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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Online Topology Inference from Streaming Stationary Graph Signals IEEE Data Science Workshop 2019 2



Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Online Topology Inference from Streaming Stationary Graph Signals IEEE Data Science Workshop 2019 3



Graph signal processing (GSP)

I Undirected G with adjacency matrix A

⇒ Aij = Proximity between i and j

I Define a signal x on top of the graph

⇒ xi = Signal value at node i 4

2

3

1

I Associated with G is the graph-shift operator (GSO) S = VΛVT ∈MN

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (local structure in G )

⇒ Ex: A, degree D and Laplacian L = D− A matrices

I Graph Signal Processing → Exploit structure encoded in S to process x

⇒ GSP well suited to study (network) diffusion processes

I Use GSP to learn the underlying G or a meaningful network model
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Topology inference: Motivation and context

I Network topology inference from nodal observations [Kolaczyk’09]
I Partial correlations and conditional dependence [Dempster’74]
I Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]
I [Banerjee et al’08], [Lake et al’10], [Slawski et al’15], [Karanikolas et al’16]

I Can be useful in neuroscience [Sporns’10]

⇒ Functional net inferred from activity

I Noteworthy GSP-based approaches
I Gaussian graphical models [Egilmez et al’16]
I Smooth signals [Dong et al’15], [Kalofolias’16]
I Stationary signals [Pasdeloup et al’15], [Segarra et al’16]
I Non-stationary signals [Shafipour et al’17]
I Directed graphs [Mei-Moura’15], [Shen et al’16]
I Low-rank excitation [Wai et al’18]
I Learning from sequential data [Vlaski et al’18]

I Here: online topology inference from streaming stationary graph signals
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Generating structure of a diffusion process

I Signal y is the response of a linear diffusion process to an input x

y = α0

∞∏
l=1

(I− αlS)x =
∞∑
l=0

βlS
lx

⇒ Common generative model. Heat diffusion if αk constant

I One can state that the graph shift S explains the structure of signal y

I Cayley-Hamilton asserts that we can write diffusion as

y =

( L−1∑
l=0

hlS
l

)
x := H(S)x := Hx

⇒ Degree L ≤ N depends on the dependency range of the filter

⇒ Shift invariant operator H is graph filter [Sandryhaila-Moura’13]

I Online topology inference: From Y={y(1), · · · , y(P), · · · }, Find S efficiently
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Topology inference under stationarity

Stationary graph signal [Marques et al’16]

Def: A graph signal y is stationary with respect to the shift S if
and only if y = Hx, where H =

∑L−1
l=0 hlSl and x is white.

I The covariance matrix of the stationary signal y is

Cy = E
[
Hx
(
Hx
)T ]

= HE
[
xxT

]
HT = HHT

I Key: Since H is diagonalized by V, so is the covariance Cy

Cy = V

∣∣∣∣ L−1∑
l=0

hlΛ
l

∣∣∣∣2 VT = V (H(Λ))2 VT

⇒ Estimate V from Y via Principal Component Analysis
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Two-step approach [Segarra et al’17]

Step 2:
Identify eigenvalues to
obtain a suitable shift

Step 1:
Identify the eigenvectors
of the shift via 

Inferred eigenvectors

Inferred network
Desired topological features

Signal realizations

I Step 2: Obtaining the eigenvalues of S

I We can use extra knowledge/assumptions to choose one graph

⇒ Of all graphs, select one that is optimal in the number of edges

Ŝ := argmin
S,Λ

‖S‖1 subject to: ‖S− V̂ΛV̂T‖F ≤ ε, S ∈ S

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}
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Online inference under stationarity

I Consider streaming stationary signals Y :={y(1), · · · , y(p), y(p+1), · · · }
I Assume that time differences of the signals arrival is relatively low
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Online inference under stationarity

I Consider streaming stationary signals Y :={y(1), · · · , y(p), y(p+1), · · · }
I Assume that time differences of the signals arrival is relatively low

