
the feasible set of adjacency matrices and its dependency on the prior
connectivity information available. In practice one can only form an
empirical estimate of the covariance matrix, so we develop an alter-
nating algorithm to find a sparse GSO given its imperfectly estimated
eigenvectors. Upon sensing new diffused observations in the stream-
ing setting, we efficiently update eigenvectors and perform only one
(or a few) online iteration(s) of the proposed algorithm until a new
datum is observed. Numerical tests showcase the effectiveness of the
novel batch and online algorithms in recovering real-world graphs.

Index Terms— Network topology inference, graph signal pro-
cessing, diffusion process, link prediction, online algorithm.

1. INTRODUCTION

Network data supported on the vertices of a graph G are nowadays
ubiquitous across disciplines spanning engineering as well as social
and the bio-behavioral sciences [1]. Such data can be represented as
graph signals, namely vectors indexed by the nodes of G. In this con-
text, the goal of graph signal processing (GSP) is to develop informa-
tion processing algorithms that fruitfully exploit the relational struc-
ture of said network data [2]. However, oftentimes G is not readily
available and a first key step is to use observations of graph signals to
learn the underlying network structure (or a meaningful graph model
that facilitates signal representations and prediction tasks); see [3,4]
for recent tutorial treatments on graph learning.

To state the problem at hand, consider a weighted undirected
graph G, consisting of a node set A/ of cardinality IV, and symmetric
adjacency matrix A with entry A;; = Aj; # 0 denoting the edge
weight between node 7 and node j. We assume that G contains no
self-loops; i.e., A;; =0. Generally speaking, we can define a generic
graph-shift operator (GSO) S € RY*N as any matrix capturing the
same sparsity pattern as A on its off-diagonal entries [5]. Common
choices for S are the adjacency A, the Laplacian L := diag(A1) —
A, or their normalized counterparts [2]. Henceforth we focus on
S = A and aim to recover the adjacency matrix of the unknown
graph G. Other GSOs can be accommodated in a similar fashion.

In the sequel, we present an online framework that estimates
sparse graphs that explain the structure of streaming random signals.
Particularly, in a snapshot, let y = [y1,...,yn]" € RY be a zero-
mean graph signal in which the ith element y; denotes the signal
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value at node ¢ of an unknown graph G with shift operator S. Further
consider a zero-mean white signal x with covariance matrix Cx = I
(identity matrix). We state that the graph S represents the structure
of the signal y € RY if there exists a diffusion process in the GSO
S that produces the signal y from the input signal x, that is

y=ao [[[2,I—auS)x =32, 8BS x. (1)

Under the assumption that Cx = I, (1) is equivalent to the station-
arity of y in S; see e.g., [6, Def. 1], [7], [8]. The justification to say
that S represents the structure of y is that we can think of the edges
of G, i.e. the non-zero entries in S, as direct (one-hop) relations be-
tween the elements of the signal. The diffusion in (1) modifies the
original correlation by inducing indirect (multi-hop) relations.

In this context, our goal is to recover the fundamental relations
dictated by S from a set of streaming stationary random signals
Vi={yW, ... y® y@+D .1 each of them adhering to linear
diffusion dynamics as in (1). Unlike [9] but similar to link predic-
tion problems [1, Ch. 7.2], here we assume a priori knowledge about
the presence (or absence) of a few edges; leading to simpler updates
and better performance. This is a reasonable assumption, since we
may know the status of a few edges (via limited questionnaires or
experiments), or might perform edge screening prior to topology in-
ference [10]. Supposing the data acquisition interval is long enough
relative to the time required to run a few iterations of the graph
learning algorithm, we pursue simple, time-adaptive topology up-
dates that can be used to estimate the GSO in an online fashion. Due
to the stationarity assumption, the ensemble covariance matrix of
the observations shares the same eigenvectors with the sought GSO;
see [11,12] and Section 2. Leveraging this result, our online algo-
rithm entails two steps, where we: (i) update eigenvectors efficiently
using methods described in Section 3.2; and (ii) take one or a few
steps of a graph learning algorithm developed in Section 3. In Sec-
tion 4 we corroborate the effectiveness of the proposed topology in-
ference approaches in both batch and online setups.

