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ABSTRACT
We address the problem of inferring a directed network from nodal
observations of graph signals generated by linear diffusion dynam-
ics on the sought graph. Observations are modeled as the outputs
of a linear graph filter (i.e., a polynomial on a local diffusion graph-
shift operator encoding the unknown graph topology), excited with
an ensemble of independent graph signals with arbitrarily-correlated
nodal components. In this context, we first rely on observations of
the output signals along with prior statistical information on the in-
puts to identify the diffusion filter. Such problem entails solving a
system of quadratic matrix equations, which we recast as a smooth
quadratic minimization subject to Stiefel manifold constraints. Sub-
sequent identification of the network topology given the graph filter
estimate boils down to finding a sparse and structurally admissible
shift that commutes with the given filter, thus forcing the latter to be
a polynomial in the sought graph-shift operator. Preliminary numer-
ical tests corroborating the effectiveness of the proposed algorithms
in recovering synthetic and real-world digraphs are provided.

Index Terms— Network topology inference, graph signal pro-
cessing, directed networks, network diffusion, system identification.

1. INTRODUCTION

Consider a network represented as a weighted and directed (di)graph
G, with a node set N of known cardinality N , an edge set E of or-
dered pairs of elements in N . The edge weights Aij ∈ R such
that Aij 6= 0 for all (i, j) ∈ E are collected in the (generally non-
symmetric) adjacency matrix A. As a more general algebraic de-
scriptor of network structure, one can define a graph-shift operator
(GSO) S ∈ RN×N as any matrix having the same sparsity pattern
than that of G [1]. Accordingly, S can be viewed as a local diffusion
operator. Common choices for digraphs are to set it to either A (and
its normalized counterparts) or variations of adjacency matrices [2].

Our focus in this paper is on identifying graphs that explain the
structure of a random signal. Formally, let y = [y1, ..., yN ]T ∈ RN

be a graph signal in which the ith element yi denotes the signal value
at node i of an unknown digraph G with shift operator S. Further
suppose that we are given a zero-mean signal x with covariance ma-
trix Cx = E

[
xxT

]
. We say that the sparse digraph S represents

the structure of the signal y if there exists a diffusion process in the
GSO S – formalized as a polynomial graph filter – that generates the
observed signal y from the input signal x via linear filtering, that is

y = α0

∏∞
l=1(I− αlS)x =

(∑∞
l=0 βlS

l
)
x (1)

for some set of parameters {αl}, or equivalently {βl}. While S
encodes only one-hop interactions, each successive application of
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the shift in (1) percolates x over G; see e.g. [3]. The justification
to say that S represents the structure of y is that we can think of
the edges of S as direct (one-hop) relations between the elements
of the signal. The diffusion described by (1) generates indirect re-
lations. Alternatively, one can view the input-output relationship in
(1) as encompassing all possible smooth (analytic) functions of the
sparse matrix S. Our goal is then to exploit this model to recover the
fundamental relations described by S from a set Y of independent
realizations of a random signal y along with prior knowledge of Cx.
This additional statistical information on the input is the price paid to
accommodate non-stationary processes y with respect to (possibly)
asymmetric GSOs [4–7].

Relation to prior work. Workhorse topology inference approaches
construct (mostly symmetric) graphs whose edge weights cor-
respond to nontrivial correlations between signals at incident
nodes [8, 9]. Acknowledging that the observed correlations can
be due to latent network effects, alternative statistical methods
rely on inference of partial correlations [8, Ch. 7.3.2]. Under
Gaussianity assumptions, this line of work has well-documented
connections with covariance selection [10] and sparse precision ma-
trix estimation [11–14], as well as high-dimensional sparse linear
regression [15]. Extensions to digraphs include structural equation
models (SEMs) [16–18], Granger causality [9,19], or their nonlinear
(e.g., kernelized) variants [20, 21]. Recent graph signal processing
(GSP)-based network inference frameworks postulate that the net-
work exists as a latent underlying structure, and that observations
are generated as a result of a network process defined in such a
graph [22–27]. Different from [22, 24, 28, 29] that infer structure
from signals assumed to be smooth over the sought undirected
graph, here the measurements are assumed related to the graph via
filtering. Few works have recently explored this approach by iden-
tifying a symmetric GSO given its eigenvectors, either assuming
that the input is white [25, 26] – equivalently implying y is graph
stationary [4–6]; or, colored as in the present paper [7, 30]. Here
instead, we distinctly address the general case of digraphs. Rela-
tive to [18] that relies on a single-pole graph filter [31], the filter
structure underlying (1) can be arbitrary (subsuming correlation
networks, Gaussian graphical models, and SEMs [25, Remark 2]),
but the focus here is on learning time-invariant graphs.

