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Identifying network structure  
via graph signal processing

N
etwork topology inference is a significant problem in net-
work science. Most graph signal processing (GSP) efforts 
to date assume that the underlying network is known 
and then analyze how the graph’s algebraic and spectral 

characteristics impact the properties of the graph signals of 
interest. Such an assumption is often untenable beyond applica-
tions dealing with, e.g., directly observable social and infra-
structure networks; and typically adopted graph construction 
schemes are largely informal, distinctly lacking an element of 
validation. This article offers an overview of graph-learning 
methods developed to bridge the aforementioned gap, by using 
information available from graph signals to infer the underlying 
graph topology. Fairly mature statistical approaches are sur-
veyed first, where correlation analysis takes center stage along 
with its connections to covariance selection and high-dimen-
sional regression for learning Gaussian graphical models. 
Recent GSP-based network inference frameworks are also 
described, which postulate that the network exists as a latent 
underlying structure and that observations are generated as a 
result of a network process defined in such a graph. A number 
of arguably more nascent topics are also briefly outlined, 
including inference of dynamic networks and nonlinear models 
of pairwise interaction, as well as extensions to directed (di) 
graphs and their relation to causal inference. All in all, this arti-

cle introduces readers to challenges and opportunities for SP 
research in emerging topic areas at the crossroads of modeling, 
prediction, and control of complex behavior arising in net-
worked systems that evolve over time.

Introduction
Coping with the challenges found at the intersection of net-
work science and big data necessitates fundamental break-
throughs in modeling, identification, and controllability of dis-
tributed network processes—often conceptualized as signals 
defined on graphs [38]. For instance, graph-supported signals 
can model vehicle congestion levels over road networks, eco-
nomic activity observed over a network of production flows 
between industrial sectors, infectious states of individuals 
susceptible to an epidemic disease spreading on a social net-
work, gene expression levels defined on top of gene regulatory 
networks, brain activity signals supported on brain connec-
tivity networks, and fake news that diffuse in online social 
networks, just to name a few. There is an evident mismatch 
between our scientific understanding of signals defined over 
regular domains (time or space) and graph-supported signals. 
Knowledge about time series was developed over the course 
of decades and boosted by technology-driven needs in areas 
such as communications, speech processing, and control. On 
the contrary, the prevalence of network-related SP problems 
and the access to quality network data are recent events. 
Making sense of large-scale data sets from a network-centric 
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perspective will constitute a crucial step to obtaining new in-
sights in various areas of science and engineering; SP can play 
a key role in these ventures.

Under the assumption that the signals are related to 
the topology of the graph where they are supported, the 
goal of GSP is to develop algorithms that fruitfully leverage 
this relational structure and can make inferences about these 
relationships even when they are only partially observed. 
Most GSP efforts to date assume that the underlying net-
work topology is known and then analyze how the graph’s 
algebraic and spectral characteristics impact the properties 
of the graph signals of interest. This is feasible in applica-
tions involving physical networks or, when the relevant links 
are tangible and can be directly observed 
(e.g., when studying flows in transportation 
networks, monitoring cascading failures 
in power grids, maximizing influence on 
social networks, and tracking the dynamic 
structure of the World Wide Web). Howev-
er, in many other settings, the network may 
represent a conceptual model of pairwise 
relationships among entities. In exploratory 
studies of, e.g., functional brain connectiv-
ity or regulation among genes, inference of 
nontrivial pairwise interactions between signal elements [i.e., 
blood-oxygen-level dependent (BOLD) time series per 
voxel or gene expression levels, respectively] is often a goal per 
se. In these settings and beyond, arguably most graph construc-
tion schemes are largely informal, distinctly lacking an element 
of validation. Even for infrastructure networks, their sheer 
size, (un)intentional reconfiguration, in addition to privacy or 
security constraints enforced by administrators may render 
the acquisition of updated topology information a challenging 
endeavor. Accordingly, a fundamental question is how to use 
observations of graph signals to learn the underlying network 
structure, or, a judicious network model of said data facilitating 
efficient signal representation, visualization, prediction, (non-
linear) dimensionality reduction, and (spectral) clustering.

