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Network Science analytics

Online social media Internet Clean energy and grid analytics

» Network as graph G = (V, £): encode pairwise relationships
» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

» Interest here not in G itself, but in data associated with nodes in V

= The object of study is a graph signal
» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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= Ex: A, degree D and Laplacian L = D — A matrices



Graph signal processing (GSP)

€2
» Undirected G with adjacency matrix A a
= Ajj = Proximity between i and j
> Define a signal x on top of the graph o
= x; = Signal value at node / :L.4 . x3
g
» Associated with G is the graph-shift operator (GSO) S = VAVT € MN

= S =0for i # j and (i,j) & € (local structure in G)
= Ex: A, degree D and Laplacian L = D — A matrices

v

Graph Signal Processing — Exploit structure encoded in S to process x
= GSP well suited to study (network) diffusion processes

v

Use GSP to learn the underlying G or a meaningful network model



Topology inference: Motivation and context

» Network topology inference from nodal observations [Kolaczyk'09]
> Partial correlations and conditional dependence [Dempster'74]
> Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]
> [Banerjee et al'08], [Lake et al'10], [Slawski et al'15], [Karanikolas et al'16]

» Can be useful in neuroscience [Sporns’'10]
= Functional net inferred from activity

» Noteworthy GSP-based approaches

>

vyVYy VY VvV VvYYy

Gaussian graphical models [Egilmez et al'16]

Smooth signals [Dong et al'15], [Kalofolias'16]
Stationary signals [Pasdeloup et al'15], [Segarra et al'16]
Non-stationary signals [Shafipour et al'17]

Directed graphs [Mei-Moura’15], [Shen et al'16]
Low-rank excitation [Wai et al'18]

Learning from sequential data [Vlaski et al'18]

» Here: online topology inference from streaming stationary graph signals



Generating structure of a diffusion process

» Signal y is the response of a linear diffusion process to an input x

y = ao[J(1-aS)x = Y 5S'x
=1 1=0

= Common generative model. Heat diffusion if a constant

» One can state that the graph shift S explains the structure of signal y



Generating structure of a diffusion process

v

Signal y is the response of a linear diffusion process to an input x

y = ao[J(1-aS)x = Y 5S'x
=1 1=0

= Common generative model. Heat diffusion if a constant

» One can state that the graph shift S explains the structure of signal y

v

Cayley-Hamilton asserts that we can write diffusion as

y = (gh,s') x := 7(S)x := Hx

= Degree L < N depends on the dependency range of the filter
= Shift invariant operator H is graph filter [Sandryhaila-Moura'13]

v

Online topology inference: From Y ={y() ... y(P) ...} Find S efficiently



Topology inference under stationarity

Stationary graph signal [Marques et al’16]

Def: A graph signal y is stationary with respect to the shift S if
and only if y = Hx, where H = 37 _' /S’ and x is white.

» The covariance matrix of the stationary signal y is

C, =E[Hx(Hx) | = HE [xx"] HT = HHT
» Key: Since H is diagonalized by V, so is the covariance C,
L—1
>
1=0

= Estimate V from Y via Principal Component Analysis

C, =V 2vT:V( (M) VT




Two-step approach [Segarra et al'17]

-~.,_“l-nferred network

nal realizations

I esnred topological fea-t-ﬁ-"':‘_:j:;

Step 1: T e Step 2:
Identify the eigenvectors “Inferred eigenvectors V ; Identify eigenvalues to
of the shift via Cy """"""""""""""""""""""""""""""" obtain a suitable shift

» Step 2: Obtaining the eigenvalues of S

» We can use extra knowledge/assumptions to choose one graph
= Of all graphs, select one that is optimal in the number of edges

S:=argmin ||S|; subjectto: [|[S—VAVT|r<e¢, SeS
S,A

» Set S contains all admissible scaled adjacency matrices

§:={8|5; 20, SeM" 5; =0, ¥;S;=1}
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nce under stationarity

» Consider streaming stationary signals ) :={y(1), ... y() y(p+1) ...

