

Robust Network Topology Inference

Santiago Segarra

Institute for Data, Systems, and Society
Massachusetts Institute of Technology
segarra@mit.edu
http://www.mit.edu/~segarra/

Co-authors: Antonio G. Marques, Gonzalo Mateos, and Alejandro Ribeiro

ICASSP, March 9, 2017

Santiago Segarra ICASSP 2017 1/1

Network Science analytics

Online social media

Clean energy and grid analytics

▶ Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

Network Science analytics

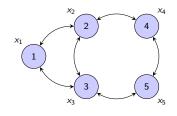
Online social media

Internet

- ▶ Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
- ▶ Network as graph $G = (V, \mathcal{E})$: encode pairwise relationships
- ightharpoonup Interest here not in G itself, but in data associated with nodes in $\mathcal V$
 - ⇒ Object of study is a graph signal
 - \Rightarrow **As.:** Signal properties related to topology of G (e.g., smoothness)

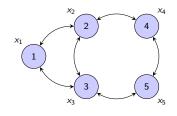
Graph signal processing (GSP)

- ► Undirected *G* with adjacency matrix **A**
 - $\Rightarrow A_{ij} = \text{Proximity between } i \text{ and } j$
- ▶ Define a signal x on top of the graph
 - $\Rightarrow x_i = \text{Signal value at node } i$



Graph signal processing (GSP)

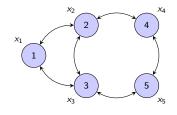
- ► Undirected G with adjacency matrix A
 - $\Rightarrow A_{ij} = \text{Proximity between } i \text{ and } j$
- ▶ Define a signal x on top of the graph
 - $\Rightarrow x_i = \text{Signal value at node } i$



- ▶ Associated with G is the graph-shift operator $S = V\Lambda V^T \in \mathcal{M}^N$
 - \Rightarrow $S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin \mathcal{E}$ (local structure in G)
 - \Rightarrow Ex: **A**, degree **D** and Laplacian **L** = **D A** matrices

Graph signal processing (GSP)

- ► Undirected G with adjacency matrix A
 - $\Rightarrow A_{ij} = \text{Proximity between } i \text{ and } j$
- ▶ Define a signal x on top of the graph
 - $\Rightarrow x_i = \text{Signal value at node } i$



- ▶ Associated with G is the graph-shift operator $S = V\Lambda V^T \in \mathcal{M}^N$
 - \Rightarrow $S_{ij} = 0$ for $i \neq j$ and $(i,j) \notin \mathcal{E}$ (local structure in G)
 - \Rightarrow Ex: **A**, degree **D** and Laplacian **L** = **D A** matrices
- ightharpoonup Graph Signal Processing ightharpoonup Exploit structure encoded in **S** to process **x**
 - ⇒ Our view: GSP well suited to study (network) diffusion processes

Motivation and context

- ► Network topology inference from nodal observations [Kolaczyk'09]
 - ⇒ Approaches use Pearson correlations to construct graphs [Brovelli04]
 - ⇒ Partial correlations and conditional dependence [Friedman08, Karanikolas16]
- Key in neuroscience [Sporns'10]
 - ⇒ Functional net inferred from activity

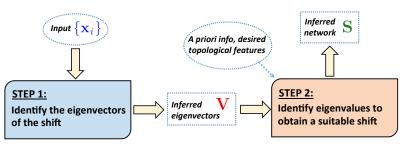
Motivation and context

- ▶ Network topology inference from nodal observations [Kolaczyk'09]
 - ⇒ Approaches use Pearson correlations to construct graphs [Brovelli04]
 - ⇒ Partial correlations and conditional dependence [Friedman08, Karanikolas16]
- Key in neuroscience [Sporns'10]
 - ⇒ Functional net inferred from activity

- ▶ Most GSP works: How known graph **S** affects signals and filters
- ▶ Here, reverse path: How to use GSP to infer the graph topology?
 - ⇒ Gaussian graphical models [Egilmez16]
 - ⇒ Smooth signals [Dong15], [Kalofolias16]
 - ⇒ Stationary signals [Segarra16], [Pasdeloup16]
 - ⇒ Directed graphs [Mei-Moura15], [Shen16]
- ► Today's talk: Guarantees of robustness in topology inference

Our approach for topology inference

▶ We propose a two-step approach for graph topology identification



- Alternative sources for spectral templates V
 - ▶ Design of graph filters [Segarra et al'15]
 - Graph sparsification and Network deconvolution [Feizi et al'13]
- \triangleright Small number of $\{x_i\}$ or specific signal features
 - \Rightarrow May lead to noisy or incomplete eigenvectors $\hat{\mathbf{V}}$
- ▶ How good is the recovery of S when \hat{V} (instead of V) is available?

