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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Desiderata: Process, analyze and learn from network data [Kolaczyk09]
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Network Science analytics

Online social media Internet Clean energy and grid analytics

> Desiderata: Process, analyze and learn from network data [Kolaczyk09]
> Network as graph G: encode pairwise relationships

» Sometimes both G and data at the nodes are available

= Leverage G to process network data =- Graph Signal Processing

» Sometimes we have access to network data but not to G itself
= Leverage the relation between them to infer G from the data
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Graph signal processing (GSP)

> Undirected G with adjacency matrix A
= Aj = Proximity between / and j

» Define a signal x on top of the graph

= x; = Signal value at node i
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Graph signal processing (GSP)

> Undirected G with adjacency matrix A

= Aj = Proximity between / and j
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» Define a signal x on top of the graph °
= x; = Signal value at node i

X3
> Associated with G is the graph-shift operator S = VAVT ¢ MV

= S;j=0fori#jand (i,j) €& (local structure in G)
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= Ex: adjacency A and Laplacian L = D — A matrices

Santiago Segarra



Graph signal processing (GSP)

> Undirected G with adjacency matrix A
= Aj = Proximity between / and j

» Define a signal x on top of the graph °
= x; = Signal value at node i

X3
> Associated with G is the graph-shift operator S = VAVT ¢ MV

= S;j=0fori#jand (i,j) €& (local structure in G)
= Ex: adjacency A and Laplacian L = D — A matrices

» Graph filters H : RN — RN are maps between graph signals

= Polynomial in S with coefficients h € R+ = H := Z;—:o hS!
» How to use GSP to infer the graph topology?

o = = ANV &4
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Topology inference: Motivation and context

» Network topology inference from nodal observations [Kolaczyk09]

» Partial correlations and conditional dependence [Dempster74]
> Sparsity [Friedman07] and consistency [Meinshausen06]

> [Banerjee08], [Lakel0], [Slawskil5], [Karanikolas16]
> Key in neuroscience [Spornsl10]

= Functional net inferred from activity
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Topology inference: Motivation and context

» Network topology inference from nodal observations [Kolaczyk09]

» Partial correlations and conditional dependence [Dempster74]
> Sparsity [Friedman07] and consistency [Meinshausen06]
> [Banerjee08], [Lakel0], [Slawskil5], [Karanikolas16]

> Key in neuroscience [Spornsl10]

= Functional net inferred from activity

> Noteworthy GSP-based approaches

» Gaussian graphical models [Egilmez16]
Smooth signals [Dongl5], [Kalofolias16]
Stationary signals [Pasdeloup15], [Segarral6]
Directed graphs [Meil5], [Shen16]
Low-rank excitation [Wail8]

vy vy vy

» Our contribution: topology inference from non-stationary graph signals

=] 5 = E DAC
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Problem formulation

» Underlying graph G with undirected unknown GSO S
» Observe signals {y;}X; defined on the unknown graph

Setup

L@ |

y2 y3
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Problem formulation

» Underlying graph G with undirected unknown GSO S
» Observe signals {y;}X; defined on the unknown graph

Setup

L@ |

y2

Y1
Problem statement

Y3

Given observations {y; }/* |, determine the network S knowing that:
{yi}<, are outputs of a diffusion process on S.
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Problem formulation

» Consider an arbitrary linear network process on the GSO S

= Every realization corresponds to a different input x;

L
yi = (Zh,S’) xi=Hx;, i=1,....K
1=0

» Goal: Recover S from the observation of K signals {y;}
» Additional unknowns

K
i=1
= The degree of the filter L

= The filter coefficients {h/}L_

Santiago Segarra

= The specific inputs x;; but we know that x; ~ N(0, C,)



Blueprint of our solution

STEP 1: Estimate
{y . }K the eigenvectors of
1 =1

S

STEP 2: Find A
eigenvalues via S
optimization
A priori info and
desirable features
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Blueprint of our solution

{Yi}fil

STEP 1: Estimate
the eigenvectors of

S V :noisy

STEP 2: Find
eigenvalues via

optimization

[0 )

