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Abstract—We leverage proximal gradient iterations to develop

an online graph learning algorithm from streaming network data.

Our goal is to track the (possibly) time-varying network topology,

and effect memory and computational savings by processing

the data on-the-fly as they are acquired. The setup entails

observations modeled as stationary graph signals generated by

local diffusion dynamics on the unknown network. Moreover, we

may have a priori information on the presence or absence of

a few edges as in the link prediction problem. The stationarity

assumption implies that the observations’ covariance matrix and

the so-called graph shift operator (GSO – a matrix encoding

the graph topology) commute under mild requirements. This

motivates formulating the topology inference task as an inverse

problem, whereby one searches for a (e.g., sparse) GSO that is

structurally admissible and approximately commutes with the

observations’ empirical covariance matrix. For streaming data

said covariance can be updated recursively, and we show online

proximal gradient iterations can be brought to bear to efficiently

track the time-varying solution of the inverse problem with

quantifiable guarantees. Specifically, we derive conditions under

which the GSO recovery cost is strongly convex and use this

property to prove that the online algorithm converges to within a

neighborhood of the optimal time-varying batch solution. Prelim-

inary numerical tests illustrate the effectiveness of the proposed

graph learning approach in adapting to streaming information

and tracking changes in the sought dynamic network.

Index Terms—Network topology inference, graph signal pro-

cessing, proximal gradient algorithm, online optimization.

I. INTRODUCTION AND PRELIMINIARIE

Network data supported on the vertices of a graph G are
nowadays ubiquitous across disciplines spanning engineering
as well as social and the bio-behavioral sciences; see e.g., [15,
Ch. 1]. Such data can be represented as graph signals, namely
vectors indexed by the nodes of G. In this context, the goal
of graph signal processing (GSP) is to develop information
processing algorithms that fruitfully exploit the relational
structure of said network data [22]. However, oftentimes G

is not readily available and a first key step is to use nodal
observations to identify the underlying network structure (or a
useful graph model that facilitates signal representations and
downstream learning tasks); see [9], [19] for recent tutorials
on graph learning and [15, Ch. 7] for a statistical treatment.

Consider a weighted undirected graph G consisting of a
node set N of cardinality N , and symmetric adjacency matrix
A with entry Aij=Aji 6=0 denoting the edge weight between
node i and node j. We assume that G contains no self-
loops; i.e., Aii = 0. One could generically define a graph-
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shift operator (GSO) S 2 RN⇥N as any matrix capturing
the same sparsity pattern as A on its off-diagonal entries.
Beyond A, common choices for S are the combinatorial
Laplacian L := diag(A1) � A as well as their normalized
counterparts [22]. Henceforth we focus on S=A and aim to
recover the adjacency matrix of the unknown graph G. Other
GSOs can be accommodated in a similar fashion.

Next, we present an online framework to estimate sparse
graphs that explain the structure of a class of streaming random
signals. At some time instant, let y = [y1, ..., yN ]T 2 RN be
a zero-mean graph signal in which the ith element yi denotes
the signal value at node i of an unknown graph G with shift
operator S. Further consider a zero-mean white signal x. We
state that the graph S represents the structure of the signal
y 2 RN if there exists a diffusion process in the GSO S that
produces the signal y from the input signal x [26], that is

y = ↵0
Q1

l=1(I� ↵lS)x =
P1

l=0 �lS
l
x. (1)

Under the assumption that Cx = I (identity matrix), (1) is
equivalent to the stationarity of y in S; see e.g., [18, Def.
1], [24], [12]. The justification to say that S represents the
structure of y is that we can think of the edges of G, i.e. the
non-zero entries in S, as direct (one-hop) relations between
the elements of the signal. The diffusion in (1) modifies the
original correlation by inducing indirect (multi-hop) relations.