Notation 
The entries of a matrix X  and a (column) vector x  are denoted 
by Xij  and ,xi  respectively. Sets are represented by calligraphic 
capital letters, and $  stands for the cardinality of a set or the 
magnitude of a scalar. The notation ( ) , ( ) ,T H$ $  and ( )$ @  stands 
for transpose, conjugate transpose, and matrix pseudoinverse, 
respectively; 0  and 1 refer to the all-zero and all-one vectors; 
while I  denotes the identity matrix. For a vector , ( )diagx x  
is a diagonal matrix whose ith diagonal entry is ;xi  when ap-
plied to a matrix, ( )diag X  is a vector collecting the diagonal 
elements of .X  The operators , , ,9 %,  ( ),vec $  ( ),trace $  and 

·E6 @ stand for Kronecker product, Khatri–Rao (column-wise 
Kronecker) product, Hadamard (entry-wise) product, matrix 
vectorization, matrix trace, and expectation, respectively. The 
indicator function ·I" , takes the value 1 if the logical condi-
tion in the argument holds true, and 0 otherwise. For matrix 

,X X p  denotes the p, -norm of ( )vec X  X XF 2=^  stands 

for the Frobenius norm), whereas X ( )M p  is the matrix norm 
induced by the vector p, -norm. Finally, ( )range X  refers to the 
column space of .X

Graph-theoretic preliminaries and problem statement
As the data science revolution continues to gain momentum, it 
is only natural that complex signals with irregular structures 
become increasingly of interest. While there are many possible 
sources and models of added complexity, a general proximity 
relationship between signal elements is not only a plausible but 
a ubiquitous model across science and engineering.

To develop such a model, consider signals whose values are 
associated with nodes of a weighted, undirected, and connect-

ed graph. Formally, we consider the signal 
[ , , ]x xx RN

T N
1 f !=  and the generally 

unknown weighted graph ( , , ),WG V E  
where { , , }N1V f=  is a set of N ver-
tices or nodes VE V #3  is the set of 
edges. Scalar xi  denotes the signal value 
at node .i V!  The map :W RVV "# + 
from the set of unordered pairs of vertices 
to the nonnegative reals associates a weight 
W 0ij $  with the edge ( , ) ,i j E!  while 
W 0ij /  for ( , ) .i j E!  The symmetric coef-

ficients W Wij ji=  represent the strength of the connection (i.e., 
the similarity or influence) between nodes i and j. In terms of 
the signal ,x  this means that when the weight Wij  is large, the 
signal values xi  and x j  tend to be similar. Conversely, when 
the weight Wij  is small or, in the extremum, when we have 

,W 0ij =  the signal values xi  and x j  are not directly related 
except for what is implied by their separate connections to 
other nodes. Such an interpretation of the edge weights estab-
lishes a link between the signal values and the graph topology, 
which at a high level supports the feasibility of inferring G  
from signal observations.

As a more general algebraic descriptor of network structure 
(i.e., topology), associated with the graph G  one can introduce 
the so-called graph-shift operator S [48]. The shift S RN N! #  
is a matrix whose entry Sij  can be nonzero only if i j=  or if 
( , ) .i j E!  Thus, the sparsity pattern of the matrix S captures 
the local structure of ,G  but we make no specific assumptions 
on the values of its nonzero entries. Widely adopted choices 
for S are the adjacency matrix W  [48], [49], the combinatorial 
graph Laplacian : ( )diagL W1 W= -  [60], or their various 
degree-normalized counterparts. For probabilistic graphical 
models of random ,x  one could adopt covariance or precision 
matrices as graph shifts encoding conditional (in)dependence 
relationships among nodal random variables; see, e.g., [29, 
Sec. 7.3.3] and the “Statistical Methods for Network Topol-
ogy Inference” section. Other application-specific alternatives 
have been proposed as well; see [38] and the references there-
in. In any case, parameterizing graph topology via a graph-
shift operator of choice can offer additional flexibility when 
it comes to formulating constrained optimization problems to 
estimate graph structure. As it will become clear in subse-
quent sections, such a generality can have a major impact on 
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the performance and computational complexity of the ensu-
ing algorithms. All of the elements are now in place to state 
a general network topology identification problem; see “Why 
Graft Shift?”