Paper outline and contributions. In Section 2 we formulate the
problem of identifying a GSO that explains the fundamental struc-
ture of a random signal diffused on a digraph. We advocate an in-
novative bilevel approach whereby: i) given independent output ob-
servations and prior information on the input statistics we identify
the graph filter; and ii) given the filter estimate along with structural
constraints on the GSO we recover the topology of the digraph. In
Section 3 we address the problem of identifying the diffusion filter
[cf. i)], which entails solving a system of quadratic matrix equa-
tions formed using the available information on the input along with
output signal measurements. We show that the set of feasible filters
is related to the square roots of the observations’ covariance matrix,
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and that such a set is markedly larger that its counterpart for symmet-
ric filters (Section 3.1). Building on these insights, in Section 3.2 we
recast the filter-inference problem as a smooth quadratic minimiza-
tion subject to Stiefel manifold constraints. Such non-convex prob-
lem can be tackled leveraging recent advances for orthogonality-
constrained optimization; see e.g., [32]. Subsequent identification
of a directed GSO given the diffusion filter estimate [cf. ii)] is ad-
dressed in Section 4. The focus is on finding a sparse and structurally
admissible shift that commutes with the given filter, thus forcing the
latter to be a polynomial in the GSO as in (1). Preliminary numer-
ical tests corroborate the effectiveness of the proposed approach in
recovering both synthetic and social networks are given in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

Suppose we observe realizations of a random signal y generated
through diffusion on G of an input x, namely via successive appli-
cations of a GSO S as in (1). Since the (statistical) properties of the
signal y depend on S, our goal is to use a set of observations to-
gether with available information on the excitation input to infer the
digraph topology. In other words, we aim to recover the GSO which
encodes pairwise influence between graph nodes, given observable
indirect relationships generated by a diffusion process. To formally
state the problem, we elaborate on the diffusion model in (1) as well
as on the available information from the graph signals.

Network diffusion as graph filtering. While the diffusion expres-
sions in (1) entail (possibly) infinite-degree polynomials in S ∈
RN×N , the Cayley-Hamilton theorem asserts that they are equiv-
alent to polynomials of degree smaller than N . Upon defining the
vector of coefficients h := [h0, . . . , hL−1]

T and the graph filter
H :=

∑L−1
l=0 hlS

l [1], the model in (1) can thus be rewritten as

y =
(∑L−1

l=0 hlS
l
)
x = Hx (2)

for some particular h and L ≤ N . Central to the present paper
is to note that since H is a polynomial in S, if S is diagonaliz-
able and all its eigenvalues are simple then H and S commute, i.e.,
HS = SH [33, Prop. 2.3]. We will exploit this identity in Section 4,
which can be interpreted to imply that graph filters are shift invariant.
Another upshot of the polynomial relationship is that the eigenvec-
tors of H and S coincide. Hence, while the diffusion implicit in H
obscures part of the structure of S (its eigenvalues), its eigenvectors
remain as templates of the underlying network topology [7, 25, 26].

Observations and prior information on the input signals. We ob-
serve M network processes {ym}Mm=1 on G, each one correspond-
ing to a different input random signal xm that is diffused via a com-
mon filter H. The multiplicity and statistical diversity of input pro-
cesses will be instrumental towards identifying (uniquely) the diffu-
sion filter. Let Ym := {y(p)

m }Pm
p=1 capture the observed output sig-

nal realizations associated with the mth process, and likewise let
Y :=

⋃M
m=1 Ym collect all available observations. Regarding the

mth input process, one could conceivably assume its mean vector
µx,m := E [xm], its covariance matrix Cx,m, or even realizations
of the signal {x(p)

m }Pm
p=1 are given. Henceforth the focus will be on

the most pragmatic setting whereby only second-order statistics are
available, but other scenarios will be briefly outlined in Section 3.3.

