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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Desiderata: Process, analyze and learn from network data [Kolaczyk09]

I Network as graph G : encode pairwise relationships

I Sometimes both G and data at the nodes are available

⇒ Leverage G to process network data ⇒ Graph Signal Processing

I Sometimes we have access to network data but not to G itself

⇒ Leverage the relation between them to infer G from the data
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Graph signal processing (GSP)

I Undirected G with adjacency matrix A

⇒ Aij = Proximity between i and j

I Define a signal x on top of the graph

⇒ xi = Signal value at node i
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I Associated with G is the graph-shift operator S = VΛVT ∈MN

⇒ Sij = 0 for i 6= j and (i , j) 6∈ E (local structure in G )

⇒ Ex: adjacency A and Laplacian L = D− A matrices

I Graph filters H : RN → RN are maps between graph signals

⇒ Polynomial in S with coefficients h ∈ RL+1 ⇒ H :=
∑L

l=0 hlS
l

I How to use GSP to infer the graph topology?
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Topology inference: Motivation and context

I Network topology inference from nodal observations [Kolaczyk09]
I Partial correlations and conditional dependence [Dempster74]
I Sparsity [Friedman07] and consistency [Meinshausen06]
I [Banerjee08], [Lake10], [Slawski15], [Karanikolas16]

I Key in neuroscience [Sporns10]

⇒ Functional net inferred from activity

I Noteworthy GSP-based approaches
I Gaussian graphical models [Egilmez16]
I Smooth signals [Dong15], [Kalofolias16]
I Stationary signals [Pasdeloup15], [Segarra16]
I Directed graphs [Mei15], [Shen16]
I Low-rank excitation [Wai18]

I Our contribution: topology inference from non-stationary graph signals
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Problem formulation

I Underlying graph G with undirected unknown GSO S

I Observe signals {yi}Ki=1 defined on the unknown graph

Setup

y1 y2 y3

Problem statement

Given observations {yi}Ki=1, determine the network S knowing that:
{yi}Ki=1 are outputs of a diffusion process on S.
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Problem formulation

I Consider an arbitrary linear network process on the GSO S

⇒ Every realization corresponds to a different input xi

yi =

(
L∑

l=0

hlS
l

)
xi = Hxi , i = 1, . . . ,K

I Goal: Recover S from the observation of K signals {yi}Ki=1

I Additional unknowns

⇒ The degree of the filter L

⇒ The filter coefficients {hl}Ll=0

⇒ The specific inputs xi ; but we know that xi ∼ N (0,Cx)
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Blueprint of our solution

STEP%2:%Find%
eigenvalues%via%
op5miza5on%

A%priori%info%and%
desirable%features%%

%

STEP%1:%Es5mate%
the%eigenvectors%of%

%
%S

Ŝ

{yi}K
i=1
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Step 1: Estimating the eigenvectors of S

I y is the output of a local diffusion process on the graph

y =α0

∞∏
l=1

(I− αlS)x =

(N−1∑
l=0

hl Sl

)
x := Hx

I Whenever the input x is white

⇒ graph stationary process on S [Marques17, Girault15, Perraudin17]

Stationary case

I The covariance Cy of y shares V with S

Cy = H2 = h2
0I + 2h0h1S + h2

1S2 + ...

I Estimate covariance from {yi}Ki=1 as Ĉy ⇒ Diagonalize ⇒ Obtain V̂
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Non-stationary graph signals

I Q: What if the signal y = Hx is not stationary (i.e., x colored)?

⇒ Matrices S and Cy no longer simultaneously diagonalizable since

Cy = HCxH

I Key: still H =
∑L−1

l=0 hlSl diagonalized by the eigenvectors V of S

⇒ Infer V by estimating the unknown diffusion (graph) filter H

⇒ Step 1 boils down to system identification + eigendecomposition

%

System%
Iden5fica5on%

%

V̂{yi}K
i=1

%

Eigendecomposi5on%
%

Ĥ
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System identification

Define Cxyx := C
1/2
x CyC

1/2
x , with eigenvectors Vxyx. If Cx is non-

singular then all admissible symmetric filters H are of the form

H = C−1/2
x C1/2

xyx Vxyxdiag(b)VT
xyxC−1/2

x ,

where b ∈ {−1, 1}N is a binary (signed) vector.