Problem
Given a set : { }xX p p

P
1= =  of graph signal observations sup-

ported on the unknown graph ( , , )WG V E  with ,NV =  the 
goal is to identify the topology encoded in the entries of a graph-
shift operator S that is optimal in some sense. The optimality 
criterion is usually dictated by the adopted network-dependent 
model for the signals in ,X  possibly augmented by priors moti-
vated by physical characteristics of ,S  to effect statistical regu-
larization, or else to favor more interpretable graphs.

This is admittedly a very general and somewhat loose for-
mulation that will be narrowed down in subsequent sections 
as we elaborate on various criteria stemming from different 
models binding the (statistical) signal properties to the graph 
topology. Indeed, it is clear that one must assume some rela-
tion between the signals and the unknown underlying graph, 
since otherwise, the topology inference exercise would be 
hopeless. This relation will be henceforth given by statisti-
cal generative priors in the “Statistical Methods for Network 
Topology Inference” section and by properties of the signals 
with respect to the underlying graph such as smoothness (the 
“Learning Graphs From Observations of Smooth Signals” 
section) or stationarity (the “Identifying the Structure of Net-
work Diffusion Processes” section). The observations in X  
can be noisy and incomplete, and accordingly the relationship 
between N, P, and the mechanisms of data errors and missing-
ness will all play a role in the graph recovery performance. 
Mostly, the focus will be on inference of undirected and static 
graphs, an active field for which the algorithms and accompa-
nying theory are today better developed. The “Emerging Topic 
Areas” section will broaden the scope to more challenging 
directed, dynamic, and multigraphs.

GSP foundations for graph-learning advances
Here we review foundational GSP tools and concepts that 
have enabled recent topology inference advances, the subject 
of the “Statistical Methods for Network Topology Inference,” 
“Learning Graphs From Observations of Smooth Signals,” 
and “Identifying the Structure of Network Diffusion Process-
es” sections. The graph Fourier transform (GFT), graph filter 
design, implementation, and performance analysis as well as 
structured signal models induced by graph smoothness or sta-
tionarity are all active areas of research on their own right, 
where substantial progress can be made.

GFT and signal smoothness
An instrumental GSP tool is the GFT, which decomposes a 
graph signal into orthonormal components describing dif-
ferent modes of variation with respect to the graph topology 
encoded in L (or an application-dictated graph-shift operator ).S  
The GFT allows to equivalently represent a graph signal in 
two different domains—the vertex domain consisting of the 
nodes in ,V  and the graph frequency domain spanned by the 
spectral basis of .G  Therefore, signals can be manipulated in 
the frequency domain to induce different levels of interactions 
between neighbors in the network; see the “Graph Filters as 
Models of Network Diffusion” section for more information 
on graph filters.

To elaborate on this concept, consider the eigenvector 
decomposition of the combinatorial graph Laplacian L  to 
define the GFT and the associated notion of graph frequencies. 
With : ( , , )diag N1 fm mK =  denoting the diagonal matrix of 
nonnegative Laplacian eigenvalues and : [ , , ]V v vN1 f=  the 
orthonormal matrix of eigenvectors, one can always decompose 
the symmetric graph Laplacian as .L V VTK=

Definition 1 (GFT): The GFT of x  with respect to the com-
binatorial graph Laplacian L  is the signal [ , , ]x xx N

T
1 f=u u u  

defined as .V xx T=u  The inverse (iGFT) of xu  is given by 
,x Vx= u  which is a proper inverse by the orthogonality of .V