In this context, our goal is to recover S from a set of stream-
ing stationary random signals Y := {y1, . . . ,yt,yt+1, . . .},
each of them adhering to the generative model in (1). Unlike
[28] but similar to link prediction problems [15, Ch. 7.2], [30],
here we rely on a priori knowledge about the presence (or
absence) of a few edges; conceivably leading to simpler
algorithmic updates and better recovery performance. We
may learn about edge status via limited questionnaires and
experiments, or, we could perform edge screening prior to
topology inference [1]. Stationarity implies that the covari-
ance matrix Cy of the observations in Y commutes with S

under mild requirements; see e.g., [18] and Section II. This
motivates formulating the topology inference task as an inverse
problem, whereby one searches for a (e.g., sparse) S that is
structurally admissible and approximately commutes with the
observations’ empirical covariance matrix. For streaming data
said covariance can be updated recursively, and in Section III
we show online proximal gradient iterations can be brought to
bear to efficiently track the time-varying solution of the inverse
problem with quantifiable (non-asymptotic) guarantees. The
algorithm and results of this paper are valid even for dynamic
networks, i.e., if the GSO St in (1) is (slowly) time-varying.
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Relation to prior work. Early topology inference approaches
can be traced to the field of (undirected) graphical model
selection [15, Ch. 7], [9], [19]. Under Gaussianity assump-
tions, this line of work has well-documented connections with
covariance selection [7] and sparse precision matrix estima-
tion [10], [11], [16], as well as neighborhood-based sparse
linear regression [21]. Recent GSP-based network inference
frameworks postulate that the network exists as a latent under-
lying structure, and that observations are generated as a result
of a network process defined in such a graph [8], [14], [20],
[23], [26], [34]. Different from [6], [8], [14], [25] that infer
structure from signals assumed to be smooth over the sought
undirected graph, here the measurements are assumed related
to the graph via filtering [cf. (1)]. Few works have recently
explored this approach by identifying a symmetric GSO given
its eigenvectors, either assuming that the input is white [23],
[26] – equivalently implying y is graph stationary [12], [18],
[24]; or, colored [31], [32]. Unlike prior online algorithms
developed based on the aforementioned graph spectral domain
design [28], [30], here we estimate the (possibly time-varying)
GSO directly and derive quantifiable recovery guarantees.
While we assume that the graph signals are stationary, the
online scheme in [35] uses observations from a Laplacian-
based, continuous-time graph process. Relative to [33] that
relies on a single-pole graph filter [13], the filter structure
underlying (1) can be arbitrary, but the focus here is on learn-
ing undirected graphs. Online proximal gradient methods were
adopted for graph inference under dynamic structural equation
models [2], but lacking a formal performance analysis. The
recovery guarantees in Section III are adapted from the results
in [17], obtained therein for online sparse subspace clustering.

II. GRAPH LEARNING UNDER STATIONARITY

We consider topology inference from stationary signals (1)
whereby a small number of edges might be known a priori.
To state the problem, we consider the symmetric GSO S

associated with the undirected graph G. Upon defining the
vector of coefficients h := [h0, . . . , hL�1]T 2 RL and the
symmetric graph filter H :=

PL�1
l=0 hlS

l
2 RN⇥N [13], [22],

[27], the Cayley-Hamilton theorem asserts that the model in
(1) boils down to

y =
�PL�1

l=0 hlS
l
�
x = Hx, (2)

for some particular h and L  N . Note that L specifies the
dependency range of the diffusion on the neighhbors.

We first start with the offline setting [26], where the covari-
ance matrix of y = Hx is (recall Cx = I)

Cy := E[yyT ] = E[Hx(Hx)T ] = HE[xxT ]H = H
2. (3)

We used the symmetry of H to obtain the third equality,
as H is a polynomial in the symmetric GSO S. Using the
spectral decomposition of S = V⇤V

T to express the filter
as H =

PL�1
l=0 hl(V⇤VT )l = V(

PL�1
l=0 hl⇤

l)VT , we can
diagonalize the covariance matrix in (3) as

Cy = V

⇣PL�1
l=0 hl⇤

l
⌘2

V
T . (4)