Relation to prior work. Workhorse topology inference approaches
construct graphs whose edge weights correspond to nontrivial cor-
relations between signals at incident nodes [1, 13]. Acknowledg-
ing that the observed correlations can be due to latent network ef-
fects, alternative statistical methods rely on inference of partial cor-
relations [1, Ch. 7.3.2]. Under Gaussianity assumptions, this line
of work has well-documented connections with covariance selec-
tion [14] and sparse precision matrix estimation [15-18], as well
as high-dimensional sparse linear regression [19]. Recent graph sig-
nal processing (GSP)-based network inference frameworks postulate
that the network exists as a latent underlying structure, and that ob-
servations are generated as a result of a network process defined in
such a graph [11, 12,20-23]. Different from [20, 22, 24, 25] that
infer structure from signals assumed to be smooth over the sought
undirected graph, here the measurements are assumed related to the
graph via filtering. Few works have recently explored this approach
by identifying a symmetric GSO given its eigenvectors, either as-
suming that the input is white [11, 12] — equivalently implying y is
graph stationary [6-8]; or, colored [26,27]. Building on [9], here
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we deal with online graph learning with partial connectivity infor-
mation. While we assume that the graph signals are stationary, the
online scheme in [28] uses observations from a Laplacian-based,
continuous-time graph process. Relative to [29] that relies on a
single-pole graph filter [30], the filter structure underlying (1) can
be arbitrary, but the focus here is on learning undirected graphs.

2. PRELIMINARIES AND PROBLEM STATEMENT

We consider topology inference from stationary signals whereby a
small portion of the edges are known a priori. We then examine the
size of the feasibility set and finally state the problem of finding a
structurally admissible graph with sparse connectivity structure.

2.1. Topology inference under stationarity

To formally state the problem, we consider the symmetric GSO S
associated with the undirected gra}f)h G. Upon defining the vector of
coefficients h := [ho,...,hr—1]" € R and the symmetric graph
filter H := /7' S' € RY*N [5], the Cayley-Hamilton theo-
rem asserts that the model in (1) boils down to

y = (2 mS') x = Hx, )

for some particular h and L < N. Note that L specifies the depen-
dency range of the diffusion on the neighhbors.

We first start with the offline setting, where x is white so that
Cx = I [11]. The covariance matrix of y = Hx is then

C, :=Elyy"] = E[Hx(Hx)"] = HE[xx" |H = H>.  (3)

We used the symmetry of H to obtain the third equality, as H
is a polynomial in the symmetric GSO S. Using the spectral
decomposition of S = VAVT to express the filter as H =
f;ol h(VAVTY = v( zL;ol M AYVT, we can diagonalize

the covariance matrix as 5
Cy =V (T mAt) VT, “

Such a covariance expression is the requirement for a graph signal
to be stationary in S [6, Def. 2.b]. Remarkably, if y is graph sta-
tionary, or equivalently if x is white (i.e., its covariance is identity
matrix), (4) shows that the eigenvectors of the shift S, the filter H,
and the covariance C,, are all the same. As a result, to estimate V.
from the observations {y™ }7_, it suffices to form the sample co-
variance Cy = + Zle y® (y®)7T and use its eigenvectors as
spectral templates to recover S [11,12]. Note that in estimating Cy,,
we assume that the observed signals are zero-mean without loss of
generality, otherwise we can subtract the mean from the signals.
Furthermore, one can impose constraints to ensure the GSO S
is structurally admissible and incorporate a priori knowledge about
S. Namely, if we let S = A represent the adjacency matrix of an
undirected graph with non-negative weights and no self-loops, we
can explicitly write
Se{S[Si; >0,8"=8,5,; =05, 5 =1}. )

The first condition in (5) encodes the non-negativity of the weights
whereas the second condition incorporates that G is undirected,
hence, S must belong to the set of real and symmetric N X N ma-
trices. The third condition encodes the absence of self-loops, thus,
each diagonal entry of S must be null. Finally, the last condition
fixes the scale of the admissible graphs by setting the weighted de-
gree of the first node to 1. Other GSOs (e.g., the Laplacian L and its
normalized variants) can be accommodated via minor modifications
to (5); see [11].

