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ABSTRACT

We address the problem of online topology inference from stream-
ing nodal observations of graph signals generated by linear diffusion
dynamics on the sought graph. To that end, we leverage the station-
arity of the signals and use the so-called graph-shift operator (GSO)
as a matrix representation of the graph. Under this model, estimated
covariance eigenvectors obtained from streaming independent graph
signals diffused on the sought network are a valid estimator of the
GSO’s spectral templates. We develop an ADMM algorithm to find
a sparse and structurally admissible GSO given the eigenvectors es-
timate. Then, we propose an online scheme that upon sensing new
diffused observations, efficiently updates eigenvectors (thus makes
more accurate on expectation) and performs only one or a few it-
erations of the mentioned ADMM until the new data is observed.
Numerical tests illustrate the effectiveness of the proposed topol-
ogy inference approach in recovering large scale graphs, adapting
to streaming information, and accommodating changes in the sought
network.

Index Terms— Network topology inference, graph signal pro-
cessing, diffusion process, online algorithm.

1. INTRODUCTION
Network data supported on the vertices of a graph G are becoming
ubiquitous across disciplines spanning the bio-behavioral sciences
and engineering. Such data, in a snapshot, can be thought of as graph
signals represented by vectors indexed by the nodes of G. In this
context, the goal of graph signal processing (GSP) is to broaden the
scope of traditional signal processing by developing algorithms that
fruitfully exploit the relational structure of said signals [1]. How-
ever, the underlying graph is not readily available in many cases and
the task would be to use observations of graph signals to learn the
underlying network structure or a meaningful network model that fa-
cilitates signal representations and prediction tasks; see [2, 3] for a
tutorial treatment.

To present the problem at hand, consider a weighted undirected
graph G, consisting of a node setN of cardinalityN , and symmetric
adjacency matrix A with entry Aij = Aji 6= 0 denoting the edge
weight between node i and node j. Also, we assume that G con-
tains no self-loop; i.e., Aii = 0. Generally speaking, we can define
a generic graph-shift operator (GSO) S ∈ RN×N as any matrix
capturing the same sparsity pattern as A on its non-diagonal en-
tries [4]. Common choices for S are the adjacency A, the Laplacian
L := diag(A1)−A, or their normalized counterparts [5].

In this paper, we present an online framework that estimates
sparse graphs that explain the structure of streaming random sig-
nals. Particularly, in a snapshot, let y = [y1, ..., yN ]T ∈ RN be
a zero-mean graph signal in which the ith element yi denotes the
signal value at node i of an unknown graph G with shift operator S.
Further consider a zero-mean white signal x with covariance matrix
Cx = I (identity matrix). We state that the graph S represents the

Work in this paper was supported by the NSF award CCF-1750428.

structure of the signal y ∈ RN if there exists a diffusion process in
the GSO S that produces the signal y from the input signal x, that is

y = α0

∏∞
l=1(I− αlS)x =

∑∞
l=0 βlS

l x. (1)