> Assume that time differences of the signals arrival is relatively low

(p) [V, ~] = cig(= Zyu 0]

) S := argmin ||S|;
ASes
s. to: ||S=VAVT|p <e

y oYy

}



nce under stationarity

» Consider streaming stationary signals ) :={y(}), ...  y(P) y(p+1) ...}
> Assume that time differences of the signals arrival is relatively low

y(PH)
y(p+2)

Processing...

».
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» Consider streaming stationary signals ) :={y(}), ...  y(P) y(p+1) ...}
> Assume that time differences of the signals arrival is relatively low
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Online inference under stationarity

» Consider streaming stationary signals ) :={y(1), ... y() y(p+1) ...

> Assume that time differences of the signals arrival is relatively low

- Develop an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
= - Update A4 efficiently
- Take one or a few steps of the iterative algorithm

n

}



Topology inference via ADMM

» To apply ADMM, rewrite the problem as
i — VAV
min - AllS[+ 1S Iz
sto: S—D=0, DeS={S]5;>0, SeMN 5; =0, 3, 5;=1}

= Convex, thus ADMM would converge to a global minimizer

» Form the augmented Lagrangian

(8.0, A, Us) = AlIS|ly + 1S = VAVT |2 + Z2S - D + Uy I3

/’1

» At k'™ iteration, let BK) = VAWYT = ADMM consists of 4 iterative steps
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» To apply ADMM, rewrite the problem as
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» At k'™ iteration, let BK) = VAWYT = ADMM consists of 4 iterative steps

’

oL +5
where 7, (x)=(|x| — 1)+sign(x) is the element-wise soft-thresholding operator

)4 21 () _y, )
» Step 1. S(k“):arg:winﬁ/,‘(s,D(k),l\(k),Ul(k))zT L (B2 U,



Topology inference via ADMM

» To apply ADMM, rewrite the problem as

. AT 2
an AlISll +1IS = VAV &
sto: S—D=0, DeS={S]5;>0, SeMN 5; =0, 3, 5;=1}

= Convex, thus ADMM would converge to a global minimizer

» Form the augmented Lagrangian

(8.0, A, Us) = AlIS|ly + 1S = VAVT |2 + Z2S - D + Uy I3
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» At k'™ iteration, let BK) = VAWYT = ADMM consists of 4 iterative steps

» Step 2. DD = argmin £, (S*D) D, AW U, () = pg(sktD) 1y, W)y,
Des
where Ps(.) is the projection operator onto S



Topology inference via ADMM
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Topology inference via ADMM

» To apply ADMM, rewrite the problem as
i — VAV |2
min - AllS[+ 1S Iz
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= Convex, thus ADMM would converge to a global minimizer
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» Step 3. A — argmin  ||N — \A/—'—S(/‘Jrl)\A/H,zE = Diag(\?TS(k+1)\7)
A



Topology inference via ADMM

» To apply ADMM, rewrite the problem as
i — VAV |2
min - AllS[+ 1S Iz
sto: S—D=0, DeS={S]5;>0, SeMN 5; =0, 3, 5;=1}
= Convex, thus ADMM would converge to a global minimizer

» Form the augmented Lagrangian

(8.0, A, Us) = AlIS|ly + 1S = VAVT |2 + Z2S - D + Uy I3

/'1

» At k'™ iteration, let BK) = VAWYT = ADMM consists of 4 iterative steps

» Step 4. Dual gradient ascent update U, =y, (0 4 glkty) _ plet)



Topology inference algorithm

1: Input: estimated covariance eigenvectors Vv, penalty parameter p1,
regularization parameter A, number of iterations T

2. Initialize: A©) = diag(1y), D© =0, U = 0.
3: fork=0,..., 77, —1do
4. B®W =yAWYT
B 21 (pk _y, k)
5: S(k+1) = Tﬁ(%)
6: D(k+1) — fPS(s(k+1) + Ul(k))
7. AT = Diag(VTSK+V)
g U (D =y, (0 o glk+1) _ plk+1)
9: end for

10: return S(™) and A(7Y)

- Develop an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
=
- Take one or a few steps of the iterative algorithm

o




Inferring a large scale graph

Recovery error

» Consider an Erd6s-Rényi graph with N'=1000 in an offline fashion
» Edges are formed independently with probabilities p=0.1 & 0.2
> Signals diffused by H = Z?:o mA! b ~U[0,1], S=A
> Adopt sample covariance estimator for the Gaussian signals
> Assess the recovery error & := ||S — S||¢/||S||F and F-measure