Step 1: Obtaining the eigenvectors

- **x** is a stationary process on the unknown graph **S**
 - \Rightarrow Observed $\{x_i\}$ are random realizations of x
 - \Rightarrow Eigenvectors \mathbf{V} can be recovered from covariance \mathbf{C}_{\times}
- ▶ Signal **x** is the response of a linear diffusion process to a white input

$$\mathbf{x} \ = \ \alpha_0 \prod_{l=1}^{\infty} (\mathbf{I} - \alpha_l \mathbf{S}) \mathbf{w} \ = \ \sum_{l=0}^{\infty} \beta_l \mathbf{S}^l \mathbf{w} \ = \ \left(\ \sum_{l=0}^{N-1} h_l \mathbf{S}^l \right) \mathbf{w} := \mathbf{H} \mathbf{w}$$

- ▶ Common generative model. Heat diffusion if α_k constant
- ▶ **H** is a graph filter on the unknown graph
- ▶ H diagonalized by the eigenvectors **V** of the shift operator **S**

Step 1: Obtaining the eigenvectors

► The covariance matrix of the signal **x** is

$$C_{x} = \mathbb{E}\left[\left(Hw(Hw)^{H}\right)\right] = H\mathbb{E}\left[\left(ww^{H}\right)\right]H^{H} = HH^{H}$$

ightharpoonup Since **H** is diagonalized by **V**, so is the covariance \mathbf{C}_{x}

$$\mathbf{C}_{\times} = \mathbf{V} \left| \sum_{l=0}^{L-1} h_l \mathbf{\Lambda}^l \right|^2 \mathbf{V}^H$$

- ► Any shift with eigenvectors **V** can explain **x**
 - \Rightarrow G and its specific eigenvalues have been obscured by diffusion

Observations

- (a) Identifying S → Identifying the eigenvalues
- (b) Correlation methods → Eigenvalues are kept unchanged
- (c) Precision methods → Eigenvalues are inverted

Step 2: Obtaining the eigenvalues

- ▶ We can use extra knowledge/assumptions to choose one graph
 - ⇒ Of all graphs, select one that is optimal in some sense

$$\mathbf{S}_0^* := \underset{\mathbf{S}, \lambda}{\operatorname{argmin}} \ \|\mathbf{S}\|_0 \quad \text{ s. to } \mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^H, \ \mathbf{S} \in \mathcal{S}$$

Set S contains all admissible scaled adjacency matrices

$$S := \{ S \mid S_{ij} \ge 0, S \in M^N, S_{ii} = 0, \sum_{j} S_{1j} = 1 \}$$

Step 2: Obtaining the eigenvalues

- ▶ We can use extra knowledge/assumptions to choose one graph
 - ⇒ Of all graphs, select one that is optimal in some sense

$$\mathbf{S}_0^* := \underset{\mathbf{S}, \lambda}{\operatorname{argmin}} \ \|\mathbf{S}\|_0 \quad \text{ s. to } \mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^H, \ \mathbf{S} \in \mathcal{S}$$

Set S contains all admissible scaled adjacency matrices

$$S := \{ S \mid S_{ij} \ge 0, S \in M^N, S_{ii} = 0, \sum_{j} S_{1j} = 1 \}$$

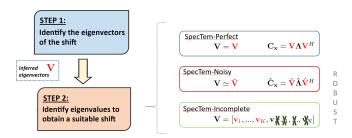
▶ Non-convex problem, relax to ℓ₁-norm minimization, e.g., [Tropp'06]

$$\mathbf{S}_1^* := \underset{\mathbf{S}, \boldsymbol{\lambda}}{\operatorname{argmin}} \ \|\mathbf{S}\|_1 \quad \text{ s. to } \ \mathbf{S} = \sum_{k=1}^N \lambda_k \mathbf{v}_k \mathbf{v}_k^H, \ \mathbf{S} \in \mathcal{S}$$

▶ What if \mathbf{V} is not available? \Rightarrow Noisy and/or incomplete $\hat{\mathbf{V}}$

Robust shift identification

- ► Two-step algorithm based on perfect spectral templates
 - ⇒ However, perfect knowledge of **V** may not be available
 - ⇒ Robust designs?