Problem statement. Given observations Y=
⋃M

m=1 Ym adhering to
the generative model (2), where a common filter H :=

∑L−1
l=0 hlS

l

diffuses M zero-mean inputs xm with known covariance matrices
Cx,m = E

[
xmxT

m

]
, m = 1, . . . ,M , find the sparsest shift S with

desirable topological properties (e.g., it is a valid adjacency matrix)
that is consistent with the available observations.

Motivated by the discussion following (2), our bilevel network
topology inference approach is to: i) first use realizations of ob-
served signals in Y together with side information on the excita-
tion inputs {xm}Mm=1 to identify the diffusion filter H; and ii) then
use the estimated filter along with prior information on the network
topology to infer the GSO S. Step i) is addressed in Section 3, while
ii) is discussed in Section 4.

3. ASYMMETRIC DIFFUSION FILTER IDENTIFICATION

In a number of applications, realizations of the excitation input xm

may be challenging to acquire, but information about the statistical
description of xm could still be available. As in our statement of the
problem, assume for now that the excitation inputs are zero mean and
their covariance matrices Cx,m are known. As explained in Section
2, suppose also that for each m = 1, . . . ,M we acquire a set of
observations Ym = {y(p)

m }Pm
p=1, which are then used to estimate the

output covariance Cy,m = E[ymyT
m] via sample averaging, that is

Ĉy,m =
1

Pm

Pm∑
p=1

y(p)
m (y(p)

m )T . (3)

Since under (2) the ensemble output covariance is given by Cy,m =

HCx,mHT , the aim is to identify a filter H such that matrices Ĉy,m

and HCx,mHT are close in some sense.

3.1. Solving matrix quadratic equations for filter identification

Assuming for now perfect knowledge of the signal covariances, the
above rationale suggests studying the solutions of the following sys-
tem of matrix quadratic equations

Cy,m = HCx,mHT , m = 1, . . . ,M (4)

for real-valued and possibly asymmetric H. To gain insights on the
solutions to (4), consider first the case where M = 1 and henceforth
drop the subindex m to focus on the square roots of Cy = HCxH

T .
To that end, recall first that the principal square root of Cy is

the only symmetric and positive semidefinite (PSD) matrix C
1/2
y

which satisfies Cy = C
1/2
y C

1/2
y . Such a matrix is given by C

1/2
y =

VyΛ
1/2
y VT

y , where Vy are the eigenvectors of Cy and Λ
1/2
y stands

for a diagonal matrix with the square roots of the (non-negative)
eigenvalues of Cy. With U denoting an orthogonal matrix (such
that UUT = I), one can show that any square matrix Hx such that
Cy = HxH

T
x is of the form Hx = C

1/2
y U. This observation can

be leveraged to establish the following result, which characterizes
the solution set of each individual equation in (4).

Lemma 1 If Cx,m and Cy,m are full rank, the set Hm containing
all the (possibly asymmetric) matrices H that solve (4) for a partic-
ular m is given by

Hm = {H |H=C1/2
y,mUC−1/2

x,m and UUT = I}. (5)

A simple substitution suffices to show that every H of the form in
(5) solves the corresponding mth equation in (4). Conversely, given
an H that solves (4), form the matrix U = C

−1/2
y,m HC

1/2
x,m and ob-

serve that if U is orthogonal, then H ∈ Hm. Orthogonality of U
follows since UUT = C

−1/2
y,m HCx,mHTC

−1/2
y,m = I, where the

last equality comes from the fact that H solves (4).
If the GSO S (and hence the filter H) is symmetric, then U

must be of the form U = diag(b), with b = {−1, 1}N . This
additional structure reduces considerably the size of the feasible set
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in (5); see [7] for details. Still, even in this case it is apparent that for
M = 1H is non-identifiable (up to an unavoidable sign ambiguity).

