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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Network as graph G = (V,£): encode pairwise relationships
» Desiderata: Process, analyze and learn from network data [Kolaczyk'09]

> Interest here not in G itself, but in data associated with nodes in V
= The object of study is a graph signal
» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic



Graph signal processing (GSP)
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= Aj = Proximity between / and j x1
» Define a signal x on top of the graph e

= x; = Signal value at node i ° °
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Graph signal processing (GSP)

X2 X4
» Undirected G with adjacency matrix A o °
= Aj = Proximity between / and j x1
» Define a signal x on top of the graph e
= x; = Signal value at node i ° °
X3 X5
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Associated with G is the graph-shift operator S = VAV’ ¢ MV
= S =0fori#jand (i,j) & & (local structure in G)
= Ex: A, degree D and Laplacian L = D — A matrices

v

Graph Signal Processing — Exploit structure encoded in S to process x
= Our view: GSP well suited to study (network) diffusion processes

v

Take the reverse path. How to use GSP to infer the graph topology?



Topology inference: Motivation and context

> Network topology inference from nodal observations [Kolaczyk'09]

» Partial correlations and conditional dependence [Dempster'74]
> Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]

> Key in neuroscience [Sporns’'10]

= Functional net inferred from activity




Topology inference: Motivation and context

> Network topology inference from nodal observations [Kolaczyk'09]

» Partial correlations and conditional dependence [Dempster'74]
> Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]

> Key in neuroscience [Sporns’'10]

= Functional net inferred from activity

> Noteworthy GSP-based approaches

> Gaussian graphical models [Egilmez et al'16]
Smooth signals [Dong et al'15], [Kalofolias'16]
Stationary signals [Pasdeloup et al'15], [Segarra et al’16]
Directed graphs [Mei-Moura'15], [Shen et al'16]

vvyy

» Our contribution: topology inference from non-stationary graph signals



Generating structure of a diffusion process

» Signal y is the response of a linear diffusion process to an input x

y = aoJJ0-aS)x = > 58
=1 1=0

= Common generative model. Heat diffusion if a) constant

» We say the graph shift S explains the structure of signal y



Generating structure of a diffusion process

» Signal y is the response of a linear diffusion process to an input x

y = aoJJ0-aS)x = > 58
=1 1=0

= Common generative model. Heat diffusion if a) constant
» We say the graph shift S explains the structure of signal y

» Cayley-Hamilton asserts we can write diffusion as

N—1
y= (Zh,S')x = Hx
1=0

= Graph filter H is shift invariant [Sandryhaila-Moura'13]
= H diagonalized by the eigenvectors V of the shift operator



Our approach for topology inference

Inferred network S

... or their statistics -

“A priori info, desired™,
topological featur

Step 2:

Identify eigenvalues to
obtain a suitable shift

’::-.., ferred eigenvectors V.

Step 1:
Identify the eigenvectors
of the shift

» Beyond diffusion — Alternative sources for spectral templates V

> Design of graph filters [Segarra et al'15]
> Graph sparsification and network deconvolution [Feizi et al'13]



Step 2: Obtaining the eigenvalues

» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense

N
S* :=argmin f(S,\) s.to S= Z My, S€S
S,A =1

» Set S contains all admissible scaled adjacency matrices
§:={S]5; >0, SeMN 5; =0, 3, 5;=1}

=- Can accommodate Laplacian matrices as well
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Set S contains all admissible scaled adjacency matrices
§:={S]5; >0, SeMN 5; =0, 3, 5;=1}

=- Can accommodate Laplacian matrices as well

v

Problem is convex if we select a convex objective f(S, X)
Ex: Sparsity (f(S) = ||S||1), min. energy (f(S) = ||S||r), mixing (f(A) = —X2)

v

Robust recovery from imperfect or incomplete \Y; [Segarra et al'16]



Step 1: Obtaining the eigenvectors

Stationary graph signal [Marques et al’16]

Def: A graph signal y is stationary with respect to the shift S if
and only if y = Hx, where H = Z,L;OI hS" and x is white.




Step 1: Obtaining the eigenvectors

Stationary graph signal [Marques et al’16]

Def: A graph signal y is stationary with respect to the shift S if
and only if y = Hx, where H = Z,L;OI hS" and x is white.

» The covariance matrix of the stationary signal y is

C, =E[Hx(Hx)"| = HE [xx" | HT = HHT
» Key: Since H is diagonalized by V, so is the covariance C,
L1
> hn
1=0

= Estimate V from {y;} via Principal Component Analysis

2

c, =V v’




Non-stationary graph signals

» Q: What if the signal y = Hx is not stationary (i.e., x colored)?

= Matrices S and C, no longer simultaneously diagonalizable since

C, =HC,H'



Non-stationary graph signals

» Q: What if the signal y = Hx is not stationary (i.e., x colored)?