- ▶ Q1: How to modify the optimization in step 2?
 - ⇒ Distance for noise, orthogonal subspace for incomplete
- ▶ Q2: Recovery guarantees?

Incomplete spectral templates

▶ Partial access to $V \Rightarrow \text{Only } K \text{ known eigenvectors } [v_1, \dots, v_K]$

$$\min_{\{\mathbf{S},\mathbf{S}_{\bar{K}},\boldsymbol{\lambda}\}}\|\mathbf{S}\|_1 \text{ s. to } \mathbf{S} = \mathbf{S}_{\bar{K}} + \sum_{k=1}^K \lambda_k \mathbf{v}_k \mathbf{v}_k^H, \ \mathbf{S} \in \mathcal{S}, \ \mathbf{S}_{\bar{K}} \mathbf{v}_k = \mathbf{0}$$

▶ How does the (partial) knowledge of **V**_K affect the recovery?

Incomplete spectral templates

▶ Partial access to V \Rightarrow Only K known eigenvectors $[v_1, \ldots, v_K]$

$$\min_{\{\mathbf{S},\mathbf{S}_{\bar{K}},\boldsymbol{\lambda}\}}\|\mathbf{S}\|_1 \text{ s. to } \mathbf{S} = \mathbf{S}_{\bar{K}} + \sum_{k=1}^K \lambda_k \mathbf{v}_k \mathbf{v}_k^H, \ \mathbf{S} \in \mathcal{S}, \ \mathbf{S}_{\bar{K}} \mathbf{v}_k = \mathbf{0}$$

- ▶ How does the (partial) knowledge of V_K affect the recovery?
- ▶ Define $P := [P_1, P_2]$ in terms of V_K , and $\Upsilon := [I_{N^2}, \mathbf{0}_{N^2 \times N^2}]$ ⇒ Goal is to reformulate problem as $\min_{\mathbf{t}} \|\Upsilon \mathbf{t}\|_1$ s.to $\mathbf{P}^T \mathbf{t} = \mathbf{b}$

 S^* and S_0^* coincide if the two following conditions are satisfied:

- 1) $\operatorname{rank}([\mathbf{P}_{1K}^T, \mathbf{P}_2^T]) = |\mathcal{K}| + N^2$; and
- 2) There exists a constant $\delta > 0$ such that

$$\eta_{\mathbf{P}} := \|\mathbf{\Upsilon}_{\mathcal{K}^c}(\delta^{-2}\mathbf{PP}^T + \mathbf{\Upsilon}_{\mathcal{K}^c}^T\mathbf{\Upsilon}_{\mathcal{K}^c})^{-1}\mathbf{\Upsilon}_{\mathcal{K}}^T\|_{\infty} < 1.$$

- ► Cond. 1) ensures uniqueness of solution S*
- ▶ Cond. 2) guarantees existence of a dual certificate for ℓ_0 optimality

Noisy spectral templates

- We might have access to $\hat{\mathbf{V}}$, a noisy version of the spectral templates \Rightarrow With $d(\cdot, \cdot)$ denoting a (convex) distance between matrices
 - $\min_{\{\mathbf{S}, \pmb{\lambda}, \hat{\mathbf{S}}\}} \ \|\mathbf{S}\|_1 \quad \text{s. to} \ \ \hat{\mathbf{S}} = \sum_{k=1}^N \lambda_k \hat{\mathbf{v}}_k \hat{\mathbf{v}}_k^H, \quad \mathbf{S} \in \mathcal{S}, \ \ d(\mathbf{S}, \hat{\mathbf{S}}) \leq \epsilon$
- ▶ How does the noise in $\hat{\mathbf{V}}$ affect the recovery?