Such a covariance expression is the requirement for a graph
signal to be stationary in S [18, Def. 2.b]. Remarkably, if

y is graph stationary, or equivalently if Cx = I, (4) shows
that the eigenvectors of the shift S, the filter H, and the
covariance Cy are all the same. Thus given observations
{yt}

T
t=1, [26] advocates: (i) forming the sample covariance

Ĉy = 1
T

PT
t=1 yty

T
t and extracting its eigenvectors V̂ as

spectral templates of G; and recover S that is optimal in some
sense by estimating its eigenvalues ⇤. Namely, one solves

S
⇤ := argmin

⇤,S2S
f(S), subject to d(S, V̂⇤V̂T )  ✏ (5)

which is a convex optimization problem provided f(S) and
matrix distance d(·, ·) are convex, while ✏ is a tuning parame-
ter. The form of the distance d(·, ·) depends on the particular
application. For instance, if kS�V̂⇤V̂

T
kF is chosen the focus

is more on the similarities across the entries of the shifts, while
kS� V̂⇤V̂

T
k2 focuses on their spectrum.

In this paper we propose a different formulation from (5). To
that end, observe that stationarity of y implies CyS = SCy,
forcing the covariance Cy to be a polynomial in S as in
(4). This commutation identity holds under the pragmatic
assumption that all the eigenvalues of S are simple andPL�1

l=0 hl�l
i 6= 0, for i = 1, · · · , N . Since one can only

estimate Ĉy from the available data, our idea to recover the
GSO is to solve [cf. (5)]

S
⇤ := argmin

S2S
f(S), subject to d(SĈy, ĈyS)  ✏. (6)

The inverse problem (6) is intuitive. One searches for an
admissible S 2 S that approximately commutes with the
observations’ empirical covariance matrix Ĉy, and which is
optimal in the sense specified by f . While the feasible set in
(5) is lower dimensional (one only goes after N eigenvalues),
the novel formulation (6) circumvents computation of eigen-
vectors. More importantly, as we show in Section III it offers
favorable structure to invoke a proximal gradient solver with
convergence guarantees, even in an online setting.

In closing, we note that the formulations (5) and (6)
entail a general class of network topology inference problems
parametrized by the choices described next.
Optimality criteria and admissibility constraints. The se-
lection of cost function f(S) allows to incorporate physical
characteristics of the desired graph into the formulation, while
being consistent with the estimated covariance Ĉy. For in-
stance, the matrix (pseudo-)norm f(S) = kSk0 which counts
the number of nonzero entries in S can be used to minimize
the number of edges towards identifying sparse graphs (e.g.,
of direct relations among signal elements); f(S) = kSk1 =P

ij |Sij | is a convex proxy for the aforementioned edge
cardinality function and henceforth the criterion of choice. Al-
ternatively, the Frobenius norm f(S) = kSkF = (

P
ij S

2
ij)

1/2

can be adopted to minimize the energy of the edges in the
graph, or f(S) = kSk1 = maxij |Sij | can be chosen to obtain
shifts S associated with graphs of uniformly low edge weights.
This can be meaningful when identifying graphs subject to
capacity constraints.

Furthermore, one can impose constraints to ensure the GSO
S is structurally admissible and incorporate a priori knowledge
about S. Namely, if we let S = A represent the adjacency
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matrix of an undirected graph with non-negative weights and
no self-loops, we can write S = SA as

S2SA := {S |Sij � 0,ST = S, Sii = 0,
P

j Sj1=1}, (7)

where the last condition fixes the scale of the admissible
graphs by setting the weighted degree of the first node to
1. This also rules out the trivial solution S = 0. Suppose we
have additional prior information on the presence (or absence)
of a few edges, or, even their corresponding weights. In that
case, we can drop the constraint

P
j Sj1=1 and instead add

Sij = sij , for vertex pairs (i, j) in the set ⌦ ⇢ N ⇥ N of
observed edge weights sij . Accordingly, we can rewrite the
set of admissible adjacency matrices as

S
P
A :={S |Sij � 0,ST = S, Sii = 0, Sij=sij , (i, j) 2 ⌦}.

