

Online Network Topology Inference with Partial Connectivity Information

Rasoul Shafipour and Gonzalo Mateos

Dept. of ECE and Goergen Institute for Data Science
University of Rochester
gmateosb@ece.rochester.edu
http://www.ece.rochester.edu/~gmateosb/

Acknowledgment: NSF Awards CCF-1750428, ECCS-1809356, CCF-1934962

Guadeloupe, French West Indies, December 17, 2019

Network Science analytics

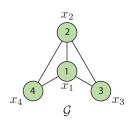
Internet

Clean energy and grid analytics

- Network as graph $G = (\mathcal{V}, \mathcal{E})$: encode pairwise relationships
- ▶ Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
 ⇒ Use G to study graph signals, data associated with nodes in V
- ► Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

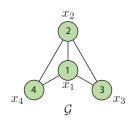
Graph signal processing (GSP)

- ► Undirected *G* with adjacency matrix **A**
 - \Rightarrow A_{ij} = Proximity between i and j
- ▶ Define a signal x on top of the graph
 - $\Rightarrow x_i =$ Signal value at node i



Graph signal processing (GSP)

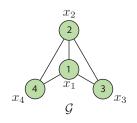
- ► Undirected *G* with adjacency matrix **A**
 - $\Rightarrow A_{ij} = \text{Proximity between } i \text{ and } j$
- ▶ Define a signal x on top of the graph
 - $\Rightarrow x_i =$ Signal value at node i



- ► Associated with \mathcal{G} is the graph-shift operator (GSO) $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$
 - \Rightarrow $S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin \mathcal{E}$ (local structure in \mathcal{G})
 - \Rightarrow Ex: **A**, degree **D** and Laplacian **L** = **D A** matrices

Graph signal processing (GSP)

- ► Undirected *G* with adjacency matrix **A**
 - $\Rightarrow A_{ij} = \text{Proximity between } i \text{ and } j$
- ▶ Define a signal x on top of the graph
 - $\Rightarrow x_i =$ Signal value at node i



- ► Associated with \mathcal{G} is the graph-shift operator (GSO) $\mathbf{S} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$
 - \Rightarrow $S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin \mathcal{E}$ (local structure in \mathcal{G})
 - \Rightarrow Ex: **A**, degree **D** and Laplacian **L** = **D A** matrices
- ▶ Graph Signal Processing → Exploit structure encoded in S to process x
 - \Rightarrow Use GSP to learn the underlying ${\cal G}$ or a meaningful network model

Topology inference: Motivation and context

- ► Network topology inference from nodal observations [Kolaczyk'09]
 - Partial correlations and conditional dependence [Dempster'74]
 - ► Sparsity [Friedman et al'07] and consistency [Meinshausen-Buhlmann'06]
- ▶ Key in neuroscience [Sporns'10]
 - ⇒ Functional network from BOLD signal

Topology inference: Motivation and context

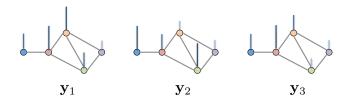
- ► Network topology inference from nodal observations [Kolaczyk'09]
 - Partial correlations and conditional dependence [Dempster'74]
 - ► Sparsity [Friedman et al'07] and consistency [Meinshausen-Buhlmann'06]
- ► Key in neuroscience [Sporns'10]
 - \Rightarrow Functional network from BOLD signal

- Noteworthy GSP-based approaches
 - ► Graphical models [Egilmez et al'16], [Rabbat'17], [Kumar et al'19] . . .
 - ▶ Smooth signals [Dong et al'15], [Kalofolias'16], [Sardellitti et al'17], ...
 - ▶ Stationary signals [Pasdeloup et al'15], [Segarra et al'16], . . .
 - ▶ Directed graphs [Bazerque et al'13], [Mei-Moura'15], [Shen et al'16], . . .
 - ► Streaming data [Baingana et al'14], [Vlaski et al'18], ...
- ▶ Our contribution: topology inference in the graph spectral domain
 - ▶ Here online topology inference with partial connectivity information

Problem formulation

Setup

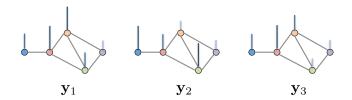
- ightharpoonup Undirected network $\mathcal G$ with unknown graph shift S. Observe
 - \Rightarrow Streaming signals $\{\mathbf{y}_i\}_{i=1}^P$ defined on **S**
 - \Rightarrow Edge status for $(i,j) \in \Omega \subset \mathcal{V} \times \mathcal{V}$



Problem formulation

Setup

- ▶ Undirected network \mathcal{G} with unknown graph shift **S**. Observe
 - \Rightarrow Streaming signals $\{y_i\}_{i=1}^P$ defined on **S**
 - \Rightarrow Edge status for $(i,j) \in \Omega \subset \mathcal{V} \times \mathcal{V}$



Problem statement

Given observations $\{\mathbf{y}_i\}_{i=1}^P$ and edge status in Ω , determine the network **S** knowing that $\{\mathbf{y}_i\}_{i=1}^P$ are generated via diffusion on **S**.