—p=02]
—p=0.1 0.98

—p=02]
086 —p=0.1]
107 10* 10" 10° 10 10 107
Number of observations Number of observations

» Increase in number of observations leads to a better performance

= Performance enhances for sparser graphs (i.e., smaller p)



Online topology inference

» Q: How can we efficiently update the sample covariance eigenvectors V?

v

Let C,(P) be sample covariance after receiving P streaming observations

= Updated sample covariance after receiving y(P*1) takes the form

¢,(P+D) — L(Péy(P) 1 y(P+Dy(PD)

P+l
» Let z=VTy(P+D) and { i}, denote the of C,(P)

= of rank-one modification of éy(P) are the roots () of
N 2
z5
1+ JZ; fj_w =0 [Bunch et al'7§]

= Can be solved using the Newton method with O(N?) complexity

v

For the updated eigenvalue 7}, the corresponding eigenvector v; is given by

L — oyey(PtD)
Vi = ajy °q;

where q; = [L/(Pdy1 —7;), - ,1/(Pdn —~;)] and a; is a normalizing factor



On

Recovery error

line inference of a brain network

» Consider a structural brain graph with N = 66 neural regions
» Edge weights: Density of anatomical connections [Hagmann et al’08]
> Signals diffused by H = 32 h/A', h ~U[0,1], S=A
» Generate streaming signals {y(™), ... | y(P y(D) .Y vig y() = Hx(®
> Upon sensing an observation y(P
= Update \% efficiently and run the algorithm for T; =1
> Assess the recovery error & := ||S — S||¢/||S||F and F-measure

1
0.9
0.8

—Offline
—Realiz

10° 10! 10° 10° 10* 10°
Number of observations Number of observations

2 . .
10 10° }

» The online scheme can track the performance of the batch inference

= The fluctuations are due to ADMM and online scheme



Online inference: Synthetic perturbation

Recovery error

» Consider an Erd6és-Rényi graph with N=20 and p=0.2
Signals diffused by H = 32 A’ by ~U[0,1], S=A

v

» Generate streaming signals {y(), ... | y® y®™ .1 via y) = Hx(®

» Upon sensing an observation y("
= Update V efficiently and run the algorithm for 71 =1

» After 10° realizations
= Remove 10% of edges and add the same number of edges elsewhere
> Assess the recovery error £ := ||S — S||£/||S||F and F-measure
0.5 anw
04} i
03} &
0.2 E
— Realization 1 —Realization 1| |
— Realization 2| — Realization 2
0.1 Realization 3 1 Realization 3| |
— Average — Average
0 ‘ | | | 03 | | | I
10’ 102 10° 10* 10° 10° 10’ 102 10° 10* 10° 10°
Number of observations Number of observations

» The online algorithm can adapt and learn the new topology



Closing remarks

» Online topology inference from streaming stationary graph signals

» Graph shift S and covariance C, are simultaneously diagonalizable
» Promote desirable properties via convex losses on S = Here: Sparsity

- Developed an iterative algorithm for the topology inference
- Upon sensing new diffused output signals
= - Updated \% efficiently
- Took one or a few steps of the iterative algorithm

n



Back to the D-update

» Recall Step 2. DY) = argmin  ||D — (S + Uy)|%
Des

» Define C;={M|M=MT diag(M)=0} and (,={M|M >0, Z, 1 My =1}
= 8=CNC
= Establish an inner ADMM for the D-update [Boyd et al'11]
min [|E— (S* + U ®)|2 4 g1(E) + g2(2)
sto: E—-Z=0,
Input: penalty parameter po, number of iterations T5.
Initialize: E© = 72 =y, = 0.
fori=0,...,7,—1do

. (k+1) (k) 422 (7() _y, (@)
E0HD = py (St ) by (M) = M7 - Diag(M)

70+ — py(E(HD) U ()) = Projection onto a simplex [Chen et al'11]
U, (i+1) _ U, (i) + EG+1) — 7(i+1)

end for

return DG+1) .= E(T2)

e

o N @