To justify the adopted graph-shift terminology, consider the 
dicycle graph whose circulant adjacency matrix Wdc  is 
zero, except for entries W 1ij =  whenever ( ) ,modi j 1N= +  
where ( )mod xN  denotes the modulus (remainder) obtained 
after dividing x  by .N  Such a graph can be used to repre-
sent the domain of discrete-time periodic signals with peri-
od .N  If ,S Wdc=  then y Sx=  implements a circular shift 
of the entries in ,x  which corresponds to a one-unit time 
delay under the aforementioned interpretation [38]. Notice 
though that, in general, S need not be neither invertible nor 
isometric, an important departure from the shift in discrete-
time SP. The intuition behind S for general graphs beyond 
the dicycle, is to capture a linear transformation that can 

be computed locally at the nodes of the graph. Formally, if 
signal y  is given by ,y Sx=  then node i  can compute yi  
as a linear combination of the signal values xj  at node sil  
neighbors : { : ( , ) } .j i jN Ei !=  For example, one can think 
of an individual’s opinion formation process as one of 
weighing in the views of close friends regarding the sub-
ject matter. As elaborated on in the “Graph Filters as 
Models of Network Diffusion” section, S also serves as the 
main building block to define more general linear shift-
invariant operators for graph signals, specifically  
graph filters [48]. The shift operator is also at the heart of 
graph stationarity notions for random network processes 
(see the “Stationary Graph Processes” section).

Why Graph Shift?
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The iGFT formula xx Vx vk
N

k k1R= = =u u  allows one to syn-
thesize x  as a sum of orthogonal frequency components .vk  
The contribution of vk  to the signal x  is the GFT coefficient 

.xku  The GFT encodes a notion of signal variability over the 
graph akin to the notion of frequency in Fourier analysis 
of temporal signals. To understand this analogy, define the 
total variation (TV) of the graph signal x  with respect to the 
Laplacian L  (also known as Dirichlet energy) as the following 
quadratic form:

 ( ) : ( ) .W x xTV x x LxT
ij

i j
i j

2= = -
!

/  (1)

The ( )TV x  is a smoothness measure, quantifying how 
much the signal x  changes with respect to the presumption on 
variability that is encoded by the weights W  [38], [60]. Topol-
ogy inference algorithms that search for graphs under which the 
observations are smooth is the subject of the “Learning Graphs 
From Observations of Smooth Signals” section. On a related 
note, some probabilistic generative models admit a smoothness 
promoting GSP interpretation; see “Learning Gaussian Graph-
ical Models With Laplacian Constraints.”

Referring back to the GFT, consider the TV of the eigenvec-
tors ,vk  which is given by ( )  .TV v v Lvk k

T
k km= =  It follows 

that the eigenvalues 0 N1 2 f1 # #m m m=  can be viewed as 
graph frequencies, indicating how the eigenvectors (i.e., fre-

quency components) vary over the graph .G  Accordingly, the 
GFT and iGFT offer a decomposition of the graph signal x  
into spectral components that characterize different levels of 
variability. To the extent that G  is a good representation of 
the relationship between the components of ,x  the GFT can 
be used to process x  by, e.g., exploiting sparse or low-dimen-
sional representations xu  in the graph frequency domain. For 
instance, the “Efficient Representation of Signals Supported 
on a Network of U.S. Economic Sectors” section illustrates 
how the disaggregated gross domestic product (GDP) signal 
supported on a graph of U.S. economic sectors can be accu-
rately represented with a handful of GFT coefficients.

Thus far, the discussion has focused on the GFT for symmet-
ric graph Laplacians L associated with undirected graphs. How-
ever, the GFT can be defined in more general contexts where the 
interpretation of components as different modes of variability is 
not as clean and Parseval’s identity may not hold, but its value 
toward yielding parsimonious spectral representations of network 
processes remains [38]. Consider instead a (possibly asymmetric) 
graph-shift operator ,S  which is assumed to be diagonalizable 
as ,S V V 1K= -  and redefine the GFT as ;x V x1= -u  oth-
erwise, one can consider Jordan decompositions [49]. Allowing  
for generic graph-shift operators reveals the encompassing nature 
of the GFT relative to the time-domain discrete Fourier transform 
(DFT), the multidimensional DFT, and the Karhunen–Loève 