Processing...
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Online inference under stationarity

I Consider streaming stationary signals Y :={y(1), · · · , y(p), y(p+1), · · · }
I Assume that time differences of the signals arrival is relatively low

- Develop an iterative algorithm for the topology inference
- Upon sensing new diffused output signals

- Update     efficiently
- Take one or a few steps of the iterative algorithm
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Topology inference via ADMM

I To apply ADMM, rewrite the problem as

min
S,Λ,D

λ‖S‖1 + ‖S− V̂ΛV̂>‖2F

s.to: S−D = 0, D ∈ S = {S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}

⇒ Convex, thus ADMM would converge to a global minimizer

I Form the augmented Lagrangian

Lρ1(S,D,Λ,U1) = λ‖S‖1 + ‖S− V̂ΛV̂>‖2F +
ρ1
2
‖S−D + U1‖2F

I At k th iteration, let B(k) = V̂Λ(k)V̂> ⇒ ADMM consists of 4 iterative steps
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I Step 1. S(k+1) =argmin
S
Lρ1(S,D(k),Λ(k),U1

(k))=T λ
2+ρ1

(
B(k)+

ρ1
2 (D(k)−U1

(k))

1+
ρ1
2

),

where Tη(x)=(|x | − η)+sign(x) is the element-wise soft-thresholding operator
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I Step 2. D(k+1) = argmin
D∈S

Lρ1(S(k+1),D,Λ(k),U1
(k)) = PS(S(k+1) + U1

(k)),

where PS(.) is the projection operator onto S
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ρ1
2
‖S−D + U1‖2F

I At k th iteration, let B(k) = V̂Λ(k)V̂> ⇒ ADMM consists of 4 iterative steps

I Step 3. Λ(k+1) = argmin
Λ

‖Λ− V̂>S(k+1)V̂‖2F = Diag(V̂>S(k+1)V̂)
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I At k th iteration, let B(k) = V̂Λ(k)V̂> ⇒ ADMM consists of 4 iterative steps

I Step 4. Dual gradient ascent update U1
(k+1) =U1

(k) + S(k+1) −D(k+1)
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Topology inference algorithm

1: Input: estimated covariance eigenvectors V̂, penalty parameter ρ1,
regularization parameter λ, number of iterations T1

2: Initialize: Λ(0) = diag(1N), D(0) = 0, U
(0)
1 = 0.

3: for k = 0, . . . ,T1 − 1 do
4: B(k) = V̂Λ(k)V̂>

5: S(k+1) = T λ
2+ρ1

(
B(k)+

ρ1
2 (D(k)−U1

(k))

1+
ρ1
2

)

6: D(k+1) = PS(S(k+1) + U1
(k))

7: Λ(k+1) = Diag(V̂>S(k+1)V̂)

8: U1
(k+1) = U1

(k) + S(k+1) −D(k+1)

9: end for
10: return S(T1) and Λ(T1)

- Develop an iterative algorithm for the topology inference
- Upon sensing new diffused output signals

- Update     efficiently
- Take one or a few steps of the iterative algorithm
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Inferring a large scale graph

I Consider an Erdős-Rényi graph with N =1000 in an offline fashion
I Edges are formed independently with probabilities p=0.1 & 0.2
I Signals diffused by H =

∑2
l=0 hlA

l , hl ∼ U [0, 1], S=A
I Adopt sample covariance estimator for the Gaussian signals
I Assess the recovery error ξF := ‖Ŝ− S‖F/‖S‖F and F-measure
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I Increase in number of observations leads to a better performance

⇒ Performance enhances for sparser graphs (i.e., smaller p)
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Online topology inference

I Q: How can we efficiently update the sample covariance eigenvectors V̂?