Generating structure of a diffusion process

 \triangleright Signal \mathbf{y}_i is the response of a linear diffusion process to input \mathbf{x}_i

$$\mathbf{y}_i = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{x}_i = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{x}_i, \quad i = 1, \dots, P$$

⇒ Common generative model, e.g., heat diffusion, consensus

Generating structure of a diffusion process

 \triangleright Signal \mathbf{y}_i is the response of a linear diffusion process to input \mathbf{x}_i

$$\mathbf{y}_i = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{x}_i = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{x}_i, \quad i = 1, \dots, P$$

- ⇒ Common generative model, e.g., heat diffusion, consensus
- ▶ Cayley-Hamilton asserts we can write diffusion as $(L \le N)$

$$\mathbf{y}_i = \left(\sum_{l=0}^{L-1} h_l \mathbf{S}^l\right) \mathbf{x}_i := \mathbf{H} \mathbf{x}_i, \quad i = 1, \dots, P$$

- ⇒ Graph filter **H** is shift invariant [Sandryhaila-Moura'13]
- ⇒ **H** diagonalized by the eigenvectors **V** of the shift operator

Generating structure of a diffusion process

 \triangleright Signal y_i is the response of a linear diffusion process to input x_i

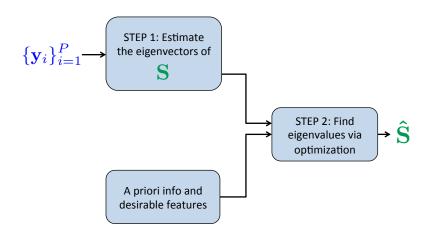
$$\mathbf{y}_i = \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{x}_i = \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{x}_i, \quad i = 1, \dots, P$$

- ⇒ Common generative model, e.g., heat diffusion, consensus
- ▶ Cayley-Hamilton asserts we can write diffusion as $(L \le N)$

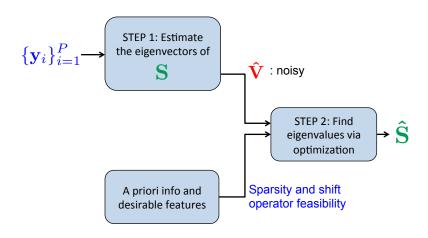
$$\mathbf{y}_i = \left(\sum_{l=0}^{L-1} h_l \mathbf{S}^l\right) \mathbf{x}_i := \mathbf{H} \mathbf{x}_i, \quad i = 1, \dots, P$$

- ⇒ Graph filter **H** is shift invariant [Sandryhaila-Moura'13]
- \Rightarrow **H** diagonalized by the eigenvectors **V** of the shift operator
- ▶ Goal: estimate undirected network S online from signals $\{y_i\}_{i=1}^P$
 - \Rightarrow Unknowns: filter order L, coefficients $\{h_i\}_{i=1}^{L-1}$, inputs $\{\mathbf{x}_i\}_{i=1}^P$

Blueprint of batch solution



Blueprint of batch solution



Two-step approach

- ▶ Suppose that the input is white, i.e., $\mathbf{C}_{x} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{T}\right] = \mathbf{I}$
 - \Rightarrow The covariance matrix of $\mathbf{y} = \mathbf{H}\mathbf{x}$ shares \mathbf{V} with \mathbf{S}

$$\mathbf{C}_{y} = \mathbb{E}\left[\mathbf{H}\mathbf{x}\big(\mathbf{H}\mathbf{x}\big)^{T}\right] = \mathbf{H}^{2} = h_{0}^{2}\mathbf{I} + 2h_{0}h_{1}\mathbf{S} + h_{1}^{2}\mathbf{S}^{2} + \dots$$

▶ Form sample covariance $\hat{\mathbf{C}}_y$ using $\{\mathbf{y}_i\}_{i=1}^P$ ⇒ Diagonalize ⇒ Obtain $\hat{\mathbf{V}}$

