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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Desiderata: Process, analyze and learn from network data [Kolaczyk09]

I Network as graph G : encode pairwise relationships

I Sometimes both G and data at the nodes are available

⇒ Leverage G to process network data ⇒ Graph Signal Processing

I Sometimes we have access to network data but not to G itself

⇒ Leverage the relation between them to infer G from the data
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Graph signal processing: Notation

I Graph G with N nodes and adjacency A

⇒ Aij = Proximity between i and j

I Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

I Associated with G is the graph-shift operator S = VΛV−1 ∈ RN×N

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (local structure in G )

⇒ Ex: A and Laplacian L = D− A matrices

I Graph filters → Matrix polynomials: H =
∑N−1

l=0 hlSl = Vdiag(h̃)V−1

I Graph Signal Processing → Exploit structure encoded in S to process x

I Take the reverse path. How to use GSP to infer the graph topology?
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Topology inference: Motivation and context

I Network topology inference from nodal observations [Kolaczyk09]
I Partial correlations and conditional dependence [Dempster74]
I Sparsity [Friedman07] and consistency [Meinshausen06]
I [Banerjee08], [Lake10], [Slawski15], [Karanikolas16]

I Key in neuroscience [Sporns10]

⇒ Functional net inferred from activity

I Noteworthy GSP-based approaches
I Gaussian graphical models [Egilmez16]
I Smooth signals [Dong15], [Kalofolias16]
I Stationary signals [Pasdeloup15], [Segarra16]
I Directed graphs [Mei15], [Shen16]
I Low-rank excitation [Wai18]

I Contribution: Inference for directed networks from diffused signals
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Generating structure of a diffusion process

I Signal y is the response of a linear network diffusion process to an input x

y = α0

∞∏
l=1

(I− αlS)x =
∞∑
l=0

βlS
lx

⇒ Structure of y depends on structure of x and S

I Cayley-Hamilton asserts we can write diffusion as

y =

( N−1∑
l=0

hlS
l

)
x := Hx

⇒ y is the output of a GF H ⇒ Use this and info on (y, x) to find S

⇒ Key property: H is diagonalized by the eigenvectors of S

I GF ≡ linear maps which are analytic functions of the sparse matrix S

Ex.: S, S−1, (I− S)−1, (I− αS)−2, (I− S− S2)−1, (I− βS)(I− αS)−1
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Problem formulation

I We have access to M diffusion processes

ym =

( L−1∑
l=0

hlS
l

)
xm := Hxm

I For each process, we gather the realizations Ym :={y(p)m }Pm
p=1

⇒ Every realization corresponds to an independent input x
(p)
m

I We do not have access to L, hl , or the inputs

⇒ We do know that inputs are zero mean with covariance Cx,m

Problem: Given observations Y =
⋃M

m=1 Ym and the input covari-
ances Cx,m, find sparsest (asymmetric) S that is consistent with
the observations
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Blueprint of our approach

System'
Iden+fica+on'

GSO'
Inference'

Y
{C

x,m

}
Ŝ

Ĥ

Sparsity'and'
GSO'feasibility'
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A first pass at filter ID

I The covariance matrix of the output process ym is

Cy,m = E
[
Hxm

(
Hxm

)T ]
= HE

[
xmx

T
m

]
HT = HCx,mH

T

I Each obs. pair Cy,m = HCx,mHT gives rise to a set of potential solutions

⇒ Intersection smaller (unique) as M ↑, try to solve

argmin
HL,HR∈MN

M∑
m=1

||Cy,m −HLCx,mHR
T ||2F s. to HL = HR

⇒ Variables of size N2, smarter way to formulate the recovery?

⇒ Parametrize the set of feasible solutions
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Filter ID for directed networks

I For each m, we have a matrix equation of the form

Cy,m = HCx,mH
T (1)

If Cx,m and Cy,m are full rank, the set Hm containing all the (possibly
asymmetric) matrices H that solve (1) for a particular m is given by

Hm = {H |H=C1/2
y,mUC−1/2

x,m and UUT = I}.