For the general case of M > 1, the set of solutions to the sys-
tem of quadratic equations (4) is just given by the intersection of (5)
for all diffusion processes, i.e., H1:M :=

⋂M
m=1 Hm. Studying the

structure of H1:M to obtain identifiability conditions for (4) is of in-
terest, but out of the scope of this short paper. The role of M on the
identification of H is briefly discussed at the end on the next section.

3.2. Orthogonality-constrained least-squares estimator

In practice, only empirical covariances (3) are available and the
equalities in (4) must be relaxed. Given estimates {Ĉy,m}Mm=1 ob-
tained with enough samples to ensure full-rankness, our filter identi-
fication approach is to rely on (5) to solve the manifold-constrained
least-squares (LS) problem

min
{Um}Mm=1

∑
m,m′

‖Ĉ1/2
y,mUmC−1/2

x,m − Ĉ
1/2

y,m′Um′C
−1/2

x,m′ ‖2F (6)

s. to Um ∈ UN , m = 1, . . . ,M,

where UN denotes the Stiefel manifold of N × N real orthogonal
matrices. Note that both terms within the Frobenius norm in (6)
should equal H in a noiseless setting. Thus, (6) minimizes this dis-
crepancy across the M processes considered. Accordingly, given a
solution {Ûm}Mm=1 of (6), the diffusion filter H can be estimated as

Ĥ =
1

M

M∑
m=1

Ĉ1/2
y,mÛmC−1/2

x,m . (7)

Even though the objective in (6) is convex in the unknowns {Um}Mm=1,
the constraint set UN is not. For the numerical tests in Section 5, we
solve (6) using a provably-convergent feasible method for optimiza-
tion of differentiable functions over the Stiefel manifold [32].

As the number M of observed processes increases, recoverabil-
ity of (6) improves. Notice that in the absence of noise we would be
effectively intersecting more sets Hm [cf. (5)], thus necessarily aid-
ing identifiability, which is necessary for recoverability. Intuitively,
each m provides a new set of observations that reduces the origi-
nal N2 degrees of freedom in H, to N(N − 1)/2 in the manifold-
constrained Um. As a result, assuming that the input covariances
Cx,m provide sufficiently rich information, the problem could be-
come identifiable even for M = 2. Simulations in Section 5 assess
recovery as M increases.

3.3. Combining quadratic and linear observations

There may be scenarios where the system of matrix quadratic equa-
tions in (4) can be augmented with some matrix linear equations.
That is the case if both input covariances and pairs of input-output
realizations {ym,xm}Mm=1 are available. It is also relevant when
the inputs are not zero-mean but both their first and second-order
moments are known. Defining µ̂y,m := (1/Pm)

∑Pm
p=1 y

(p)
m and

recalling that µx,m=E[xm], a natural criterion is

min
H,{Um}Mm=1

∑
m

‖H− Ĉ1/2
y,mUmC−1/2

x,m ‖2F + β‖µ̂y,m−Hµx,m‖22

s. to Um ∈ UN , m = 1, . . . ,M, (8)

where β is a tuning constant. The cost in (8) is again smooth, and the
only source of non-convexity is the manifold constraint. Note also
that if β = 0 the optimization (8) serves as an alternative formulation
to (6), with the additional variable H.

By viewing the new terms in the objective of (8) as a Lagrangian
penalty, one would expect these additional constraints relative to (6)
would result in improved recovery performance. Equally important,
availability of linear observations will also aid identifiability in the
noise-free case. In fact, one can show that if the number of linear
equations grows large and we have that rank([µx,1, ...,µx,M ]) ≥
N , then the problem becomes identifiable (see, [30] for a related
argument for symmetric filters).