In some pragmatic settings that we consider in this paper, we
may know about the existence of a few edges or their corresponding
weights as prior information. In that case, we can drop the constraint
>_; Sj1=1and instead add S;; = s;; for the (4, j) pairs with known
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weights s;;. This would fix the scale of the GSO which was the
reason we had the constraint E ; Sj1 = 1in (5). Accordingly, we

can rewrite the set of admissible adjacency matrices as
8:{5 | Si; 2 0, s’ = S, Sii = 0,85 =545, (Za]) € Q}v (6)

where we denote the set of observed edges (i, j) as .
2.2. Size of the feasibility set and sparse recovery

Inspired by [11], here we examine the feasibility set and the degrees
of freedom of the GSO S under the assumption that the perfect spec-
tral templates V are available and S € S [cf. (6)]. This would
shed light on the dependency of the feasibility set’s structure and di-
mensionality (hence the difficulty of recovering S) on the number of
observed edges. As we show next, the feasibility set may potentially
reduce to a singleton (the graph S € S is completely specified by
V), or more generally to a low-dimensional subspace. In the latter
(more interesting) case, or more pragmatically when we approximate
'V with the eigenvectors V of the observations’ sample covariance,
we formulate a convex optimization problem as in [11] to search for
a sparse and structurally admissible GSO.

Feasibility set. Given the GSO eigenvectors V, consider the map-
ping S=VAVT between S and A. This can precisely be rewritten
as vec(S) = (V © V)X = WA, where ® denotes the Khatri-Rao
(column-wise Kronecker) product, A€ R™ collects the diagonal en-

tries of A, and W := VOV € RNV, Recall that S € S and
accordingly the entries of vec(S) corresponding to the diagonal en-
tries of S should be zero. Upon defining the set 7 :={ N (i — 1)+ |
ieq{l,--- ,N}}, we have the mapping WA = 0 to the null di-
agonal entries of S, where W € RN is a submatrix of W that
contains rows indexed by the set 7. Thus, W7 is rank-deficient and
A belongs to ker(W ), where ker(.) denotes the null space of its
argument. In particular, assume that rank(W7)=N—k,1<k< N,
which implies A lives in a k-dimensional subspace. As some of the
entries in S are known according to S, intuitively we expect that by
observing k “sufficiently different” edges, the feasible set will boil
down to a singleton resulting in a unique feasible S € S. To quan-
tify the extra constraints imposed by the partially observed connec-
tivities, let M :={N(j—1)+i | (¢,7) €} correspond to the known
entries of vec(S). Then upon defining U € R™* comprising the ba-
sis vectors of ker(W), the condition rank(W »(U) = k would be
sufficient to determine S uniquely in the k-dimensional null space
of W as summarized in the following proposition.

Proposition 1 Suppose the GSO eigenvectors V are given. If
rank(W 1) = N —k and rank(W pU) =k, then S is a singleton.

Proof: Since A € ker(W ), there exists an & € R” such that XA =
Ucq. From the known entries of vec(S) denoted by w:=[vec(S)]am
we have W A=W o Ua =w. Thus, to uniquely identify o and
equivalently A (and S), it is sufficient to have rank(W ,U)=k. B
Proposition 1 further implies that rank(W o) > k under the as-
sumption that rank(W(U) = k. This is due to the inequality
rank(Wo(U) < min{rank(W ), rank(U)}. Observing k “suf-
ficiently different” edges for unique recovery of S is the intuition
behind the rank constraint on W o4. In real-world graphs, we have
observed that k is typically much smaller than IV; see also Section 4
and [11, Section 3]. This would make it feasible to uniquely iden-
tify the graph, given only its eigenvectors and & sufficiently different
pre-observed edges. However, in practice we may not know about
the status of those many edges, or, the graph eigenvectors may only
be imperfectly estimated via eigendecomposition of the sample co-
variance matrix Cy. This motivates searching for an optimal graph
while accounting for the (finite sample size) approximation errors
and the prescribed structural constraints, the subject dealt with next.
Sparse recovery. Given estimates V of the covariance ei genvectors,
recovery of S amounts to selecting its eigenvalues A and to that end



