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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
» Network as graph G = (1, £): encode pairwise relationships

> Interest here not in G itself, but in data associated with nodes in V
= Object of study is a graph signal
= As.: Signal properties related to topology of G (e.g., smoothness)
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Graph signal processing (GSP)

» Undirected G with adjacency matrix A

X2
= Ajj = Proximity between i and j

X4
O,
> Define a signal x on top of the graph

= x; = Signal value at node i ° o

X5

X3
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Graph signal processing (GSP)

» Undirected G with adjacency matrix A

X2
= Ajj = Proximity between i and j

X4
O,
> Define a signal x on top of the graph

= x; = Signal value at node i ° o

X3
» Associated with G is the graph-shift operator S = VAVT ¢ MV

= S;j=0fori#jand (i,j) €€ (local structure in G)
= Ex: A, degree D and Laplacian L = D — A matrices
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Graph signal processing (GSP)

» Undirected G with adjacency matrix A

X2
= Ajj = Proximity between i and j

X4
O,
> Define a signal x on top of the graph

= x; = Signal value at node i
&
» Associated with G is the graph-shift operator S = VAVT ¢ MV

= S;j=0fori#jand (i,j) €€ (local structure in G)
= Ex: A, degree D and Laplacian L = D — A matrices

X5

» Graph Signal Processing — Exploit structure encoded in S to process x

= Our view: GSP well suited to study (network) diffusion processes

= = = ] nar
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Motivation and context

» Network topology inference from nodal observations [Kolaczyk'09]

= Approaches use Pearson correlations to construct graphs [Brovelli04]
= Partial correlations and conditional dependence [Friedman08, Karanikolas16]
> Key in neuroscience [Sporns'10]

= Functional net inferred from activity

Santiago Segarra

[m]
ICASSP 2017



Motivation and context

» Network topology inference from nodal observations [Kolaczyk'09]
= Approaches use Pearson correlations to construct graphs [Brovelli04]

= Partial correlations and conditional dependence [Friedman08, Karanikolas16]

> Key in neuroscience [Sporns'10]

= Functional net inferred from activity

» Most GSP works: How known graph S affects signals and filters
» Here, reverse path: How to use GSP to infer the graph topology?
= Gaussian graphical models [Egilmez16]
= Smooth signals [Dongl5], [Kalofolias16]
= Stationary signals [Segarral6], [Pasdeloup16]
= Directed graphs [Mei-Moura15], [Shen16]

» Today’s talk: Guarantees of robustness in topology inference

] = =
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Our approach for topology inference

» We propose a two-step approach for graph topology identification

STEP 1.

Identify the eigenvectors |:>
of the shift

Inferred V

eigenvectors

Inferred S

network

fr

STEP 2.

Identify eigenvalues to
obtain a suitable shift

» Alternative sources for spectral templates V

> Design of graph filters [Segarra et al'15]
> Graph sparsification and Network deconvolution [Feizi et al'13]

» Small number of {x;} or specific signal features

= May lead to noisy or incomplete eigenvectors \

» How good is the recovery of S when V (instead of V) is available?
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Step 1: Obtaining the eigenvectors

> X is a stationary process on the unknown graph S

= Observed {x;} are random realizations of x

= Eigenvectors V can be recovered from covariance C,

» Signal x is the response of a linear diffusion process to a white input
oo
X =

ag H(I — oS)w

[eS) N—-1
= ZB/S’W = <Z h,S’) w = Hw
=1 1=0 1=0
» Common generative model. Heat diffusion if «, constant
» H is a graph filter on the unknown graph
Santiago Segarra

» H diagonalized by the eigenvectors V of the shift operator S
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Step 1: Obtaining the eigenvectors

» The covariance matrix of the signal x is

C. =E | (Hw(Hw)")| = HE [(ww")] H¥ = HH

» Since H is diagonalized by V, so is the covariance C,

2
C, =V v

L—-1
Z N
1=0

> Any shift with eigenvectors V can explain x

= G and its specific eigenvalues have been obscured by diffusion
Observations

(a) ldentifying S — Identifying the eigenvalues
(b) Correlation methods — Eigenvalues are kept unchanged
(c) Precision methods — Eigenvalues are inverted

Santiago Segarra
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Step 2: Obtaining the eigenvalues

» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense

N
Sy :=argmin [|S|[p s.to S= Z/\kvkvf, Ses
S,A k=1

» Set S contains all admissible scaled adjacency matrices

§:={S|S; >0, SeMN S; =0, ¥, Sy;=1}
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Step 2: Obtaining the eigenvalues
» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense

S¢ 1= argmin ||S||o
S, A

k=1

N
s.to S=) Mwvf, SeS
» Set S contains all admissible scaled adjacency matrices

§:={S|S; >0, SeMN S; =0, ¥, Sy;=1}

S; := argmin ||S|1
S, A

» Non-convex problem, relax to ¢1-norm minimization, e.g., [Tropp'06]
N

s.to S= E )\kvkvf, Ses
k=1
Santiago Segarra

» What if V is not available? = Noisy and/or incomplete V/
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Robust shift identification

» Two-step algorithm based on perfect spectral templates

= However, perfect knowledge of V may not be available
= Robust designs?