Under the assumption that Cx = I, (1) is equivalent to the station-
arity of y in S; see e.g., [6, Def. 1], [7], [8]. The justification to
say that S represents the structure of y is that we can think of the
edges of G, i.e. the non-zero entries in S, as direct (one-hop) rela-
tions between the elements of the signal. The diffusion described by
(1) modifies the original correlation by inducing indirect (multi-hop)
relations. In this context, our goal is to recover the fundamental re-
lations dictated by S from a set of independent samples of streaming
stationary random signals Y :={y(1), · · · , y(p), y(p+1), · · · } that
each of them adhere to linear diffusion dynamics as in (1). Assuming
that time differences of the signals arrival is low relative to the time
of fully running the topology learning algorithm, our goal is to de-
rive simpler updates for each time step that can be used to estimate
the GSO in an online fashion. Due to the stationarity assumption,
true underlying covariance matrix of the observations should share
the same eigenvectors as those of the sought GSO as elaborated in
Section 2. Leveraging this result, our online inference entails two
steps, where we: (i) update eigenvectors efficiently using methods
described in Section 4; and (ii) take one or a few steps of a learning
algorithm developed in Section 3. We further corroborate the effec-
tiveness of the proposed approaches in offline batch setup as well as
online tracking of the network in Section 5.
Relation to prior work. Workhorse topology inference approaches
construct graphs whose edge weights correspond to nontrivial cor-
relations between signals at incident nodes [9, 10]. Acknowledg-
ing that the observed correlations can be due to latent network ef-
fects, alternative statistical methods rely on inference of partial cor-
relations [9, Ch. 7.3.2]. Under Gaussianity assumptions, this line
of work has well-documented connections with covariance selec-
tion [11] and sparse precision matrix estimation [12–15], as well
as high-dimensional sparse linear regression [16]. In the context of
topology inference for undirected graphs, GSP-based frameworks
postulate that the network exists as a latent underlying structure, and
that observations are generated as a result of a network process de-
fined in such a graph [17–22]. Different from [17, 19, 23, 24] that
infer structure from signals assumed to be smooth over the sought
undirected graph, here the measurements are assumed related to the
graph via filtering. Few works have recently explored this approach
by identifying a symmetric GSO given its eigenvectors, either as-
suming that the input is white [20, 21] – equivalently implying y is
graph stationary [6,25,26]; or, colored [27,28]. Here we address on-
line topology inference from streaming stationary diffused signals;
see e.g. [29] where instead the samples are from a graph process
evolving according to a differential equation.

2. PROBLEM STATEMENT
To formally state the online topology inference problem, we consider
the symmetric GSO S associated with the undirected graph G. Upon
defining the vector of coefficients h := [h0, . . . , hL−1]T ∈ RL and
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the symmetric graph filter H :=
∑L−1
l=0 hlS

l ∈ RN×N [4], Cayley-
Hamilton theorem asserts that the model in (1) boils down to

y =
(∑L−1

l=0 hlS
l
)
x = Hx, (2)

for some particular h and L ≤ N . It is worth mentioning that L
depends on the dependency range of the diffusion on the neighhbors.

Consider that streaming observations in Y correspond to inde-
pendent realizations of a process adhering to the generative model in
(2). The goal is to use Y to estimate the spectral templates V of the
filter H that governs the diffusion in (2).

To gain insights, we first start with the offline setting, where x is
white so that Cx = I [20]. Then the covariance matrix of y = Hx
is

Cy := E[yyT ] = E[Hx(Hx)T ] = HE[xxT ]H = H2. (3)

In obtaining the third equality we used that H is symmetric, be-
cause it is a polynomial in the symmetric GSO S. Using the spec-
tral decomposition of S = VΛVT to express the filter as H =∑L−1
l=0 hl(VΛVT )l = V(

∑L−1
l=0 hlΛ

l)VT , we can diagonalize
the covariance matrix as

Cy = V
(∑L−1

l=0 hlΛ
l
)2

VT . (4)

Such a covariance expression is the requirement for a graph signal to
be stationary in S [6, Def. 2.b]. Remarkably, if y is graph stationary,
or equivalently if x is white, (4) shows that the eigenvectors of the
shift S, the filter H, and the covariance Cy are all the same. As a
result, to estimate V from the observations {y(p)}Pp=1 it suffices to
form the sample covariance Ĉy = 1

P

∑P
p=1 y(p)(y(p))T and use its

eigenvectors as spectral templates to recover S [20,21]. Note that in
estimating Cy, we assume that the observed signals are zero-mean
without loss of generality, otherwise we can subtract the mean from
the signals.

Given estimates V̂ of the covariance eigenvectors, recovery of
S amounts to selecting its eigenvalues Λ and to that end we assume
that the shift of interest is sparse. At the same time, we should ac-
count for the discrepancies between V̂ and the actual eigenvectors
of S, due to finite sample size constraints and unavoidable errors in
estimating the filter. Accordingly, we build on [20] and seek for the
shift operator S that: (a) is sparse, meaning that few edge weights
are non-zero; (b) belongs to a convex set S that specifies the desired
type of shift operator (e.g., the adjacency A or Laplacian L); and (c)
is close to V̂ΛV̂T in the Frobenius-norm sense. One can thus solve

S∗ := argmin
Λ,S∈S

‖S‖1, s. to ‖S− V̂ΛV̂T ‖F ≤ ε, (5)

which is a convex optimization problem for the choice of a sparsity-
promoting `1-norm criterion, and ε is a tuning parameter chosen
based on a priori information on the imperfections.