4. DIGRAPH TOPOLOGY INFERENCE

Given the graph filter H, our approach to infer the topology of the
underlying graph is to find a GSO S that satisfies certain desirable
topological properties and is compatible with H. Focusing on recov-
ery of the sparsest shift operator (i.e., the graph that minimizes the
number of direct interactions among nodes), one can solve

Ŝ := argmin
S

‖S‖0, s. to S ∈ S, HS = SH, (9)

where ‖S‖0 counts the number of non-zero entries of S, S is a con-
vex set specifying the type of GSO we want to identify [25], and
the constraint HS = SH forces the filter H to be a polynomial
in S; see [23, 34] and the discussion following (2). Imposing this
last constraint offers an important departure from the (undirected)
graph learning algorithms in [25, 26, 30]. These approaches first es-
timate the eigenvectors of H, and then constrain S to be diagonal-
ized by those eigenvectors in a convex problem to recover the un-
known eigenvalues. While the approaches in [25,26,30] search over
a lower-dimensional space, the formulation (9) avoids computing an
eigendecomposition and, more importantly, solving a problem over
complex-valued variables. This was not an issue in [25,26,30], since
the focus therein was on symmetric shifts with real-valued spectrum.

The sparsity-inducing `0 pseudo-norm (or its convex `1-norm
surrogate) in the objective of (9) can be replaced with a generic cost
f(S). Possible choices for such a cost include setting f(S)=‖S‖F ,
which finds a GSO minimizing the total energy stored in the weights
of the edges; or, f(S)=‖S‖∞, which yields GSOs for graphs with
uniformly low edge weights [25]. The constraint S ∈ S in (9) in-
corporates a priori knowledge about S. If we let S = A represent
the adjacency matrix of a digraph with non-negative weights and
no self-loops, we can explicitly write the set of feasible shifts as
S :={S |Sij ≥ 0, Sii = 0,

∑
j Sj1=1}. The first condition in S

encodes the non-negativity of the weights whereas the second condi-
tion encodes the absence of self-loops, thus, each diagonal entry of
S must be null. The last condition fixes the scale of the admissible
graphs by setting the weighted in-degree of the first node to 1, and
rules out the trivial solution S= 0. Other GSOs can be accommo-
dated in our framework with minor adaptations to S; see [25].
Robust formulations. While (9) assumes perfect information on
H, the formulation should be modified to account for imperfect es-
timates Ĥ [e.g., obtained via (7)] and model mismatches. This en-
tails relaxing the linear matrix equality constraint in (9), with some
bounded measure of the residual error ĤS − SĤ. Naturally, the
specific form of the error measure should be selected based on the
source of imperfections. For the numerical tests in Section 5, we
adopt a Frobenius-norm error measure and solve the convex `1-norm
minimization problem

Ŝ := argmin
S

‖S‖1, s. to S ∈ S, ‖ĤS− SĤ‖F ≤ ε, (10)

which focuses on the similarities between the entries of ĤS and SĤ.
The bound ε can also be selected based on the priori knowledge we
may have on the effectiveness of the prior filter identification step.
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Fig. 1: (a) Recovery error as a function of the number of covariance pairs (M ) and edge formation probabilities (p) in Erdős-Rényi digraphs.
(b) Error in recovering a social network as a function of the number of covariance pairs (M ) of signals generated according to FIR and IIR
diffusion filters. (c) True adjacency matrix (left) and corresponding estimate (right) attained from M = 5 covariance pairs, where each output
covariance is estimated from P = 104 signals.

Stationary observations. To have a better understanding of the pro-
posed approach, it is instructive to compare our scenario with the
one in [25], where the input is white and the shift is undirected. In
the context of GSP, those two assumptions imply that the output y
is graph stationary in S [4–6]. Regardless of the terminology, for
that case it follows from (2) that Cy = E[yyT ] = HE[xxT ]HT =
HHT = H2. Such identity reveals that the output covariance is
itself a polynomial on the GSO. Hence, there is no need to estimate
the filter H as in Section 3, since one can directly solve (9) using Cy

(or Ĉy) in lieu of H [25].

