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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Use G to study graph signals, data associated with nodes in V

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

I Q: What about streaming data from (possibly) dynamic networks?
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Graph signal processing (GSP)

I Undirected G with adjacency matrix A

⇒ Aij = Proximity between i and j

I Define a signal x on top of the graph

⇒ xi = Signal value at node i 4

2

3

1

I Associated with G is the graph-shift operator (GSO) S = VΛVT

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (local structure in G)

⇒ Ex: A, degree D and Laplacian L = D− A matrices

I Graph Signal Processing → Exploit structure encoded in S to process x

⇒ Use GSP to learn the underlying G or a meaningful network model
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Topology inference: Motivation and context

I Network topology inference from nodal observations [Kolaczyk’09]
I Partial correlations and conditional dependence [Dempster’74]
I Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]

I Key in neuroscience [Sporns’10]

⇒ Functional network from BOLD signal

I Noteworthy GSP-based approaches
I Graphical models [Egilmez et al’16], [Rabbat’17], [Kumar et al’19], . . .
I Smooth signals [Dong et al’15], [Kalofolias’16], [Sardellitti et al’17], . . .
I Stationary signals [Pasdeloup et al’15], [Segarra et al’16], . . .
I Dynamic graphs [Shen et al’16], [Kalofolias et al’17], [Cardoso et al’20], . . .
I Streaming data [Shafipour et al’18], [Vlaski et al’18], [Natali et al’20], . . .

I Our contribution: graph learning from streaming stationary signals
I Topology inference via convergent online proximal gradient (PG) iterations
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Problem formulation

Setup
I Sparse network G with unknown graph shift S (even dynamic St)

I Observe

⇒ Streaming stationary signals {yt}Tt=1 defined on S
⇒ Edge status sij for (i , j) ∈ Ω ⊂ V × V

y1 y2 y3

Problem statement

Given observations {yt}Tt=1 and edge status in Ω, determine the
network S knowing that {yt}Tt=1 are generated via diffusion on S.
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Generating structure of a diffusion process

I Signal yt is the response of a linear diffusion process to input xt

yt = α0

∞∏
l=1

(I− αlS)xt =
∞∑
l=0

βlS
lxt , t = 1, . . . ,T

⇒ Common generative model, e.g., heat diffusion, consensus

I Cayley-Hamilton asserts we can write diffusion as (L ≤ N)

yt =

( L−1∑
l=0

hlS
l

)
xt := Hxt , t = 1, . . . ,T

⇒ Graph filter H is shift invariant [Sandryhaila-Moura’13]

I Goal: estimate undirected network S online from signals {yt}Tt=1

⇒ Unknowns: filter order L, coefficients {hl}L−1l=1 , inputs {xt}Tt=1
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Batch topology inference under stationarity

I Suppose that the input is white, i.e., Cx = E
[
xxT

]
= I

⇒ The covariance matrix of y = Hx is a polynomial in S

Cy = E
[
Hx
(
Hx
)T ]

= H2 = h20I + 2h0h1S + h21S2 + ...

I Implies CyS = SCy , shift-invariant second-order statistics (stationarity)

I Formulation: given Ĉy , search for S that is sparse and feasible

Ŝ := argmin
S

‖S‖1 subject to: ‖SĈy − ĈyS‖F ≤ ε, S ∈ S

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0,ST = S,S ii = 0,S ij =sij , (i , j) ∈ Ω}
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Batch proximal gradient algorithm

I Dualize the constraint to arrive at the convex, composite cost F (S)

S? ∈ argmin
S∈S

F (S) := ‖S‖1+
µ

2
‖SĈy − ĈyS‖2F︸ ︷︷ ︸

g(S)

I Smooth component g(S) has an M =4µλ2max(Ĉy )-Lipschitz gradient

∇g(S) = µ
[
(SĈy − ĈyS)Ĉy − Ĉy (SĈy − ĈyS)

]
I Convergent PG updates with stepsize γ < 2

M at iteration k = 1, 2, . . .

Sk+1 = proxγ‖·‖1,S (Sk − γ∇g(Sk))

I Proximal operator (Dk := Sk − γ∇g(Sk))

[Sk+1]ij =

 0, i = j
sij , (i , j) ∈ Ω

max(0, [Dk ]ij − γ), otherwise.

Online Proximal Gradient for Learning Graphs from Streaming Signals EUSIPCO 2020 8



Online proximal gradient algorithm

I Q: Online estimation from streaming data y1, . . . , yt , yt+1, . . .?
I At time t solve the time-varying composite optimization

S?t ∈ argmin
S∈S

Ft(S) := ‖S‖1+
µ

2
‖SĈy,t − Ĉy,tS‖2F︸ ︷︷ ︸

gt(S)

I Step 1: Recursively update the sample covariance Ĉy ,t

Ĉy ,t =
1

t

(
(t − 1)Ĉy ,t−1 + yty

T
t

)
I Track St ⇒ Sliding window or exponentially-weighted moving average

I Step 2: Run a single iteration of the PG algorithm [Madden et al’18]

St+1 = proxγt‖·‖1,S
(
St − γt∇gt(St)

)
I Memory footprint and computational complexity does not grow with t
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Convergence analysis

Theorem (Madden et al’18)

Let νt :=
∥∥S?t+1−S?t

∥∥
F
capture the variability of the optimal solution. If gt is

strongly convex with constant mt (details in the paper), then for all t ≥ 1 the
iterates St generated by the online PG algorithm satisfy

‖St − S?t ‖F ≤ L̃t−1

(
‖S0 − S∗0‖F +

t−1∑
τ=0

ντ

L̃τ

)
,

where Lt = max {|1− γtmt | , |1− γtMt |} , L̃t =
∏t
τ=0 Lτ .

I Corollary: Define L̂t := maxτ=0,...,t Lτ , ν̂t := maxτ=0,...,t ντ . Then

‖St − S?t ‖F ≤
(
L̂t−1

)t
‖S0 − S?0‖F +

ν̂t

1− L̂t−1

I For mτ ≥ m, Mτ ≤ M, and γτ = 2/(mτ + Mτ ) ⇒ L̂t ≤ M−m
M+m

< 1
I Misadjustment grows with ν̂t and bad conditioning (M →∞ or m→ 0)
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Zachary’s karate club network

I Zachary’s karate club social network with N = 34 nodes
I Diffusion filter H =

∑2
l=0 hlA

l , hl ∼ U [0, 1]
I Generate streaming signals y1, . . . , yt , yt+1, . . . via yt = Hxt

I Both batch and online inference for different Ω (one edge observed)
I Dynamic St : flip 10% of the edges at random at t = 5000
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I The online scheme attains the performance of its batch counterpart
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Facebook friendship graph

I Facebook friendship graph with N = 2888 nodes. Ego-nets of 7 users

Number of observations 103 104 105 106

F-measure 0.45 0.77 0.87 0.94

I Ground-truth A (left) and St for t = 104 (center) and t = 106 (right)
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I Scalable to graphs with several thousand nodes
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Closing remarks

I Topology inference from streaming diffused graph signals
I Graph shift S and covariance Cy commute
I Promote desirable properties on S via convex criteria

I Online PG algorithm with quantifiable performance
I Estimates hover around the optimal time-varying batch solution
I Iterations scale to graphs with several thousand nodes
I Tacks the network’s dynamic behavior

I Ongoing work
I Task-oriented (i.e., classification) discriminative graph learning
I Nesterov-type accelerated algorithms
I Observations of streaming signals that are smooth on S

Extended version https://doi.org/10.3390/a13090228
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