There are important differences when estimating precision 
matrices subject to combinatorial graph Laplacian con-
straints. The off-diagonal elements :L W 0ij ij #=-  of a 
Laplacian must be nonpositive, so when LH =  the result-
ing Gaussian Markov random field (GMRF) is termed 
attractive; see also [61] for estimation of precision matrices 
under the constraint that all partial correlations are non-
negative. Moreover, the Laplacian matrix is always singu-
lar because ,L1 0=  which yields an improper GMRF. A 
proper GMRF can be obtained via diagonal loading of 
the sought Laplacian, which motivates the following sparse 
precision matrix estimation problem [30]

( )max log det trace  
,

1
00

mH RH H- -
* $cH

t" ,

. ,s to L IcH = +

, , .L1 L i j00 ij !#=  (S1)

Given a solution { , }cHt t  of (S1), a combinatorial Laplacian 
can be recovered as : .IL cH= -t t t  There are various proba-
bilistic interpretations of such a diagonal loading, e.g., one 
where 1c-  corresponds to the variance of white Gaussian 
noise modeling isotropic signal fluctuations; see also the 
related factor analysis model in the “Laplacian-Based Factor 

Analysis Model and Graph Kernel Regression” section. At a 
more fundamental level, when ,LH =  notice that the term

( ) ( )trace TVL x Lx xp
T

p

P

p
p

P

p
1 1

?R =
= =

t / /

in (13), (14), and (S1) favors graphs over which the observed 
signals are smooth. Other related models imposing similar 
smoothness priors will be discussed in the “Learning 
Graphs From Observations of Smooth Signals” section.

A general optimization framework for estimating (possi-
bly diagonally dominant, generalized) Laplacian matrices 
was presented in [11], along with specialized block-coor-
dinate descent algorithms to tackle the resulting graphical 
model selection problems. A customized algorithm based 
on sequential quadratic approximation was developed in 
[21] to identify the topology of sparse consensus networks, 
where the steady-state precision matrix is shown to have 
Laplacian structure. Recently, an efficient soft-thresholding 
based estimator for a sparse graph Laplacian encoded in 
the precision matrix of a GMRF was put forth in [43]. The 
procedure offers quantifiable performance, in the form of 
probabilistic recovery error bounds similar to those avail-
able for the graphical Lasso [45].

Learning Gaussian Graphical Models With Laplacian Constraints 
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transform (KLT) [also known as the principal component 
analysis (PCA) transform in statistics and data analysis]; see 
“Encompassing Nature of the GFT.” The GFT offers a unifying 
framework that subsumes all the aforementioned transforms for 
specific graphs, while it also offers a natural representation to work 
with signals of increasingly complex structure.

Graph filters as models of network diffusion
In this section, we introduce a fairly general class of linear net-
work diffusion processes on the graph G  with shift operator 

.S  Specifically, let y  be a graph signal supported on ,G  which 
is generated from an input graph signal x  via linear network 
dynamics of the form

 ( ) .y I S x S xl
l

l
l

l
0

1 0

a a b= - =
3 3

= =

% /  (2)

While S  encodes only one-hop interactions, each succes-
sive application of the shift in (2) diffuses x  over .G  The 
product and sum representations in (2) are common (and 
equivalent) models for the generation of linear network pro-
cesses. Indeed, any process that can be understood as the lin-
ear propagation of a seed signal through a static graph can 
be written in the form in (2), and subsumes heat diffusion, 
consensus, and the classic DeGroot model of opinion dynam-
ics as special cases.