Two-step approach

- ▶ Suppose that the input is white, i.e., $\mathbf{C}_{\mathsf{x}} = \mathbb{E}\left[\mathbf{x}\mathbf{x}^{T}\right] = \mathbf{I}$
 - \Rightarrow The covariance matrix of $\mathbf{y} = \mathbf{H}\mathbf{x}$ shares \mathbf{V} with \mathbf{S}

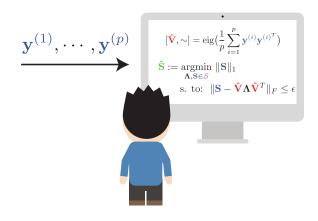
$$\mathbf{C}_{y} = \mathbb{E}\left[\mathbf{H}\mathbf{x}(\mathbf{H}\mathbf{x})^{T}\right] = \mathbf{H}^{2} = h_{0}^{2}\mathbf{I} + 2h_{0}h_{1}\mathbf{S} + h_{1}^{2}\mathbf{S}^{2} + \dots$$

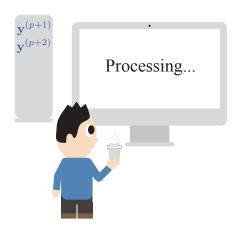
- ▶ Form sample covariance $\hat{\mathbf{C}}_y$ using $\{\mathbf{y}_i\}_{i=1}^P$ ⇒ Diagonalize ⇒ Obtain $\hat{\mathbf{V}}$
- Of all graphs, given v select one that is sparse and feasible

$$\hat{\mathbf{S}} := \underset{\mathbf{S}, \mathbf{\Lambda}}{\mathsf{argmin}} \ \|\mathbf{S}\|_1 \quad \text{ subject to: } \ \|\mathbf{S} - \hat{\mathbf{V}} \mathbf{\Lambda} \hat{\mathbf{V}}^T\|_F \leq \epsilon, \ \mathbf{S} \in \mathcal{S}$$

▶ Set S contains all admissible scaled adjacency matrices

$$S := \{ \mathbf{S} \mid S_{ij} \geq 0, \mathbf{S}^T = \mathbf{S}, \frac{S_{ii}}{S_{ii}} = 0, \frac{S_{ij}}{S_{ij}} = S_{ij}, (i, j) \in \Omega \}$$





- Develop an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
 - \Rightarrow Update $\hat{\mathbf{V}}$ efficiently
 - Take one or a few steps of the iterative algorithm

Alternating minimization

Alternating minimization

$$\label{eq:minimize_loss} \begin{split} & \min \min_{\mathbf{\Lambda},\mathbf{S}} & \quad \mu \|\mathbf{S}\|_1 + \frac{1}{2}\|\mathbf{S} - \hat{\mathbf{V}}\mathbf{\Lambda}\hat{\mathbf{V}}^T\|_F^2, \\ & \text{subject to} \quad \mathbf{\Lambda} \in \mathcal{D}, \quad \mathbf{S}^T = \mathbf{S}, \quad \mathbf{S}_{ij} \geq 0, \quad \mathbf{S}_{ii} = 0, \\ & \quad \mathbf{S}_{ij} = \mathbf{s}_{ij}, \ (i,j) \in \Omega. \end{split}$$

► **Λ**-update:

$$\Lambda(k) := \underset{\boldsymbol{\Lambda} \in \mathcal{D}}{\operatorname{argmin}} \ \| \mathbf{S}(k) - \hat{\mathbf{V}} \boldsymbol{\Lambda} \hat{\mathbf{V}}^{\top} \|_F^2 = \operatorname{diag}(\hat{\mathbf{V}}^T \mathbf{S}(k) \hat{\mathbf{V}})$$

▶ **S**-update: Let $\mathbf{B}(k) := \hat{\mathbf{V}} \mathbf{\Lambda}(k) \hat{\mathbf{V}}^T$, then

$$\mathbf{S}_{ij}(k+1) = \left\{ egin{array}{ll} 0, & i = j \\ s_{ij}, & (i,j) \in \Omega \\ \max(0,B_{ij}(k) - \mu), & ext{otherwise} \end{array}
ight.$$