STEP 1: -
Idfe:ﬁfyht.?te CIESIVECiOn SpecTem-Perfect
of the shi Vv C, = VAVH
SpecTem-Noisy R
Vv C, = VAV o)
B
i U
Identify eigenvalues to 4 SpecTem-Incomplete s
obtain a suitable shift V=[vi, . vii, ViYL X"‘x"'] T

> Q1: How to modify the optimization in step 27
= Distance for noise, orthogonal subspace for incomplete
» Q2: Recovery guarantees?
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Incomplete spectral templates

» Partial access to V. = Only K known eigenvectors [vi, .
{stka)‘}

cs k]
min_ [IS]l1 s. to S=Sg+ X Mviwit, S€S, Spvi=0

» How does the (partial) knowledge of V affect the recovery?
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Incomplete spectral templates

» Partial access to V. = Only K known eigenvectors [vy,. .., vk]

{SS ||S||]_ s.to S= SK+Zk 1)\kvkvk , Ses, SKVk—O
RN

» How does the (partial) knowledge of V affect the recovery?

> Define P := [Py, P3] in terms of Vi, and T := [lpz, Op2y 2]
= Goal is to reformulate problem as min || Tt||; sto P't=b

S* and Sj coincide if the two following conditions are satisfied:
1) rank([P14, P>T]) = |K| + N?; and
2) There exists a constant ¢ > 0 such that

mp = | Tie(62PPT + T i) 1T oo < L.

» Cond. 1) ensures uniqueness of solution S*
» Cond. 2) guarantees existence of a dual certificate for /o optimality
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Noisy spectral templates

» We might have access to V, a noisy version of the spectral templates
= With d(-,-) denoting a (convex) distance between matrices

min ||S]1 s to =N Mi0H, SeS, d(S,8)<e

» How does the noise in V affect the recovery?
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Noisy spectral templates

» We might have access to V, a noisy version of the spectral templates

= With d(-,-) denoting a (convex) distance between matrices

[1a )

min ||S]1 s to =N Mi0H, SeS, d(S,8)<e
» How does the noise in V affect the recovery?

» Stable recovery can be established = depends on noise level
= Reformulate problem as miny [|t||; s. to |[RTt — bl <e
» Conditions 1) and 2) but based on R, guaranteed d(5*,S;) < Ce

= ¢ large enough to guarantee feasibility of S

= Constant C depends on V and the support

=] 5 = E DAy
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Social graphs from imperfect templates

» Identification of multiple social networks N = 32
= Defined on the same node set of students from Ljubljana
= Synthetic signals from diffusion processes in the graphs

» Recovery for incomplete (left) and noisy (right) spectral templates
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» Error (left) decreases with increasing nr. of spectral templates

» Error (right) decreases with increasing number of observed signals
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Performance comparisons

» Comparison with graphical lasso and sparse correlation methods
» Evaluated on 100 realizations of ER graphs with N =20 and p = 0.2
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» Graphical lasso implicitly assumes a filter H; = (pl + §)™%/2

= For this filter spectral templates work, but not as well

» For general diffusion filters Hy spectral templates still work fine

[m] [l = =
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Inferring direct relations

» Our method can be used to sparsify a given network
= Keep direct and important edges or relations
= Discard indirect relations that can be explained by direct ones

> Use eigenvectors V of given network as noisy templates

Ex: Infer contact between amino-acid residues in BPT1 BOVIN
= Use mutual information of amino-acid covariation as input

o

Ground truth Mutual info. Network deconv. Our approach

» Network deconvolution assumes a specific filter model [Feizi et al'13]
= We achieve better performance by being agnostic to this

Santiago Segarra ICASSP 2017
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Closing remarks

» Network topology inference cornerstone problem in Network Science

> Most GSP works analyze how S affect signals and filters

> Here, reverse path: How to use GSP to infer the graph topology?
» Our GSP approach to network topology inference

= Two step approach: i) Obtain V; ii) Estimate S given V
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> Here, reverse path: How to use GSP to infer the graph topology?
» Our GSP approach to network topology inference
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» How to obtain the spectral templates V
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= Other sources: network operators, network deconvolution
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Closing remarks

» Network topology inference cornerstone problem in Network Science
> Most GSP works analyze how S affect signals and filters

> Here, reverse path: How to use GSP to infer the graph topology?
» Our GSP approach to network topology inference

= Two step approach: i) Obtain V; ii) Estimate S given V
» How to obtain the spectral templates V

= Based on covariance of stationary signals

= Other sources: network operators, network deconvolution
» Infer S via convex optimization

= Objectives promotes desirable properties

= Constraints encode structure a priori info and structure

= Formulations for noisy and incomplete templates
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