The diffusion expressions in (2) are polynomials in S of 
possibly infinite degree, yet the Cayley–Hamilton theorem 

asserts that they are equivalent to polynomials of degree small-
er than N. This is intimately related to the concept of (linear 
shift-invariant) graph filter. Specifically, upon defining the 
vector of coefficients : [ , , ] ,h hh L

T
0 1f= -  a graph filter is 

defined as

 : .h h h h hH I S S S SL
L

l
l

L
l

0 1 2
2

1
1

0

1

g= + + + + =-
-

=

-

/  (3)

Hence, one has that the signal model in (2) can be rewritten as 
: ,( )hy S x Hxl

L
l

l
0
1R= ==
-  for some particular h  and .L N#  

Because of the local structure of ,S  graph filters represent lin-
ear transformations that can be implemented in a distributed 
fashion, e.g., with L 1-  successive exchanges of information 
among neighbors. Since H  is a polynomial in ,S  graph filters 
have the same eigenvectors as the shift. This implies that H  
and S commute and hence, graph filters represent shift-invari-
ant transformations [48].

Leveraging the spectral decomposition of ,S  graph filters 
can be represented in the frequency domain. Specifically, let us 
use the eigenvectors of S to define the GFT matrix : ,U V 1= -  
and the eigenvalues im  of S to define the N L#  Vandermonde 
matrix ,W  where : ( ) .ij i

j 1mW = -  The frequency representation 
of a filter h  is defined as :h hW=u  because the output y Hx=  
of a graph filter in the frequency domain is

 ( ) ( ) .diag diagy h Ux h x h x%W= = =u u u u u  (4)

Discrete-time, space, and correlated signals can be reinterpreted as graph signals supported on  particular 
graphs [Figure S1(a)–(c)].

Encompassing Nature of the GFT
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FIGURE S1. (a) A (periodic) discrete-time signal can be viewed as a graph signal supported on the dicycle, whose circulant adjacency matrix is diago-
nalized by the discrete Fourier transform (DFT) basis. (b) A spatial signal such as an image can be thought of as a graph signal supported on a regular 
lattice. (c) A zero-mean correlated signal can be interpreted as a graph signal supported on the covariance graph, where S xxE TR= = 6 @ is diago-
nalized by the orthogonal basis of principal components. Respective graph Fourier transforms reduce to the time-domain DFT, the multidimensional 
DFT, and the Karhunen–Loeve transform or principal component analysis transform.
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This identity can be seen as a counterpart of the convolution 
theorem for temporal signals, where yu  is the element-wise product 
of xu  and the filter’s frequency response .hu  To establish further 
connections with the time domain, recall the dicycle graph with 
adjacency matrix .Wdc  If ,S Wdc=  one finds that 1) y Hx=  can 
be found as the circular convolution of h and ;x  and 2) both U  
and W correspond to the DFT matrix. While in the time domain 

,U W=  this is not true for general (noncirculant) graphs.

Stationary graph processes
Having introduced the notions of graph-shift operator, GFT, 
and graph filter, we review how to use them to characterize a 
particular class of random graph signals (often referred to as 
graph processes, meaning collections of vertex-indexed ran-
dom variables). In classical SP, stationarity is a fundamental 
property that facilitates the (spectral) analysis and process-
ing of random signals by requiring that the data-generation 
mechanisms (i.e., the joint probability distributions) are in-
variant to time shifts. Because of the intrinsic irregularity of 
the graph domain and the associated challenges of defining 
translation operators, extending the notion of stationarity to 
random graph signals is no easy task [17], [34], [42].

Stationary graph processes were first defined and analyzed 
in [17]. The fundamental problem identified therein is that 
graph-shift operators do not preserve energy in general and 
therefore they cannot be isometric. This hurdle is overcome 
with the definition of an isometric graph shift that preserves 
the eigenvector space of the Laplacian but modifies its eigen-
values [16]. A stationary graph process is then defined as one 
whose probability distributions are invariant with respect to 
multiplications with the isometric shift. It is further shown that 
this definition requires the covariance matrix of the signal to 
be diagonalized by the eigenvectors of the graph shift, which 
by construction are also the eigenvectors of the isometric shift. 
This implies the existence of a graph power spectral density 
with components given by the covariance eigenvalues. The 
requirement of having a covariance matrix diagonalizable by 
the eigenvectors of the Laplacian is itself adopted as a defini-
tion in [42], where the requirement is shown to be equivalent to 
statistical invariance with respect to the nonisometric transla-
tion operator introduced in [59]. These ideas are further refined 
in [34] and extended to general normal (not necessarily Lapla-
cian) graph-shift operators.