we assume that the shift of interest is sparse. At the same time, we
should account for the discrepancies between V and the underlying
eigenvectors of S, due to finite sample size constraints and unavoid-
able errors in estimating the filter. Accordingly, we build on [11]
and seek for the shift operator S that: (a) is sparse, meaning that
few edge weights are non-zero; (b) belongs to the convex set S that
specifies structural constraints and edge status information; and (c)
is close to VAV in the Frobenius-norm sense. One can thus solve

S := argmin ||S|j1, subjectto: |S— VAVT|r<e ()
A€D,SeS

where D is the set of NV X N diagonal matrices. Problem (7) is a
convex optimization problem for the choice of a sparsity-promoting
{1-norm criterion, and € is a tuning parameter chosen based on a
priori information on the imperfections.

Going back to the online setting where we acquire streaming
stationary signals Y ={y®, ..., y® y®+D ...} the goal is to
update the GSO in a computationally efficient way at each time step.
We assume that the data acquisition period (interval between two
samples) is much shorter than the time required to update the GSO
by eigendecomposition of an updated Cy and by solving (7) using
off-the-shelf algorithms. Accordingly, the idea is to only take one (or
a few) simple step(s) of an iterative algorithm for solving (7) upon
sensing a new graph signal. Beyond the time constraint, it is not
prudent to devote major efforts in fully solving (7) if we are going
to refine S soon thereafter, once a new datum arrives. Specifically,
upon arrival of a new observation we first update the covariance Cy
using a weighted re-averaging, or, by resorting to a cheaper approach
that directly updates the covariance eigenvectors A% using rank-one
perturbations of Cy; see Section 3.2. Given the updated eigenvec-

tors V, we then run few iterations of the alternating minimzation
algorithm in Section 3.1 to refine S before we acquire a new signal.

3. ALGORITHMS

In this section, we first derive an iterative algorithm to solve (7) in
the (offline) batch setting, and then we adapt it for online processing.
3.1. Alternating minimization scheme

Here we develop an iterative algorithm to find a sparse and struc-
turally admissible S that solves (7). To make the optimization prob-
lem amenable to closed form iterations, we reformulate (7) as

1 SN
minimize  6(A,S) = ul|S[lx + S |IS - VAVT|%,

AeD, sT=8, S;>0, )

Sij = Sij, V(’L7j) c 0.

subject to Sii =0,

Problem (P) is still convex and can be solved using a block
coordinate-descent method. In particular, we solve (P) cyclically
over each variable S and A while fixing the other variable to its most
up to date value. This procedure provably converges to the global
optimum of (P) [31]. The closed-form updates for the blocks A and
S [initialized randomly at S(0)] are outlined next.

A-update. At each iteration kK = 0,1,2,... we fix S = S(k) and
update A (k) by solving

A(k) := argmin §(A, S(k))
A€D

. A 8)
= argmin ||S(k)—VAVT|%. (
AED
Problem (8) has a closed-form solution given by
A(k) == diag(V"S(k)V), ©)

because one can equivalently rewrite the cost in (8) as | VT S(k)V—
A||% due to the orthonormality of V.
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S-update. After updating A (k) at iteration k, we keep the latest A
fixed and solve (P) with respect to S. The optimization variable S
in §(A(k),S) is component-wise separable. In particular, S(k+1)
can be obtained in a simple closed form in terms of non-negative
soft-thresholding operations and suitable projections. Defining the

matrix B(k) := VA(k)VT, the entries of S(k-1) are given by

0, i=7
Sij(k+1) = Sij, (4,7) €. 10)
max (0, B;;j(k) — ), otherwise,

The overall algorithm is referred to as AltTopold, which entails
alternating updates for A and S until a certain termination condition
ismet; e.g., [|S(k) — S(k—1)||r/||S(k—1)||r < ¢ for a parameter
€. Next, we build on the simple AltTopold iterations to develop an
online topology inference algorithm which is capable of processing
streaming signals and learn the graph structure adaptively.