The constraint S ∈ S in (5) incorporates a priori knowledge
about S. If we let S = A represent the adjacency matrix of an
undirected graph with non-negative weights and no self-loops, we
can explicitly write S = SA as follows

SA :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑
j Sj1 =1}. (6)

The first condition in SA encodes the non-negativity of the weights
whereas the second condition incorporates that G is undirected,
hence, S must belong to the setMN of real and symmetric N×N
matrices. The third condition encodes the absence of self-loops,
thus, each diagonal entry of S must be null. Finally, the last condi-
tion fixes the scale of the admissible graphs by setting the weighted
degree of the first node to 1, and rules out the trivial solution S=0.
Other GSOs (e.g., the Laplacian L and its normalized variants) can
be accommodated via minor modifications to S; see [20], but in this
paper we focus on recovering adjacency matrices.

Going back to the online setting with the streaming stationary
signals Y ={y(1), · · · , y(p), y(p+1), · · · } arriving in a timely man-
ner, the goal is to update the GSO in a computationally efficient way
at each time step. We assume that in the online setting the time dif-
ferences between signals arrival is much smaller than updating the
GSO by eigendecomposition of updated Ĉy and completely solving
(5) using off-the-shelf algorithms. Then our idea is to only take one
or a few steps of an iterative algorithm for solving (5) upon sens-
ing new diffused output signals until new signals are observed. In
particular, upon arrival of new output signals, we first update the co-
variance Ĉy using a weighted re-averaging or resort to a cheaper ap-
proach to directly update the covariance eigenvectors V̂ using rank-1
perturbations of Ĉy; see Section 4. Then, using the updated eigen-
vectors V̂, we take one or more iterations of the algorithm until we
sense new outputs. In the sequel, we first derive an iterative algo-
rithm in the offline batch setting to deal with (5) and then utilize it
for the online setting.

3. TOPOLOGY INFERENCE VIA ADMM
As mentioned in the preceding section, in order to identify the under-
lying structure of the network, i.e. finding S and its eigenvalues Λ,
one needs to solve the optimization problem (5), which can equiva-
lently be written as

min
S,Λ

‖S− V̂ΛV̂>‖2F + λ‖S‖1 s.t. S ∈ SA, (7)

where λ > 0 is an appropriately chosen regularization parameter.
In this section we derive an Alternating Direction Method of Multi-
pliers (ADMM) algorithm to solve (7). The algorithm (summarized
as Algorithm 1) entails a block-coordinate descent procedure along
with dual variable updates. Notice that since the problem in (7) is
convex, this scheme will converge to a global minimizer [30].

To reformulate (7) in an amenable form for ADMM, define con-
vex sets C1 = {M|M = M>, diag(M) = 0} and C2 = {M|M ≥
0,
∑N
i=1M1i = 1} such that SA = C1 ∩ C2, introduce an auxiliary

matrix D, and consider the optimization
min

S,Λ,D
‖S− V̂ΛV̂>‖2F + λ‖S‖1

s.t. D ∈ C1 ∩ C2, S−D = 0,
(8)

which is equivalent to the optimization problem (7). Form the aug-
mented Lagrangian of (8) to obtain
Lρ1(S,D,U1,Λ) = ‖S− V̂ΛV̂>‖2F + λ‖S‖1

+
ρ1
2
‖S−D + U1‖2F ,

(9)

where ρ1 > 0 and U1 are the so-called penalty parameter and
scaled dual variable, respectively. At the kth iteration, let B(k) =

V̂Λ(k)V̂>. Then the ADMM consists of the following iterative
steps to optimize (8):
Step 1. S(k+1) = argminS Lρ1(S,D(k),U

(k)
1 ,Λ(k)), which has a

closed-form solution that can be expressed as

S(k+1) = T λ
2+ρ1

(
B(k) + ρ1

2
(D(k) −U

(k)
1 )

1 + ρ1
2

), (10)

where Tη(x) = (|x| − η)+sgn(x) is the so-called soft-thresholding
operator that acts on each element of a given matrix.
Step 2. D(k+1) = argminD∈C1∩C2 Lρ1(S(k+1),D,U

(k)
1 ,Λ(k)).

