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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

I Interest here not in G itself, but in data associated with nodes in V
⇒ The object of study is a graph signal

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic
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Graph signal processing (GSP)

I Undirected G with adjacency matrix A

⇒ Aij = Proximity between i and j

I Define a signal x on top of the graph

⇒ xi = Signal value at node i
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I Associated with G is the graph-shift operator S = VΛVT ∈ MN

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (local structure in G )

⇒ Ex: A, degree D and Laplacian L = D− A matrices

I Graph Signal Processing → Exploit structure encoded in S to process x

⇒ Our view: GSP well suited to study (network) diffusion processes

I Take the reverse path. How to use GSP to infer the graph topology?
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Topology inference: Motivation and context

I Network topology inference from nodal observations [Kolaczyk’09]
I Partial correlations and conditional dependence [Dempster’74]
I Sparsity [Friedman et al’07] and consistency [Meinshausen-Buhlmann’06]

I Key in neuroscience [Sporns’10]

⇒ Functional net inferred from activity

I Noteworthy GSP-based approaches
I Gaussian graphical models [Egilmez et al’16]
I Smooth signals [Dong et al’15], [Kalofolias’16]
I Stationary signals [Pasdeloup et al’15], [Segarra et al’16]
I Directed graphs [Mei-Moura’15], [Shen et al’16]

I Our contribution: topology inference from non-stationary graph signals
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Generating structure of a diffusion process

I Signal y is the response of a linear diffusion process to an input x

y = α0

∞∏
l=1

(I− αlS)x =
∞∑
l=0

βlS
lx

⇒ Common generative model. Heat diffusion if αk constant

I We say the graph shift S explains the structure of signal y

I Cayley-Hamilton asserts we can write diffusion as

y =

( N−1∑
l=0

hlS
l

)
x := Hx

⇒ Graph filter H is shift invariant [Sandryhaila-Moura’13]

⇒ H diagonalized by the eigenvectors V of the shift operator
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Our approach for topology inference

I Two-step approach for graph topology identification

Step 2:
Identify eigenvalues to
obtain a suitable shift

Step 1:
Identify the eigenvectors
of the shift

Inferred eigenvectors V

Inferred network S
A priori info, desired
topological features

Signal realizations 
or their statistics

I Beyond diffusion → Alternative sources for spectral templates V
I Design of graph filters [Segarra et al’15]
I Graph sparsification and network deconvolution [Feizi et al’13]
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Step 2: Obtaining the eigenvalues

I We can use extra knowledge/assumptions to choose one graph

⇒ Of all graphs, select one that is optimal in some sense

S∗ := argmin
S,λ

f (S,λ) s. to S =
N∑

k=1

λkvkv
T
k , S ∈ S

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}

⇒ Can accommodate Laplacian matrices as well

I Problem is convex if we select a convex objective f (S,λ)

Ex: Sparsity (f (S) = ‖S‖1), min. energy (f (S) = ‖S‖F ), mixing (f (λ) = −λ2)

I Robust recovery from imperfect or incomplete V̂ [Segarra et al’16]
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Step 1: Obtaining the eigenvectors

Stationary graph signal [Marques et al’16]

Def: A graph signal y is stationary with respect to the shift S if
and only if y = Hx, where H =

∑L−1
l=0 hlSl and x is white.

I The covariance matrix of the stationary signal y is

Cy = E
[
Hx

(
Hx

)T ]
= HE

[
xxT

]
HT = HHT

I Key: Since H is diagonalized by V, so is the covariance Cy

Cy = V

∣∣∣∣ L−1∑
l=0

hlΛ
l

∣∣∣∣2 VT

⇒ Estimate V from {yi} via Principal Component Analysis
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Non-stationary graph signals

I Q: What if the signal y = Hx is not stationary (i.e., x colored)?