I Let Ĉy
(P) be sample covariance after receiving P streaming observations

⇒ Updated sample covariance after receiving y(P+1) takes the form

Ĉy
(P+1) =

1

P + 1
(PĈy

(P) + y(P+1)y(P+1))

I Let z = V̂>y(p+1) and {d j}Nj=1 denote the eigenvalues of Ĉy
(P)

⇒ Eigenvalues of rank-one modification of Ĉy
(P) are the roots (γ) of

1 +
N∑
j=1

z2j
Pd j − γ

= 0 [Bunch et al’78]

⇒ Can be solved using the Newton method with O(N2) complexity

I For the updated eigenvalue γj , the corresponding eigenvector vj is given by

vj = αjy
(p+1) ◦ qj ,

where qj = [1/(Pd1− γj), · · · , 1/(PdN − γj)] and αj is a normalizing factor

Online Topology Inference from Streaming Stationary Graph Signals IEEE Data Science Workshop 2019 26



Online inference of a brain network

I Consider a structural brain graph with N = 66 neural regions
I Edge weights: Density of anatomical connections [Hagmann et al’08]
I Signals diffused by H =

∑2
l=0 hlA

l , hl ∼ U [0, 1], S=A
I Generate streaming signals {y(1), · · · , y(p), y(p+1), · · · } via y(i) = Hx(i)

I Upon sensing an observation y(p)

⇒ Update V̂ efficiently and run the algorithm for T1 =1
I Assess the recovery error ξF := ‖Ŝ− S‖F/‖S‖F and F-measure
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I The online scheme can track the performance of the batch inference

⇒ The fluctuations are due to ADMM and online scheme
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Online inference: Synthetic perturbation

I Consider an Erdős-Rényi graph with N =20 and p=0.2
I Signals diffused by H =

∑2
l=0 hlA

l , hl ∼ U [0, 1], S=A
I Generate streaming signals {y(1), · · · , y(p), y(p+1), · · · } via y(i) = Hx(i)

I Upon sensing an observation y(p)

⇒ Update V̂ efficiently and run the algorithm for T1 =1
I After 105 realizations

⇒ Remove 10% of edges and add the same number of edges elsewhere
I Assess the recovery error ξF := ‖Ŝ− S‖F/‖S‖F and F-measure
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I The online algorithm can adapt and learn the new topology
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Closing remarks

I Online topology inference from streaming stationary graph signals
I Graph shift S and covariance Cy are simultaneously diagonalizable
I Promote desirable properties via convex losses on S⇒ Here: Sparsity

- Developed an iterative algorithm for the topology inference
- Upon sensing new diffused output signals

- Updated     efficiently
- Took one or a few steps of the iterative algorithm

Online Topology Inference from Streaming Stationary Graph Signals IEEE Data Science Workshop 2019 29



Back to the D-update

I Recall Step 2. D(k+1) = argmin
D∈S

‖D− (S + U1)‖2F

I Define C1 ={M|M=M>, diag(M)=0} and C2 ={M|M ≥ 0,
∑N

i=1 M1i = 1}
⇒ S=C1 ∩ C2
⇒ Establish an inner ADMM for the D-update [Boyd et al’11]

min
E,Z

‖E− (S(k+1) + U1
(k))‖2F + g1(E) + g2(Z)

s.to: E− Z = 0,

1: Input: penalty parameter ρ2, number of iterations T2.
2: Initialize: E(0) = Z(0) = U2

(0) = 0.
3: for i = 0, . . . ,T2 − 1 do

4: E(i+1) = P1(
S(k+1)+U1

(k)+
ρ2
2 (Z(i)−U2

(i))

1+
ρ2
2

)⇒ P1(M) = M+M>

2 − Diag(M)

5: Z(i+1) = P2(E(i+1) + U2
(i))⇒ Projection onto a simplex [Chen et al’11]

6: U2
(i+1) = U2

(i) + E(i+1) − Z(i+1)

7: end for
8: return D(k+1) := E(T2)

Online Topology Inference from Streaming Stationary Graph Signals IEEE Data Science Workshop 2019 30