I Even if we get Cy exactly, H is not identifiable

⇒ Not surprising since we only have second moment info

I Consider having access to multiple input distributions {Cx,m}Mm=1
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Multiple input processes

I Define Am := (C
−1/2
x,m Vxyx,m)� (C

−1/2
x,m C

1/2
xyx,mVxyx,m)

Ψ :=


A1 −A2 0 · · · 0 0
0 A2 −A3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · AM−1 −AM


I bm ∈ {−1, 1}N and b = [bT

1 ,b
T
2 , . . . ,b

T
M ]T , then Ψb∗ = 0

Whenever only estimates Ĉy,m are available, we can estimate b∗ as

b̂∗ = argmin
b∈{−1,1}NM

bT Ψ̂
T

Ψ̂b,

obtaining our estimate for the filter H as

Ĥ =
1

M

M∑
m=1

C−1/2
x,m Ĉ1/2

xyx,mV̂xyx,mdiag(b̂∗m)V̂T
xyx,mC−1/2

x,m
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Boolean quadratic program

I Our problem then reduces to solving the BQP

b̂∗ = argmin
b∈{−1,1}NM

bT Ψ̂
T

Ψ̂b

I Define Ŵ = Ψ̂
T

Ψ̂ and B = bbT

min
B�0

tr(ŴB) s. to rank(B) = 1, Bii = 1, i = 1, . . . ,NM

I Drop source of non-convexity to obtain the semi-definite relaxation

B∗ = argmin
B�0

tr(ŴB) s. to Bii = 1, i = 1, . . . ,NM
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Performance guarantee

I For l = 1, . . . , L, draw zl ∼ N (0,B∗), round b̃l = sign(zl), to obtain

l∗ = argmin
l=1,...,L

b̃T
l Ŵb̃l

Let b̂∗ be the true solution of the BQP and let b̃l∗ be the output of
our method. Then,

(b̂∗)TŴb̂∗ ≤ E
[
(b̃l∗)TŴb̃l∗

]
≤ 2

π
(b̂∗)TŴb̂∗ + γ,

where γ =
(
1− 2

π

)
λmaxNM.
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Step 2: Obtaining the eigenvalues

I We can use extra knowledge/assumptions to choose one graph

⇒ Of all graphs, select one that is optimal in some sense

Ŝ := argmin
S,λ

f (S,λ) s. to S =
N∑

k=1

λkvkvT
k , S ∈ S

I Set S contains all admissible scaled adjacency matrices

S :={S |Sij ≥ 0, S∈MN, Sii = 0,
∑

j S1j =1}

⇒ Can accommodate Laplacian matrices as well

I Problem is convex if we select a convex objective f (S,λ)

Ex: Sparsity (f (S) = ‖S‖1), min. energy (f (S) = ‖S‖F ), mixing (f (λ) = −λ2)

I Robust recovery from imperfect or incomplete V̂ [Segarra16]
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Unveiling urban mobility patterns

I Detect mobility patterns in New York City from Uber pickup data

I Times and locations (N = 30) from January 1st to June 29th 2015

I M = 2 graph processes: weekday (m = 1) and weekend (m = 2) pickups

I Pickups within 6-11am as input signal x and 3-8pm as output y

Santiago Segarra 16 / 18



Conclusion

STEP%2:%Find%
eigenvalues%via%
op5miza5on%

A%priori%info%and%
desirable%features%%
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GlobalSIP’18 Symposium on GSP

Symposium on Graph Signal Processing

Topics of interest

· Graph-signal transforms and filters

· Distributed and non-linear graph SP

· Statistical graph SP

· Prediction and learning for graphs

· Network topology inference

· Recovery of sampled graph signals

· Control of network processes

· Signals in high-order and multiplex graphs

· Neural networks for graph data

· Topological data analysis

· Graph-based image and video processing

· Communications, sensor and power networks

· Neuroscience and other medical fields

· Web, economic and social networks

Paper submission due: June 17, 2018

2018 6th IEEE Global 
Conference on Signal and 
Information Processing 

November 26-28, 2018 
Anaheim, California, USA 
http://2018.ieeeglobalsip.org/ 

Organizers:

Gonzalo Mateos (Univ. of Rochester)

Santiago Segarra (MIT)

Sundeep Chepuri (TU Delft)
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