3.2. Online topology inference

Towards online topology inference from stationary signals, an im-

portant first step is to update the eigenvectors of Cy efficiently and
circumvent repeated eigendecompositions. This can be achieved in
O(N?) complexity using results on the eigendecomposition of rank-

one modifications of a symmetric matrix [32]. In particular, let C§P>
denote the signal’s sample covariance obtained from P observations.

The updated sample covariance upon sensing y ("% is given by
N 1 ~ T
aP+n _ <pC<P> (P+1)  (P+1) ) 11
y P+1 y +y y ) ( )

which is a rank-one modification of C§,P>. It is shown in [32] that the
eigenvalues of the rank-one modification of a symmetric matrix with
eigenvalues {d, } ;VZI are the roots ~y of the characteristic equation

N zz
1 — =90 12
+;de_7 ; (12)

where z = V<P>Ty(P+1> and V) are the eigenvectors of C§,P>.
The so-termed secular equation (12) can be solved using, e.g., the

Newton method in O(N?) complexity. After finding the eigenvalues
{v; }ﬁl efficiently, the corresponding eigenvectors can be updated

via v = gy oq;, j=1,...,N (13)
(1/

where g; is a normalizing factor ensuring that ||v;|j2 = 1, q;
(Pdi—~;),...,1/(Pdx—;)]%, and o denotes the Hadamard (en-
trywise) product. So, upon receiving a new signal y" %), the up-
dated eigenvectors V&+D can be adaptively computed using VP
and y "V in O(N?) time. This effectively avoids the O(N?) cost
of directly computing the eigendecomposition of G+,

Putting all the pieces together, our online topology inference
algorithm entails two steps every time a new observation becomes
available: (i) update eigenvectors \Y% using the aforementioned rank-
one modification technique; and (ii) run one (or a few iterations) of
the AltTopold algorithm to update S before a new datum is received.
Note that if the signals arrive faster, one can create a buffer and per-
form each iteration of the AltTopold algorithm on a \Y% updated with
a sliding window of newly observed signals. On the other hand, for a
slower rate of arrivals, additional algorithmic iterations would likely
favor recovery performance.

4. NUMERICAL RESULTS

In this section we assess the performance of the proposed algorithm
in recovering sparse real-world graphs. To that end, we illustrate
the effect of the partial connectivity information on the behavior of
the AltTopold algorithm in an offline setting. We also evaluate the
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Fig. 1: (a) Zachary’s karate club graph with N =34 nodes. (b) F-measusre of the recovered graph in an offline batch setting using the AltTopo
algorithm versus number of observations for the karate club and different a priori information on the connectivities. (c) Evolution of the F-
measure in inferring the karate club by performing one step of the proposed online algorithm upon sensing each new signal, superimposed
with the offline batch counterpart. This is plotted assuming that we observe the edge between node 1 and node 14 as a priori knowledge.

performance of the proposed online scheme in recovering the graph
adaptively using streaming signals.