A priori info and
desirable features

Sparsity and

GSO feasibility
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Step 1: Estimating the eigenvectors of S

> vy is the output of a local diffusion process on the graph
[eS) N—-1
y=og H(I —qS)x = <Z h,S’)x = Hx
=1 1=0

» Whenever the input x is white

= graph stationary process on S [Marquesl7, Girault15, Perraudin17]
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Step 1: Estimating the eigenvectors of S

> vy is the output of a local diffusion process on the graph
[eS) N—-1
y=og H(I —qS)x = <Z h,S’)x = Hx
I=1 1=0
» Whenever the input x is white

= graph stationary process on S [Marquesl7, Girault15, Perraudin17]
Stationary case

> The covariance Cy of y shares V with S

Cy = H? = K1 + 2hoh,S + h3S? + ..

Santiago Segarra

» Estimate covariance from {y;}X; as €, = Diagonalize = Obtain V

[m]

=




Non-stationary graph signals

» Q: What if the signal y = Hx is not stationary (i.e., x colored)?

= Matrices S and Cy no longer simultaneously diagonalizable since
C, =HCH
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Non-stationary graph signals

» Q: What if the signal y = Hx is not stationary (i.e., x colored)?

= Matrices S and Cy no longer simultaneously diagonalizable since
C, =HCH

> Key: still H = Z,Lz_ol hS' diagonalized by the eigenvectors V of S

= Infer V by estimating the unknown diffusion (graph) filter H

K System
{Yi i=1 —’{

= Step 1 boils down to system identification + eigendecomposition
Identification

Santiago Segarra
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System identification

Define Cyyx = C,l(/2CyC,1(/2, with eigenvectors V,y,. If C, is non-
singular then all admissible symmetric filters H are of the form

H=C'/2Cy2v

Xyx nydiag(b)v)z;xcx_l/zv
where b € {—1,1}" is a binary (signed) vector.

o = = = o>
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System identification

Define Cyyx = C,l(/2CyC,1(/2, with eigenvectors V,y,. If C, is non-
singular then all admissible symmetric filters H are of the form

H = C Y/2CL/2V,ydiag(b)V] C /2]

XyX XyX

where b € {—1,1}" is a binary (signed) vector.

> Even if we get Cy exactly, H is not identifiable
= Not surprising since we only have second moment info
» Consider having access to multiple input distributions {Cx »}M_;
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Multiple input processes

» Define A, := (C;,,ln/zvxyx,m) © (Cx_,'%v/zc

)l(gf,mvxyx,m)
A1 —A; 0 e 0 0
0 A -A; - 0 0
= . .

o 0o o

AM—l _AM
» by e{-1,1}" and b=[b],b],....b],]7, then Wb* =0

=} = = = DA
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Multiple input processes

> Define Ap := (Crn! *Vigxm) @ (Crmt 2Coipt mVieyw.m)

Ar —A; 0 0 0

0 A, —A; - 0 0
V.= . . . . . .

0 0 0 oo Ay—1 —Aw

» by e{-1,1}" and b=[b],b],....b],]7, then Wb* =0

Whenever only estimates Cy , are available, we can estimate b* as

b* = argmin bT‘ilTli!b,
be{—1,1}"

obtaining our estimate for the filter H as

M
. 1 oA . PN B
A= M;:l:c L2€L2 Vo mdiag(bs,)V] . C L/2

X, XyX,m XyX,m =Xx,m
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Boolean quadratic program

» Our problem then reduces to solving the BQP

b* = argmin leiJTlilb
be{—1,1}M
> Define W = W' W and B = bb”

gqiratr(WB) s.to rank(B)=1, Bi=1,i=1,...,NM

» Drop source of non-convexity to obtain the semi-definite relaxation

B* = argmintr(WB) s.to Bj=1,i=1,...,NM
B>0

Santiago Segarra




Performance guarantee

» For I=1,...,L, draw z; ~ N(0,B*), round b; = sign(z), to obtain

I* = argmin b Wb,
I=1,...,L

=} = = = DA
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Performance guarantee