5. PRELIMINARY NUMERICAL TESTS

To gain insights on the behavior of the proposed network topology
inference algorithm, here we evaluate the recovery performance on
some synthetic and real-world digraphs. Throughout, we let S = A
be the adjacency matrix of the digraph under study. Moreover, we
define the FIR and IIR graph filters H1 =

∑2
l=0 hlS

l and H2 =

(I + αS)−1, respectively, where the coefficients {hl} and α are
drawn uniformly on [0, 1]. Finally, denoting by Ŝ the GSO estimate,
we characterize the recovery error as ‖Ŝ− S‖F /‖S‖F .
Perfect knowledge of second-order statistics. Consider Erdős-Rényi
random digraphs with N = 20 nodes, where edges are formed
independently with probability p. We generate M random input-
output covariance pairs {Cx,m,Cy,m}Mm=1, where: i) the input
covariances were generated as Cx,m = BmBT

m, with the entries
of Bm drawn independently from a standard normal distribution;
and ii) the corresponding output covariances were computed as
Cy,m = H1Cx,mHT

1 [cf. (4)]. To recover the GSO, we first esti-
mate the FIR filter H1 by solving (6) using the algorithm in [32].
We then use Ĥ1 in (10) with ε = 10−3 to obtain Ŝ; the convex
problem (10) is solved with CVX [35]. In Fig. 1(a) we plot the
GSO recovery error as a function of M and p averaged over 10
realizations. First, notice that as M increases, the recovery error
of the proposed method decreases monotonically, due to improved
filter identification [cf. (6)]. Second, for smaller p and hence sparser
digraphs, we can better recover the underlying network topology by
solving the `1-norm minimization problem (10).
Imperfect covariance information. We consider the social network
G of N = 32 students in a class at the University of Ljubljana1,
where directed edges between students represent perceived friend-
ships. More precisely, students were asked with whom they would
like to share seats in a bus so that an edge from node i to j exists
if student i selected student j in the questionnaire. A signal x in
this graph can be regarded as a unidimensional opinion of each stu-

1http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students

dent regarding a specific topic and the filtering operators H1 and H2

represent different opinion dynamics in the network. Our goal is to
recover S – hence, the social structure of the students – from the ob-
servations of opinion profiles. We consider M different processes in
the graph – corresponding, e.g., to opinions on M different topics –
and assume that an opinion profile ym is generated by the diffusion
through the network of an initial signal xm. More precisely, for each
topic m = 1, . . . ,M , we model xm as a zero-mean Gaussian ran-
dom vector with known covariance Cx,m generated as in the previ-
ous experiment. We then observe a set {y(p)

m }Pp=1 of opinion profiles
generated from different sources {x(p)

m }Pp=1 diffused either through
H1 or H2. From these P opinion profiles we estimate Ĉy,m as in
(3), and identify the diffusion filter by solving (6). Lastly, we use the
estimated Ĥ1 or Ĥ2 to solve (10) and obtain our GSO estimate Ŝ.

In Fig. 1(b) we plot the shift recovery error averaged over 10 re-
alizations as a function of the number of covariance pairs M for two
types of filters and for sufficiently large P = 106. As expected, the
estimate Ŝ becomes more reliable for larger M as argued following
(7). Moreover, notice that performance when considering the IIR fil-
ter H2 is consistently better than for the FIR filter H1. Finally, we
study the case of M = 5 processes filtered by H1 where the output
covariances are estimated by observing P = 104 signals. Fig. 1-(c)
depicts the heat maps of the ground-truth (left) and inferred (right)
adjacency matrices. Although the procedure results in a modestly
high recovery error (> 0.2), it still reveals the underlying support of
A with reasonable accuracy.

6. CONCLUSIONS

We studied the problem of inferring the topology of a digraph from
observations of signals diffusing on the network. Modeling the map-
ping between the (arbitrarily correlated) excitation inputs and the
observed outputs as a polynomial graph filter, enabled a two-step
topology inference approach whereby: i) we first use (statistical) in-
formation on the inputs and outputs to infer the said diffusion filter;
and ii) we then combine the filter estimate along with prior struc-
tural information on the digraph to recover the network topology.
For the first step, the focus was on the most pragmatic case where
only second-order statistical information on the inputs were avail-
able. While such a problem can be naturally formulated as a non-
convex fourth order optimization, we recast it as a smooth quadratic
minimization subject to Stiefel manifold constraints. Modifications
to handle linear observations and their effect on identifiability and
recovery performance were briefly discussed as well. Regarding the
second step, the focus was on finding the sparsest graph-shift (dif-
fusing) operator compatible with the estimated filter, namely that
both operators commute. The overall network topology inference
pipeline was evaluated on synthetic and social networks.
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