= Matrices S and C, no longer simultaneously diagonalizable since

C, =HC,H'

» Key: still H= ", hS' diagonalized by the eigenvectors V of S
= Infer V by estimating the unknown diffusion (graph) filter H

= Step 1 boils down to system identification + eigendecomposition

» Leverage different sources of information on the input signal x
(a) Input-output graph signal realization pairs {ym, Xm}
(b) Input covariance C, and positive semidefinite filter H 3= 0
(c) Input covariance C, and generic filter H



Input-output graph signal realization pairs

» Consider M diffusion processes on G, where y,,, = Hx,, (x, colored)

= Assume that realizations {y,,x,}"_, are available

» Filter H and, as byproduct, its eigenvectors V can be estimated as

M
H = argmin Z lym — Hx,,,||2
H

m=1
» Define X = [x1,...,xy] and Y = [y1,...,ym]. Then, H given by
vec(H) = (XT) @ Iy)vec(Y)

= If M>N and X is full rank, the minimizer H is unique



Inferring a brain network

» Consider a structural brain graph with N = 66 neural regions
» Signals diffused either by H; = 2,2:0 hA or Hy = r+ aA)f1
» Observe realizations {ym, Xm}M_, and vary M

» Also noisy signals y, = Hix,, + W, with w,, ~ A(0,10721)
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> Recovery error |A — A||r/||A|r small for M > 66, even with noise

= Performance roughly independent of the filter type



Input covariance and positive semidefinite filters

» Realizations of the input may be challenging to acquire

= Consider instead that Cx , = E[x,,x, ] are known

Pm

— Estimate output covariance C, ,, from realizations {yE,’,’)}p:1

» Goal is to find H such that éyﬁm and HCX’mHT are close
= Least squares yields a fourth-order cost in H — Challenging



Input covariance and positive semidefinite filters

v

Realizations of the input may be challenging to acquire

= Consider instead that Cx , = E[x,,x, ] are known

Pm

— Estimate output covariance C, ,, from realizations {yﬁ,’,’)}p:1

v

Goal is to find H such that éyﬁm and HCX’mHT are close
= Least squares yields a fourth-order cost in H — Challenging

v

Assume H is PSD, e.g, in Laplacian diffusion y = (}°,°, 5,Ll)x, B >0
= Well-defined square roots, hence H can be identified as
M
A = argmin Y [[(Cy n2€, 1y 22 = Cy M /PHC, 22
HEM«’L m=1

v

If C, 1 known, even with M =1 PSD assumption renders H identifiable



Inferring Zachary's karate club network

» Social network with N = 34 club members
> Model opinion diffusion with S = I — al, where o = A5 (L)
» For M =1,5,10 input covariances Cy , assumed given

> Estimate C, , from {yfﬁ)}f,’gl via sample averaging, varying Pp,
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» With imperfect estimates éy_,m, performance improves with M



Input covariance and generic filters

» Q: What about identifying a generic symmetric filter H?

» Filter is no longer PSD, square roots not prudent = Try to solve
M
H = argmin Z ICy,m — HC, .HT|%
HeMN m=1

» Non-convex problem can be tackled by gradient descent or ADMM

M

{H[,Hz} = argmin > [|Cym—HCemHrT |7 s to HL =Hg
H_,HRe MN m=1

= In general, identifiability cannot be guaranteed. Larger M helps



Inferring a brain network

» Consider a structural brain graph with N = 66 neural regions
» Signals diffused by H = 32 h/A!, by ~ U[0,1]

» Performance comparison against counterpart in [Segarra et al'16]
> Assumes y,, stationary = Estimates V directly from Cy ,

Recovery Error
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» Error decays with M, almost all edges in S recovered for M =9
= Outperforms algorithm agnostic to signal non-stationarities



Closing remarks

» Network topology inference from diffused non-stationary graph signals
> Graph shift S and covariance C, are not simultaneously diagonalizable

» Diffusion filter H and graph shift S still share spectral templates V
= Two step approach for topology inference
i) Obtain H=vV; ii) Given V, estimate S via convex optimization
» Estimate H under different settings
> Input-output graph signal realization pairs {ym, Xm}
> Input covariance C, and positive semidefinite filter H = 0
» Input covariance C, and generic filter H
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Diffusion filter H and graph shift S still share spectral templates V

= Two step approach for topology inference
i) Obtain H=vV; ii) Given V, estimate S via convex optimization
» Estimate H under different settings
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> Input covariance C, and positive semidefinite filter H = 0
» Input covariance C, and generic filter H

v

Ongoing work and future directions
» ldentifiability and convergence guarantees for generic H
» Extensions to directed graphs
> Inference of time-varying networks