⇒ Matrices S and Cy no longer simultaneously diagonalizable since

Cy = HCxH
T

I Key: still H =
∑L−1

l=0 hlSl diagonalized by the eigenvectors V of S

⇒ Infer V by estimating the unknown diffusion (graph) filter H

⇒ Step 1 boils down to system identification + eigendecomposition

I Leverage different sources of information on the input signal x

(a) Input-output graph signal realization pairs {ym, xm}
(b) Input covariance Cx and positive semidefinite filter H < 0
(c) Input covariance Cx and generic filter H
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Input-output graph signal realization pairs

I Consider M diffusion processes on G , where ym = Hxm (xm colored)

⇒ Assume that realizations {ym, xm}Mm=1 are available

I Filter H and, as byproduct, its eigenvectors V can be estimated as

Ĥ = argmin
H

M∑
m=1

‖ym −Hxm‖2

I Define X = [x1, . . . , xM ] and Y = [y1, . . . , yM ]. Then, Ĥ given by

vec(Ĥ) =
(
(XT )† ⊗ IN

)
vec(Y)

⇒ If M≥N and X is full rank, the minimizer Ĥ is unique
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Inferring a brain network

I Consider a structural brain graph with N = 66 neural regions
I Signals diffused either by H1 =

∑2
l=0 hlA

l or H2 = (I+ αA)−1

I Observe realizations {ym, xm}Mm=1 and vary M

I Also noisy signals ym = Hixm +wm, with wm ∼ N (0, 10−2I)
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I Recovery error ‖A− Â‖F/‖A‖F small for M ≥ 66, even with noise

⇒ Performance roughly independent of the filter type
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Input covariance and positive semidefinite filters

I Realizations of the input may be challenging to acquire

⇒ Consider instead that Cx,m = E[xmxmT ] are known

⇒ Estimate output covariance Ĉy,m from realizations {y(p)m }Pm
p=1

I Goal is to find H such that Ĉy,m and HCx,mHT are close

⇒ Least squares yields a fourth-order cost in H → Challenging

I Assume H is PSD, e.g, in Laplacian diffusion y = (
∑∞

l=0 βlL
l)x, βl > 0

⇒ Well-defined square roots, hence H can be identified as

Ĥ = argmin
H∈MN

++

M∑
m=1

‖(Cx,m
1/2Ĉy,mCx,m

1/2)1/2 − Cx,m
1/2HCx,m

1/2‖2F

I If Cy ,1 known, even with M = 1 PSD assumption renders H identifiable
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Inferring Zachary’s karate club network

I Social network with N = 34 club members
I Model opinion diffusion with S = I− αL, where α = λ−1

max(L)
I For M = 1, 5, 10 input covariances Cx,m assumed given
I Estimate Cy,m from {y(p)m }Pm

p=1 via sample averaging, varying Pm
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I With imperfect estimates Ĉy,m, performance improves with M

Network Topology Inference from Non-stationary Graph Signals ICASSP 2017 22



Input covariance and generic filters

I Q: What about identifying a generic symmetric filter H?

I Filter is no longer PSD, square roots not prudent ⇒ Try to solve

Ĥ = argmin
H∈MN

M∑
m=1

‖Ĉy,m −HCx,mH
T‖2F

I Non-convex problem can be tackled by gradient descent or ADMM

{H∗
L,H

∗
R} = argmin

HL,HR∈MN

M∑
m=1

||Cy,m −HLCx,mHR
T ||2F s. to HL = HR

⇒ In general, identifiability cannot be guaranteed. Larger M helps
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Inferring a brain network

I Consider a structural brain graph with N = 66 neural regions
I Signals diffused by H =

∑2
l=0 hlA

l , hl ∼ U [0, 1]
I Performance comparison against counterpart in [Segarra et al’16]

I Assumes ym stationary ⇒ Estimates V directly from Ĉy,m
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I Error decays with M, almost all edges in S recovered for M = 9

⇒ Outperforms algorithm agnostic to signal non-stationarities

Network Topology Inference from Non-stationary Graph Signals ICASSP 2017 24



Closing remarks

I Network topology inference from diffused non-stationary graph signals
I Graph shift S and covariance Cy are not simultaneously diagonalizable

I Diffusion filter H and graph shift S still share spectral templates V

⇒ Two step approach for topology inference

i) Obtain Ĥ ⇒ V̂; ii) Given V̂, estimate Ŝ via convex optimization

I Estimate Ĥ under different settings
I Input-output graph signal realization pairs {ym, xm}
I Input covariance Cx and positive semidefinite filter H < 0
I Input covariance Cx and generic filter H

I Ongoing work and future directions
I Identifiability and convergence guarantees for generic H
I Extensions to directed graphs
I Inference of time-varying networks
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