(8)

Moving forward, we mostly focus on online learning of sparse
graphs (thus f(S) = kSk1), which belong to SA or S

P
A. The

distance d(·, ·) in (6) is chosen to be the Frobenius norm. Other
scenarios can be accommodated using proper modifications.

III. ONLINE LEARNING VIA PROXIMAL GRADIENT METHOD

Inspired by [17], here we develop an online (first-order)
proximal gradient algorithm to estimate S from streaming
data in Y := {y1, . . . ,yt,yt+1, . . .}. To make the problem
amenable to this optimization method, we dualize the con-
straint kSĈy,t� Ĉy,tSk

2
F  ✏ in (6) and write the composite,

time-varying optimization

S
?
t 2 argmin

S2S
Ft(S) := kSk1+

�

2
kSĈy,t � Ĉy,tSk

2
F

:= f(S)+gt(S).

(Pt)

In writing Ĉy,t we make explicit that the covariance matrix is
estimated with all signals acquired by time t, gt(·) is convex
and L-smooth [i.e., rgt(·) is L-Lipschitz continuous] and � >
0 is a tuning parameter.

The solution S
?
t of (Pt) is the batch network estimate at

time t. However, solving (Pt) to optimality might not be
feasible within the time interval of signal acquisition. If G

is dynamic it may not be even prudent to obtain S
?
t with high

precision (hence incurring high delay and computational cost),
since at time t+1 a new datum arrives and the solution S

?
t+1

may deviate significantly. These reasons motivate devising an
efficient online and recursive algorithm to solve the time-
varying optimization problem (Pt). Our approach entails two
steps per time instant t = 1, 2, . . ., where we: (i) recursively
update the observations’ covariance matrix Ĉy,t in O(N2)
complexity; and (ii) take a single step of the graph learning
algorithm developed in this section to solve (Pt) efficiently.
Step (i) is straightforward, and the sample covariance Ĉy,t is
updated once yt+1 becomes available as follows

Ĉy,t+1 =
1

t+ 1

⇣
tĈy,t + yt+1y

T
t+1

⌘
. (9)

To solve (Pt) online, we bring to bear the proximal gradient-
descent algorithm that is well-suited for `1�norm minimiza-
tion problems and provides solid convergence guarantees [4].

To that end, first notice that the gradient of gt(S) in (Pt) with
respect to S has the form

rgt(S) = �
⇥
(SĈy,t � Ĉy,tS)Ĉy,t � Ĉy,t(SĈy,t � Ĉy,tS)

⇤
,

(10)
which is Lipschitz continuous with constant Mt=4��2

max(Ĉt),
where �max(·) stands for the largest singular value of its matrix
argument. Next, introduce the proximal operator of a function
h, convex set S and matrix B 2 RN⇥N as

Z := prox↵h,S(B) := argmin
X2S


h(X) +

1

2↵
kX�Bk

2
F

�
.

(11)
With these definitions, the proximal gradient-descent up-

dates with fixed step size � < 2
Mt

to solve the batch problem
(Pt) at time t are given by (k = 1, 2, . . . denote iterations)

Sk+1 := prox�k·k1,S
�
Sk � �rgt(Sk)

�
. (12)

As k ! 1 the sequence of iterates (12) converge to a
minimizer S

?
t [cf. (Pt)]; see e.g., [3]. Moreover, Ft(Sk) �

Ft(S?
t ) ! 0 due to the continuity of Ft(·).