► Convex, thus block coordinate-descent converges to a global minimizer

Online eigenvector estimates

- **Q:** How can we efficiently update the sample covariance eigenvectors $\hat{\mathbf{V}}$?
- $ightharpoonup \hat{C}_{\mathbf{y}}^{(P)}$ is the sample covariance from P streaming observations

$$\hat{\mathbf{C}}_{\mathbf{y}}^{\,(P+1)} = \frac{1}{P+1} (P \hat{\mathbf{C}}_{\mathbf{y}}^{\,(P)} + \mathbf{y}^{(P+1)} \mathbf{y}^{(P+1)})$$

Online eigenvector estimates

- ightharpoonup Q: How can we efficiently update the sample covariance eigenvectors $\hat{\mathbf{V}}$?
- $ightharpoonup \hat{C}_{y}^{(P)}$ is the sample covariance from P streaming observations

$$\hat{\mathbf{C}}_{y}^{(P+1)} = \frac{1}{P+1} (P\hat{\mathbf{C}}_{y}^{(P)} + \mathbf{y}^{(P+1)}\mathbf{y}^{(P+1)})$$

- ▶ Let $\mathbf{z} = (\hat{\mathbf{V}}^{(p)})^{\top} \mathbf{y}^{(p+1)}$ and $\{d_j\}_{j=1}^N$ denote the eigenvalues of $\hat{\mathbf{C}}_{\mathbf{y}}^{(p)}$
 - \Rightarrow Eigenvalues of rank-one modification of $\hat{\mathbf{C}}_{\mathbf{y}}^{(P)}$ are the roots (γ) of

$$1 + \sum_{j=1}^{N} \frac{z_j^2}{P d_j - \gamma} = 0 \quad \text{[Bunch et al'78]}$$

 \Rightarrow Can be solved using the Newton method with $\mathcal{O}(N^2)$ complexity

Online eigenvector estimates

- **Q**: How can we efficiently update the sample covariance eigenvectors $\hat{\mathbf{V}}$?
- $ightharpoonup \hat{C}_{V}^{(P)}$ is the sample covariance from P streaming observations

$$\hat{\mathbf{C}}_{y}^{(P+1)} = \frac{1}{P+1} (P\hat{\mathbf{C}}_{y}^{(P)} + \mathbf{y}^{(P+1)}\mathbf{y}^{(P+1)})$$

- ▶ Let $\mathbf{z} = (\hat{\mathbf{V}}^{(p)})^{\top} \mathbf{y}^{(p+1)}$ and $\{d_j\}_{j=1}^N$ denote the eigenvalues of $\hat{\mathbf{C}}_{\mathbf{y}}^{(p)}$
 - \Rightarrow Eigenvalues of rank-one modification of $\hat{\mathbf{C}}_{\mathbf{y}}^{(P)}$ are the roots (γ) of

$$1 + \sum_{j=1}^{N} \frac{z_j^2}{P d_j - \gamma} = 0 \quad \text{[Bunch et al'78]}$$

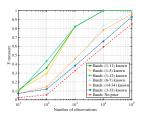
- \Rightarrow Can be solved using the Newton method with $\mathcal{O}(N^2)$ complexity
- For the updated eigenvalue γ_j , the corresponding eigenvector \mathbf{v}_j is given by

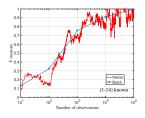
$$\mathbf{v}_j^{(p+1)} = \alpha_j \mathbf{y}^{(p+1)} \circ \mathbf{q}_j,$$

where $\mathbf{q}_j = [1/(P_{d_1} - \gamma_j), \cdots, 1/(P_{d_N} - \gamma_j)]$ and α_j is a normalizing factor

Recovery of Zachary's karate club

- ▶ Consider Zachary's karate club with N = 34 nodes
 - ▶ Diffusion filter $\mathbf{H} = \sum_{l=0}^{2} h_l \mathbf{A}^l$, $h_l \sim \mathcal{U}[0,1]$
 - ► Generate streaming signals $\{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(p)}, \mathbf{y}^{(p+1)}, \dots\}$ via $\mathbf{y}^{(i)} = \mathbf{H}\mathbf{x}^{(i)}$
 - ightharpoonup Both batch and online inference for different Ω





- **Least informative 3 edges in \Omega for recovering A**
 - ► Among the top links in terms of the edge betweenness centrality
- ▶ The online scheme attains the performance of its batch counterpart

Closing remarks

- ▶ Online topology inference from streaming diffused graph signals
 - ► Graph shift S and covariance C_y are simultaneously diagonalizable
 - ► Promote desirable properties on S via convex criteria

- Developed an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
 - \Rightarrow Updated $\hat{\mathbf{V}}$ efficiently
 - Took one or a few steps of the iterative algorithm