I Optimization over unitary matrices

⇒ N(N − 1)/2 degrees of freedom in lieu of N2

⇒ Each m kills N(N + 1)/2 degrees of freedom ⇒ M = 2 may suffice

⇒ Non convex, but tailored algorithms are available

I Solving system id (non-symm. square roots) by leveraging structure
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Manopt for non-symmetric graph-filter id

I Original formulation:

argmin
HL,HR

M∑
m=1

||Ĉy,m −HLCx,mHR
T ||2F s. to HL = HR (P1)

I Leveraging structure: optimize over Um ∈ UN

argmin
H,{Um}M

m=1

M∑
m=1

‖H− Ĉy,mUmC
−1/2
x,m ‖2F (P2)

⇒ Approach: projected gradient descent (manopt)

⇒ Sensitive to initialization

Enhanced algorithm: Smart initialization + Projected gradient

(s1) Use (P1) to find Ĥ
(0)
L initial estimate of H

(s2) Use the Ĥ
(0)
L generated by (s1) as input for (P2) to obtain Ĥ
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We completed our first step

System'
Iden+fica+on'

GSO'
Inference'

Y
{C

x,m

}
Ŝ

Ĥ

Sparsity'and'
GSO'feasibility'
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GSO inference

I Finding S from H = h0I+ h1S+ h2S2 non-convex but...

⇒ S and H are simultaneously diagonalizable

I We can use extra knowledge/assumptions to choose one graph

⇒ Of all graphs, select one that sparsest one

S∗ := argmin
S

‖S‖0 s. to HS = SH, S ∈ S

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}

I In practice we solve the robust convex relaxation

S∗ := argmin
S

‖S‖1 s. to ‖ĤS− SĤ‖F ≤ ε, S ∈ S
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Simulations: Perfect covariances

I Consider Erdős-Rényi digraphs with 20 nodes and link probability p

⇒ Generate covariances as Cx,m = BmBT
m, with Bm normal

⇒ Diffusing filters: FIR with L = 3

I Recovery for different M and p averaged for 10 graphs

⇒ Recovery increases with M

⇒ For high p fails oftentimes due to sparse recovery (Step 2)
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Simulations: Imperfect covariances

I Social net. G of N = 32 students in a class at the University of Ljubljana

⇒ Directed edges between students represent perceived friendships

⇒ Signals generated synthetically: FIR and IIR
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I Recov. over 10 realizations as a function of M and P = 106 (left)

I M = 5, P = 104 filtered by FIR (right)
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Conclusions

System'
Iden+fica+on'

GSO'
Inference'

Y
{C

x,m

}
Ŝ

Ĥ

Sparsity'and'
GSO'feasibility'

8'Compute'sample'covariance'
8'ADMM'for'ini+al'solu+on'
8'Itera+ve'projected'gradient'

8'Convex'relaxa+on'
8'Robust'op+miza+on'

I Guarantees for system ID (manifold optimization)

I Guarantees for GSO inference

I Incorporation of priors on the filter and the GSO
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GlobalSIP’18 Symposium on GSP

Symposium on Graph Signal Processing

Topics of interest

· Graph-signal transforms and filters

· Distributed and non-linear graph SP

· Statistical graph SP

· Prediction and learning for graphs

· Network topology inference

· Recovery of sampled graph signals

· Control of network processes

· Signals in high-order and multiplex graphs

· Neural networks for graph data

· Topological data analysis

· Graph-based image and video processing

· Communications, sensor and power networks

· Neuroscience and other medical fields

· Web, economic and social networks

Paper submission due: June 17, 2018

2018 6th IEEE Global 
Conference on Signal and 
Information Processing 

November 26-28, 2018 
Anaheim, California, USA 
http://2018.ieeeglobalsip.org/ 

Organizers:

Gonzalo Mateos (Univ. of Rochester)

Santiago Segarra (MIT)

Sundeep Chepuri (TU Delft)
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