For the specific case of sparse graph learning with partial
connectivity information, i.e., S = S

P
A [cf. (8)] and h(·) =

k·k1, the proximal operator Z in (11) has entries given by

Zij =

8
<

:

0, i = j
sij , (i, j) 2 ⌦

max(0, Bij � ↵), otherwise.
(13)

Without a priori information on edge status, i.e., when S =
SA [cf. (7)], Z can be computed in similar efficient fashion
modulo an extra projection step onto the N � 1 dimensional
probability simplex to enforce

P
j Sj1=1. Said projection can

be computed using the method in [5, Algorithm 1].
Building on the insights gained from the batch solver in

(12), we let iterations k = 1, 2, . . . coincide with the instants t
of data acquisition to arrive at an online algorithm. This way,
at time t we run a single iteration of (12) to update St before
the new datum yt+1 arrives at time t + 1. Specifically, the
online proximal gradient descent algorithm takes the form

St+1 := prox�tk·k1,S
�
St � �trgt(St)

�
, (14)

where the step size �t is chosen such that �t < 2
Mt

=
2

4�.�2
max(Ĉt)

. Recall that the gradient rgt(St) is given by (10),

and it is a function of the updated covariance matrix Ĉy,t+1

[cf. (9)]. The proximal operator for the `1�norm entails the
pointwise nonlinearity in (13). If the signals arrive faster, one
can create a buffer and perform each iteration of the algorithm
on a Ĉt+1 updated with a sliding window of all newly observed
signals. On the other hand, for a slower arrival rate additional
proximal gradient iterations would likely improve recovery
performance; see also Remark 1.

The key difference between the batch algorithm (12) and
its online counterpart (14) is the variability of gt per iteration
in the latter. Ideally, we would like the online algorithm (14)
to closely track the sequence of minimizers {S

⇤
t } for large

enough t, something which we corroborate numerically in
Section IV. Following closely the analysis in [17], we derive
recovery (i.e., tracking error) bounds kSt � S

⇤
t kF under the
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pragmatic assumption that gt is strongly convex and S
⇤
t is

the unique minimizer of (Pt), for each t. Before stating the
main result in Theorem 1, the following proposition offers a
condition for strong convexity of gt1.
Proposition 1 Let set D contain the indices of vec(S) corre-
sponding to the diagonal entries of S; i.e., D :=

�
N(i�1)+i |

i 2 {1, · · · , N}
 

, and D
c be the complement of D. Define

 t := Ĉy,t ⌦ IN � IN ⌦ Ĉy,t, where ⌦ denotes the Khatri-
Rao product and IN is the N⇥N identity matrix. If  t,Dc

(submatrix of t that contains columns indexed by the set Dc)
is full column rank, then gt(S) in (Pt) is strongly convex with
constant mt > 0 being the smallest (nonzero) singular value
of  t,Dc .

In extensive simulations involving several real-world graphs,
we have observed that  t,Dc is typically full column rank
and thus gt is strongly convex. Under the strong convexity
assumption, we have the following (non-asymptotic) perfor-
mance guarantee.
Theorem 1 Let µt=

��S⇤
t+1�S

⇤
t

��
F

capture the variability of
the underlying graph. If gt in (Pt) is strongly convex with
constant mt, then for all t � 1 we have

kSt � S
⇤
t kF  L̃t�1

 
kS0 � S

⇤
0kF +

t�1X

⌧=0

µ⌧

L̃⌧

!
, (15)

where Lt = max {|1� �tmt| , |1� �tMt|} , L̃t =
Qt

⌧=0 L⌧ .
As expected, Theorem 1 asserts that the higher the variability
in the underlying graph, the higher the recovery performance
penalty. Even if the graph G (and hence the GSO) is time-
invariant, then µt will be non-zero especially for small t since
the solution S

⇤
t may fluctuate due to lack of data. In the

next section, we use computer simulations to corroborate the
performance of the online graph learning algorithm. But before
moving on, a couple remarks are in order.

Remark 1 In case of taking nt algorithmic iterations instead
of one per time step, we can simply modify L̃t =

Qt
⌧=0 L

n⌧
⌧

in Theorem 1 to use the result stated in (15). The alternative
would be to redefine gt as gbt/ntc.