Throughout this section, we infer unweighted real-world net-
works from the observation of diffusion processes that are synthet-
ically generated via graph filtering as in (2). For the graph shift
S = A, the adjacency matrix of the sought network, we consider a
second-order filter H = 212:0 hS, where the coefficients {hi} are
drawn uniformly from [0, 1]. To measure the edge-support recovery,
we compute the F-measure defined as the harmonic mean of edge
precision and recall (precision is the percentage of correct edges in
S, and recall is the fraction of edges in S that are retrieved).
Zachary’s karate club: Offline. We consider the social network
of Zachary’s karate club [33] represented by a graph G consisting
of N = 34 nodes or members of the club and 78 undirected edges
symbolizing friendships among them; see Fig. 1-a. Note that the
rank of W (cf. Proposition 1) for this graph is 32. This implies
that the knowledge of the perfect spectral templates V leaves the
GSO S in a 2-dimensional subspace which can lead to a singleton
feasibility set by observing only 2 different edges. However, here
we apply the AltTopold algorithm on noisy eigenvectors V of the
sample covariance and assume that we know one of the 78 edges as
a priori information and aim to infer the rest of the edges. Synthetic
signals {y(p ) }5:1 are generated through diffusion process H where
the entries of the inputs {x(p)};f:l are drawn independently from
the normal Gaussian distribution to make the observations station-
ary. Fig. 1-b plots the F-measure averaged over 1000 experiments
as a function of the number of observed signals P and the a priori
knowledge — top and bottom 3 in terms of performance. We also su-
perimpose Fig. 1-b with the recovery performance of the case when
we have no a priori knowledge on the edges; i.e., approach in [11].
First we notice that as the number of observations increase, the esti-
mate V becomes more reliable which leads to a better performance
(i.e., larger F-measure) of the underlying GSO. As expected, having
a priori information on the edges would help the performance. Fi-
nally, we calculate the edge betweenness centralities for all the edges
as in [34]. Interestingly, we notice that the worst 3 edges to know
as a priori knowledge in the topology inference are among the top
links in terms of the edge betweenness centrality. From a feasibility
standpoint, we conjecture that the edges that are more different from
others would result in an easier subspace to search for an optimal
GSO; e.g., see (1—12) a priori connectivity information in Fig. 1.
Zachary’s karate club: Online. We use the same graph to study
the online behavior of the algorithm. We assume that we know the
existence of the edge between nodes 1 and 14 as an a priori edge
which leads to a moderate performance among all other connectiv-
ity a priori information. We generate streaming signals {y®, - - - |
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y @ y®FD Y by diffusing inputs {x™1), ... x®) x@FD

-+ - } through filter H, where the inputs are formed similarly to the
ones for previous experiment. Upon sensing an observation y ),
we first update sample covariance eigenvectors \Y% using the proce-
dure described in Section 3.2 and then run the AltTopold algorithm
only for one iteration. This is under the assumption that differences
between the arrival times of signals are longer than one step of our
pipeline. In Fig. 1-c, we depict the evolution of F-measure averaged
over 10 instances. We further plot the (average) offline behavior sim-
ilar to the previous experiment in order to gauge the loss of online
estimation. We notice that the adaptive online scheme can success-
fully track the performance of the offline counterpart on expectation.
Facebook friendship graph: Offline. Finally, we consider a di-
rected network of /N = 2888 Facebook users, where the 2981 edges
represent friendships among the users [35,36]. More precisely, an
edge from node ¢ to node j exists if user ¢ is a friend of the user
j. To make the graph amenable to our framework, we assume that
the friendships are bilateral and ignore the directions. First, we no-
tice that the rank of W7 is 2882. This means that knowing GSO’s
spectral templates and k = 6 different edges as a priori informa-
tion would lead to a singleton feasibility set (cf. Proposition 1). To
assess the AltTopold algorithm for this large scale graph, we per-
form 10 experiments wherein we assume that we know the existence
of 5 random edges in each experiment as a priori knowledge. We
then generate 10° synthetic random signals similar to the first offline
experiment and estimate V via eigenvectors of the outputs sample
covariance. In this case, estimated S from the AltTopold algorithm
would result in an average F-measure of 0.862 which is promising.
Testing this graph for different number of observations and in the
online setting would be a valuable extension, and results will be re-
ported elsewhere.
5. CONCLUSION

We studied the inference of an undirected network from streaming
observations of stationary signals diffused on the graph with par-
tially known connectivity information. We first examined the size of
the feasibility set in the ideal scenario whereby the the GSO eigen-
vectors are perfectly known, as a function of the a priori information
available on the status of a few edges. For the pragmatic setup of fi-
nite sample size (hence the eigenvectors can only be estimated with
error) or limited a priori information, we developed an iterative al-
gorithm to find a sparse adjacency matrix explaining the structure
of the diffused signals. This algorithm was then used in an online
scheme wherein we adaptively updated the graph as new signals
became available sequentially in time. The overall procedure was
validated in offline and online settings when recovering real-world
graphs from synthetically generated signals.
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