To update D(k+1) one needs to solve a constrained convex pro-
gram. However, since projection onto C1∩C2 is not straightforward,
we propose establishing an inner ADMM. More specifically, con-
sider the optimization problem

min
E,Z

‖E− (S(k+1) + U
(k)
1 )‖2F + g1(E) + g2(Z)

s.t. E− Z = 0,
(11)
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Algorithm 1 Topology inference using ADMM

1: Input: estimated covariance eigenvectors V̂, penalty parameter
ρ1, regularization parameter λ, number of iterations T1

2: Initialize: Λ(0) = diag(1), D(0) = 0, U
(0)
1 = 0.

3: for k = 0, . . . , T1 − 1

4: B(k) = V̂Λ(k)V̂>

5: S(k+1) = T λ
2+ρ1

(
B(k)+

ρ1
2

(D(k)−U
(k)
1 )

1+
ρ1
2

)

6: Update D(k+1) using Algorithm 2
7: Λ(k+1) = diag(V̂>S(k+1)V̂)
8: U

(k+1)
1 = U

(k)
1 + S(k+1) −D(k+1)

9: end for
10: return S(T1) and Λ(T1)

where g1(.) and g2(.) are indicator functions associated with convex
sets C1 and C2, respectively. The indicator function (e.g., g1(.)) is
zero if its input belongs to the corresponding set (e.g., C1), and is
+∞, otherwise.

Essentially in (11) we attempt to project S(k+1) + U
(k)
1 onto

the intersection of C1 and C2. We propose to solve (11) iteratively
using an ADMM with T2 number of iterations in order to find the
update D(k+1) = E(T2). Consider the augmented Lagrangian of
(11) for ρ2 > 0 and U2 as the penalty parameter and the scaled dual
variable for the inner ADMM, respectively. Following the ADMM
procedure, the update rules for updating E, Z, and U2 are tabulated
under Algorithm 2 which entails two projection operators. The first
one denoted byP1(.) is the projection onto the convex setC1 defined
as

P1(M) =
M + M>

2
− diag(M). (12)

The second projection operator,P2(.), is the projection onto the con-
vex set C2 and acts an each row of a given matrix. Denoting the row
i of Ω (M) as ωi (mi), Ω := P2(M) has the entries of the form Ω11 := 0

ωi := max(mi,0N ) i 6= 1
[Ωi2, . . . ,ΩiN ] :=4N−1([Mi2, . . . ,MiN ]) i = 1,

(13)

where 0N is the N -dimensional vector of zeros, max(.) is element-
wise maximum, and 4N−1(.) is projection onto the N − 1 dimen-
sional probability simplex which can be efficiently computed by the
method in [31].

Algorithm 2 The Inner ADMM to update D(k+1)

1: Input: penalty parameter ρ2, number of iterations T2.
2: Initialize: E(0) = 0, Z(0) = 0, U

(0)
2 = 0.

3: for i = 0, . . . , T2 − 1

4: E(i+1) = P1(
S(k+1)+U

(k)
1 +

ρ2
2

(Z(i)−U
(i)
2 )

1+
ρ2
2

)

5: Z(i+1) = P2(E(i+1) + U
(i)
2 )

6: U
(i+1)
2 = U

(i)
2 + E(i+1) − Z(i+1)

7: end for
8: return D(k+1) := E(T2)

After T2 iterations of the inner ADMM we update D(k+1) ac-
cording to D(k+1) = E(T2).
Step 3. Λ(k+1) = argminΛ Lρ1(S(k+1),D(k+1),U

(k)
1 ,Λ) which

takes the form
Λ(k+1) = diag(V̂>S(k+1)V̂). (14)

Step 4. Finally, we update U1 according to

U
(k+1)
1 = U

(k)
1 + S(k+1) −D(k+1), (15)

which is a dual gradient ascent update.