Remark 2 If gt is not strongly convex, we can derive dynamic
regret bounds similar to the one in [17]. Alternatively, we
can add a Tikhonov regularization term �r

2 kSk
2
F to make (Pt)

strongly convex and still benefit from the result in Theorem 1.
However, this would incur an error of the form kSr,t � S

⇤
t k ��Sr,t � S

⇤
r,t

��+
��S⇤

r,t � S
⇤
t

�� in the minimizer, where Sr,t and
S
⇤
r,t are the regularized tracking sequence and regularized

minimizer sequence, respectively.

IV. PRELIMINARY NUMERICAL TEST

In this section we assess the performance of the online
graph learning using the proposed proximal gradient descent
iterations (14). To that end, we consider the social network of
Zachary’s karate club [36] represented by a graph G consisting
of N = 34 nodes or members of the club and 78 undirected

1The proofs of Proposition 1 and Theorem 1 are omitted here due to lack
of space, but can be found in [29].

edges symbolizing friendships among them; see Fig. 1-(a).
We seek to infer this graph from the observation of diffusion
processes that are synthetically generated via graph filtering as
in (2). For the graph shift S=A, we consider a second-order
filter H=

P2
l=0 hlS

l, where the coefficients {hl} are drawn
uniformly from [0, 1]. We assume that we (randomly) know
one of the 78 edges as a priori information and aim to infer the
rest of the edges. At each time step, 10 synthetic signals {y(p)

}

are generated through diffusion process H where the entries
of the inputs {x(p)

} are drawn independently from the normal
Gaussian distribution to make the observations stationary. In
the online case, upon sensing 10 signals at each time step, we
first update the sample covariance Ĉy,t and then carry out 10
iterations of the proximal gradient descent. Also, to examine
the tracking capability of the online estimator, after 5000 time
steps, we remove 10% of the existing edges and add the same
number of edges elsewhere. This would affect the graph filter
H accordingly.

To corroborate the assumption in Theorem 1, it is worth
mentioning that throughout the process we observed that
 t,Dc was full column rank and thus the cost in (Pt) was
strongly convex; see Proposition 1. Fig. 1-(b) depicts the
running objective value Ft(St) [cf. (Pt)] averaged over 10
experiments as a function of the time steps and the a priori
knowledge – 3 randomly picked edges. We also superimpose
Fig. 1-(b) with the optimal objective value Ft(S?

t ) at each
time step. First, we notice that the objective value trajectory
converges to a region above the optimal trajectory. Also, we
observe that after 5000 iterations, the performance deteriorates
at first due to the sudden change of the network structure, but
after observing large enough number of new samples, the on-
line algorithm can adapt and track the batch estimator as well.
This demonstrates the effectiveness of the developed online
algorithm when it comes to adapting to network perturbations.

Finally, we study the quality of the online learned graph
St at iteration 5000. Fig. 1-(c) depicts the heat maps of the
ground-truth and inferred adjacency matrices for different a
priori information. Although the procedure results in a slight
gap between Ft(S?

t ) and Ft(St), it still reveals the underlying
support of A with reasonable accuracy. Interestingly, we notice
that an edge with lower betweenness centrality [e.g., (6, 17)
and (15, 34) compared to (2, 4)] is better to know as a priori
knowledge in the topology inference; see also [30].

V. CONCLUSION

We studied the problem of identifying the topology of an
undirected network from streaming observations of stationary
signals diffused on the unobservable graph. The stationarity
assumption implies that the observations’ covariance matrix
and the GSO commute under mild requirements. This moti-
vates formulating the topology inference task as an inverse
problem, whereby one searches for a (e.g., sparse) GSO that
is structurally admissible and approximately commutes with
the observations’ empirical covariance matrix. For streaming
data said covariance can be updated recursively, and we show
online proximal gradient iterations can be brought to bear
to efficiently track the time-varying solution of the inverse
problem with quantifiable recovery guarantees.
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Fig. 1. (a) Zachary’s karate club graph with N =34 nodes. (b) Evolution of the objective values for the online and batch estimators in inferring a karate
club. We perform 10 steps of the proposed online algorithm upon sensing each 10 new signals. (c) True adjacency matrix and corresponding estimates with
different a priori information on the connectivities attained after 5000 time steps.
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