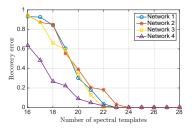
- ightharpoonup We might have access to $\hat{\mathbf{V}}$, a noisy version of the spectral templates
 - \Rightarrow With $d(\cdot, \cdot)$ denoting a (convex) distance between matrices

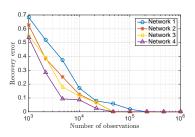
$$\min_{\{\mathbf{S}, \boldsymbol{\lambda}, \hat{\mathbf{S}}\}} \ \|\mathbf{S}\|_1 \quad \text{s. to} \ \ \hat{\mathbf{S}} = \sum_{k=1}^N \lambda_k \hat{\mathbf{v}}_k \hat{\mathbf{v}}_k^H, \quad \mathbf{S} \in \mathcal{S}, \ \ d(\mathbf{S}, \hat{\mathbf{S}}) \leq \epsilon$$

- ▶ How does the noise in $\hat{\mathbf{V}}$ affect the recovery?
- ► Stable recovery can be established ⇒ depends on noise level
 - \Rightarrow Reformulate problem as $\min_{\mathbf{t}} \|\mathbf{t}\|_1$ s. to $\|\mathbf{R}^T \mathbf{t} \mathbf{b}\|_2 \le \epsilon$
- ▶ Conditions 1) and 2) but based on R, guaranteed $d(S^*, S_0^*) \leq C\epsilon$
 - $\Rightarrow \epsilon$ large enough to guarantee feasibility of \mathbf{S}_0^*
 - \Rightarrow Constant $\mathcal C$ depends on $\hat{\mathbf V}$ and the support $\mathcal K$

Social graphs from imperfect templates

- ▶ Identification of multiple social networks N = 32
 - ⇒ Defined on the same node set of students from Ljubljana
 - ⇒ Synthetic signals from diffusion processes in the graphs
- ► Recovery for incomplete (left) and noisy (right) spectral templates

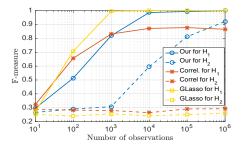




- ▶ Error (left) decreases with increasing nr. of spectral templates
- ▶ Error (right) decreases with increasing number of observed signals

Performance comparisons

- ► Comparison with graphical lasso and sparse correlation methods
 - ▶ Evaluated on 100 realizations of ER graphs with N = 20 and p = 0.2



- ▶ Graphical lasso implicitly assumes a filter $\mathbf{H}_1 = (\rho \mathbf{I} + \mathbf{S})^{-1/2}$
 - ⇒ For this filter spectral templates work, but not as well
- ► For general diffusion filters **H**₂ spectral templates still work fine

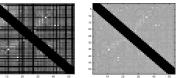
Inferring direct relations

- ▶ Our method can be used to sparsify a given network
 - ⇒ Keep direct and important edges or relations
 - ⇒ Discard indirect relations that can be explained by direct ones
- ightharpoonup Use eigenvectors $\hat{\mathbf{V}}$ of given network as noisy templates

Ex: Infer contact between amino-acid residues in BPT1 BOVIN

⇒ Use mutual information of amino-acid covariation as input

Ground truth Mutual info.



Network deconv.

Our approach

- ▶ Network deconvolution assumes a specific filter model [Feizi et al'13]
 - ⇒ We achieve better performance by being agnostic to this

Closing remarks

- ▶ Network topology inference cornerstone problem in Network Science
 - ▶ Most GSP works analyze how **S** affect signals and filters
 - ► Here, reverse path: How to use GSP to infer the graph topology?
- Our GSP approach to network topology inference
 - ⇒ Two step approach: i) Obtain V; ii) Estimate S given V

Closing remarks

- ▶ Network topology inference cornerstone problem in Network Science
 - Most GSP works analyze how S affect signals and filters
 - ► Here, reverse path: How to use GSP to infer the graph topology?
- Our GSP approach to network topology inference
 - ⇒ Two step approach: i) Obtain V; ii) Estimate S given V
- How to obtain the spectral templates V
 - ⇒ Based on covariance of stationary signals
 - ⇒ Other sources: network operators, network deconvolution

Closing remarks

- ▶ Network topology inference cornerstone problem in Network Science
 - Most GSP works analyze how S affect signals and filters
 - Here, reverse path: How to use GSP to infer the graph topology?
- Our GSP approach to network topology inference
 - ⇒ Two step approach: i) Obtain V; ii) Estimate S given V
- How to obtain the spectral templates V
 - ⇒ Based on covariance of stationary signals
 - ⇒ Other sources: network operators, network deconvolution
- Infer S via convex optimization
 - ⇒ Objectives promotes desirable properties
 - ⇒ Constraints encode structure a priori info and structure
 - ⇒ Formulations for noisy and incomplete templates