The summarized Algorithm 1 converges to the global optimum
of (7) for a properly chosen T1 and T2. In the next section, we ex-
pand on the online topology inference from streaming signals using
the developed iterative algorithms which is capable of adapting to
large scale graphs as well as inferring the networks in real time; see
Section 5 for numerical demonstrations.

4. ONLINE TOPOLOGY INFERENCE

In the online setting where the observations are being streamed, an
important first step prior to topology inference is to efficiently find
updated eigenvectors of Ĉy without the need of employing eigen-
value decomposition to find the eigenvectors after receiving new ob-
servations. Here we show how V̂ can be updated efficiently with
O(N2) complexity without using eigenvalue decomposition.

Let Ĉ
(P )
y denote the covariance after receiving P streaming ob-

servations. Then, the new covariance after receiving y(P+1) takes
the form

Ĉ(P+1)
y =

1

P + 1
(P Ĉ(P )

y + y(P+1)y(P+1)). (16)

Therefore, receiving a new observation can be thought of as rank-one
update of the estimated covariance matrix Ĉ

(P )
y . According to [32],

the eigenvalues of the rank-one modification of a symmetric matrix
with known eigenvalues can be efficiently computed by solving the
characteristic equation

1 +

N∑
j=1

z2
j

Pdj − γ
= 0, (17)

where z = V̂>y(p+1), {dj}Nj=1 denote the eigenvalues of Ĉ
(P )
y ,

and roots γ would be the eigenvalues of the updated covariance. The
solution to (17) can be found using the Newton method [33] with
O(N2) complexity. For the updated eigenvalue γj , the correspond-
ing eigenvector vj is given by

vj = qjy
(p+1) ◦ qj (18)

where qj is a normalizing factor that ensures ‖vj‖2 = 1, qj = [1/
(Pd1−γj), . . . , 1/(PdN−γj)], and ◦ denotes the Hadamard prod-
uct. Therefore, the updated eigenvectors for each newly observed
signal can be computed withO(N2) compared toO(N3) complex-
ity of the direct eigendecomposition.

Consolidating all the prerequisites, our online topology infer-
ence upon sensing new observations would entail two iterative step:
(i) Update eigenvectors V̂; and (ii) Take one or a few steps of Al-
gorithm 1 until new data is received. These two steps are performed
in O(N3) and at each step can efficiently output an estimate for the
sought GSO. Note that if the signals arrive faster, one can create a
buffer and perform each iteration of Algorithm 1 on a V̂ updated by
a larger number of newly observed signals. On the other hand, for a
slower rate of arrivals, increasing T1 and T2 accordingly would favor
the performance.

5. NUMERICAL RESULTS
Here we assess the performance of the proposed algorithms in re-
covering sparse synthetic and real-world graphs. To that end, we: (i)
illustrate the scalability of Algorithm 1 using a large scale random
graph; (ii) evaluate the performance of the proposed online scheme
in a setting with streaming signals; and (iii) demonstrate the effec-
tiveness of the same approach in adapting to dynamical behavior of
the network.

Throughout this section, we infer synthetic or real-world net-
works from the observation of diffusion processes that are synthet-
ically generated via graph filtering as in (2). For the graph shift
S = A, the adjacency matrix of the sought network, we consider a
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Fig. 1: Top: (a) Recovery error of the proposed scheme versus number of observations for an Erdős-Rényi (ER) graph with N = 1000 nodes
and different degrees of connectivities (p). (b) Evolution of recovery error in inferring a brain network by performing one step of the proposed
online algorithm upon sensing each new signal, superimposed with the offline batch counterpart. (c) Online recovery error versus the number
of observed streaming signals for an ER graph with N=20 nodes, where the structure of the network changes after sensing the 105th signal.
Again, one iteration of the online scheme is performed for each newly observed signal. Bottom (d–h): Counterparts of the top figures (a–c,
respectively) but for the F-measure. Similar patterns can be obtained using F-measure which shows the algorithm success in recovering the
sparsity pattern in both online and batch offline settings.

second-order filter H=
∑2
l=0 hlS

l, where the coefficients {hl} are
drawn uniformly from [0, 1].