» For /=1,...,L, draw z; ~ N(0,B*), round b, = sign(z,), to obtain

I* = argmin b Wb,
I=1,...,L

Let b* be the true solution of the BQP and let B/* be the output of
our method. Then,

(b)"Wb* < B [(B)"Wh,.| < 2(6)TWh* + 7,
™
where v = (1 — 2) X\ NM.

o & = = o™
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Blueprint of our solution

{Yi}fil

STEP 1: Estimate
the eigenvectors of

S V :noisy

STEP 2: Find
eigenvalues via

optimization

[0 )

A priori info and
desirable features

Sparsity and

GSO feasibility
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Step 2: Obtaining the eigenvalues

» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense
S :=argmin f(S,\)
S, A

N
s. to S:ZAkvkvk, Ses
k=1
» Set S contains all admissible scaled adjacency matrices

5:={8|5; >0, SeM" 5; =0, ¥;S;=1}

=- Can accommodate Laplacian matrices as well
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Step 2: Obtaining the eigenvalues

» We can use extra knowledge/assumptions to choose one graph

= Of all graphs, select one that is optimal in some sense

N

S :=argmin f(S,A)
S, A

N
s. to S:ZAkvkva, Ses
k=1

» Set S contains all admissible scaled adjacency matrices

§:={S]5; >0, SeMN 5; =0, 3, 5;=1}
=- Can accommodate Laplacian matrices as well
> Problem is convex if we select a convex objective (S, A)

Ex: Sparsity (f(S) = ||S||1), min. energy (f(S) = ||S||r), mixing (f(A) = —X2)

» Robust recovery from imperfect or incomplete V [Segarral6]

o = = = DA
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Unveiling urban mobility patterns

» Detect mobility patterns in New York City from Uber pickup data

» Times and locations (N = 30) from January 1st to June 29th 2015

» M = 2 graph processes: weekday (m = 1) and weekend (m = 2) pickups
» Pickups within 6-11am as input signal x and 3-8pm as output y

arr Fraunensaun A
3 N\

lis
Clifton passaic
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Conclusion

{y@'}fi1

STEP 1: Estimate
the eigenvectors of

S

STEP 2: Find A
eigenvalues via S
optimization
A priori info and
desirable features

Sparsity and

GSO feasibility
[m] = =




Conclusion

_’{Yi}fil

STEP 1: Estimate

the eigenvectors of
S

{Xi}ilil ~ N(O? Cx)

STEP 2: Find A
eigenvalues via S
optimization
A priori info and
desirable features

Sparsity and
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Conclusion

—{yi}E,

H(@

(15 |~ A(0,Cy)

System ID

Eigendecomposition

STEP 2: Find )
eigenvalues via S
optimization
A priori info and
desirable features

Sparsity and
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Conclusion

_’{Yi}fil

H@

{Xi}ilil ~ N(O? Cx)

System ID

Semi-definite relaxation of
Boolean quadratic program
Eigendecomposition

\%

STEP 2: Find A
eigenvalues via S
optimization
A priori info and Sparsity and
desirable features GSO feasibility
o =1 = = =
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GlobalSIP'18 Symposium on GSP

Symposium on Graph Signal Processing

Topics of interest

- Graph-signal transforms and filters - Signals in high-order and multiplex graphs

- Distributed and non-linear graph SP - Neural networks for graph data

- Statistical graph SP - Topological data analysis

- Prediction and learning for graphs - Graph-based image and video processing

- Network topology inference - Communications, sensor and power networks
- Recovery of sampled graph signals - Neuroscience and other medical fields

- Control of network processes - Web, economic and social networks

Paper submission due: June 17, 2018

[ 2018 6t IEEE Global
[ ) Conference on Signal al

Information Processing

Organizers:

Gonzalo Mateos (Univ. of Rochester)

" November 26-28, 2018
Anaheim, California, USA_ =

. & Santiago Segarra (MIT)
@ IE E E - - m 'hmr.llzlﬂa.l'eeegI%:

Sundeep Chepuri (TU Delft)
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