As a measure of recovery error, we adopt ‖S∗ − S‖F /‖S‖F ,
where S∗ is the estimated GSO using our proposed approaches and
S denotes the ground-truth GSO. To assess the edge-support recov-
ery, we also compute the F-measure defined as the harmonic mean
of edge precision and recall (precision is the percentage of correct
edges in S∗, and recall is the fraction of edges in S that are success-
fully retrieved).
Offline: Synthetic graph. To evaluate the scalability of Algo-
rithm 1, consider an Erdős-Rényi (ER) graph with N=1000, where
edges are formed independently with probability p= 0.2. Here we
assume that we observe all the P observations, and perform Algo-
rithm 1 in an offline batch fashion. To that end, we apply Algorithm 1
on noisy eigenvectors V̂ of sample covariances of synthetic signals
{y(p)}Pp=1 generated through diffusion process H. The entries of
the inputs {x(p)}Pp=1 are drawn independently from the normal
Gaussian distribution (Cx = I) to make the observations stationary.
Fig. 1-a(d) plots the recovery error (F-measure) averaged over 10
experiments as a function of the number of observed signals P . As
the number of observations increase, the estimate V̂ becomes more
reliable which leads to a better performance (i.e., larger F-measure
and lower recovery error) of the underlying GSO. As predicted,
for sparser graphs (smaller p) performance enhances, since our
algorithm is tailored for recovering sparse graphs. Moreover, the
illustrated results corroborate the effectiveness of Algorithm 1 in
recovering large scale graphs.
Online: Brain graph. Consider a brain graph G withN = 66 nodes
or neural regions and edge weights given by the density of anatom-
ical connections between regions [34]. We generate streaming sig-
nals {y(1), · · · , y(p), y(p+1), · · · } by diffusing inputs {x(1), · · · ,
x(p), x(p+1), · · · } through filter H, where the inputs are formed
similarly to the ones used for previous experiment. Upon sensing an
observation y(p), we first update sample covariance eigenvectors V̂
using the procedure described in Section 4 and then run Algorithm 1

only for one iteration (i.e., T1 = 1) and ten inner iterations of Algo-
rithm 2 (i.e., T2 = 10). This is under the assumption that differences
between the arrival times of signals are longer than one step of our
pipeline. In Fig. 1-b(e), we depict the evolution of recovery error
(F-measure) averaged over 10 instances as well as three realizations.
We further plot the (average) offline behavior similar to the previ-
ous experiment in order to gauge the loss of online estimation. We
notice that the proposed online scheme can successfully track the
performance of the offline counterpart on expectation. The expected
fluctuations are due to the nature of ADMM and the online scheme.
Online: Synthetic perurbations. Finally, we consider an Erdős-
Rényi (ER) graph with N = 20 where edges are formed indepen-
dently with probability p= 0.2. We generate the streaming signals
similar to the previous online experiment; however, after observ-
ing 105 realizations, we remove 10% of the existing edges and add
the same number of edges elsewhere. This would affect the output
covariances accordingly. To examine the tracking capability of the
online estimator, we run one iteration of Algorithm 1 with T2 = 10
upon arrival of each signal and in Fig. 1-c(f) plot the recovery error
(F-measure) averaged over 10 instances as well as three realizations.
We observe that after P = 105, the performance deteriorates at first
due to the sudden change of the network structure, but after observ-
ing large enough number of new samples, the online algorithm can
adapt and learn the new structure as well. This demonstrates the
effectiveness of the put forth online algorithm to adapt after pertur-
bations. 6. CONCLUSION

We studied the inference of an undirected network from streaming
observations of stationary signals diffused on an unknown graph.
We developed an iterative algorithm to find sparse representations
explaining the diffused signals. This was done by leveraging the
sought eigenvectors of GSO preserved by the covariance of the ob-
servations. Then, our online scheme updated the eigenvectors upon
sensing new signals and would take one or a few iterations of the de-
veloped learning algorithm until new data was received. The overall
procedure was validated on streaming stationary signals supported
on synthetic and real-world graphs.
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