Following the approach in [34], here we present two (equiv-
alent) definitions of weak stationarity for zero-mean graph sig-
nals. We then discuss briefly some of their implications in the 
context of network topology identification, paving the way for 
the approaches surveyed in the “Identifying the Structure of 
Network Diffusion Processes” section. To that end, we define a 
standard zero-mean white random graph signal w  as one with 
mean 0wE =6 @  and covariance : .ww IE H

wR = =6 @
Definition 2: (Weak stationarity—filtering characteriza-

tion): Given a normal shift operator ,S  a random graph signal x  
is weakly stationary with respect to S if it can be written as the 
response of a linear shift-invariant graph filter hH Sl

N
l

l
0
1R= =
-  

to a white input ,w  i.e.,

 .hx S w Hwl
l

N
l

0

1

= =
=

-

/  (5)

The definition states that stationary graph processes can 
be written as the output of graph filters when excited with a 
white input. This generalizes the well-known fact that station-
ary processes in time can be expressed as the output of linear 
time-invariant systems driven by white noise. Starting from 
(5), the covariance matrix xxxxE H

xxR = 6 @ of the random vector 
x  is given by

 ( ) ,Hw Hw H H HHE H H H
x wR R= = =6 @  (6)

which shows that the correlation structure of x  is determined 
by the filter .H  We can think of Definition 2 as a constructive 
definition of stationarity since it describes how a stationary 
process can be generated. Alternatively, one can define station-
arity from a descriptive perspective, by imposing requirements 
on the second-order moment of the random graph signal in the 
frequency domain.

Definition 3: (Weak stationarity—spectral characteriza-
tion): Given a normal shift operator ,S  a random graph signal 
x  is weakly stationary with respect to S if xR  and S are simul-
taneously diagonalizable.

The second definition characterizes stationarity from a 
graph frequency perspective by requiring the covariance xR  
to be diagonalized by the GFT basis .V  When particularized 
to time by letting ,S Wdc=  Definition 3 requires xR  to be 
diagonalized by the DFT matrix and, therefore, xR  must be 
circulant. Definitions 2 and 3 are equivalent in time. For the 
equivalence to hold also in the graph domain, it is possible 
to show one only needs S to be normal and with eigenvalues 
all distinct [34]. Moreover, it follows from Definition 3 that 
stationary graph processes are also characterized by a power 
spectral density. In particular, given a random vector x  that 
is stationary with respect to ,S V VHK=  the power spectral 
density of such a vertex-indexed process is the vector p RN! +  
defined as

 : .diagp V VH
xR= ^ h  (7)

Note that, since xR  is diagonalized by V (see Definition 3) 
the matrix V VH

xR  is diagonal, and it follows that the power 
spectral density in (7) corresponds to the (nonnegative) eigenval-
ues of the covariance matrix .0x eR  Thus, (7) is equivalent to 

( ) .diagV p VH
xR =  The latter identity shows that stationarity 

reduces the degrees of freedom of a random graph process—
the symmetric matrix xR  has ( ) /N N 1 2+  degrees of free-
dom, while p  has only N−, thus facilitating its description 
and estimation.

In closing, several remarks are in order. First, note that stat-
ing that a graph process is stationary is an inherently incom-
plete assertion because we need to specify to which graph we 
are referring. Hence, the proposed definitions depend on the 
graph-shift operator, so that a random vector x  can be station-
ary in S but not in .S S!l  White noise is, on the other hand, 
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an example of a random graph signal that is stationary with 
respect to any graph shift .S  A second, albeit related, observa-
tion is that, by definition, any random vector x  is station-
ary with respect to the shift given by the covariance matrix 

.S xR=  The same is true for the precision matrix .S 1
xR= -  

These facts will be leveraged in the “Identifying the Structure 
of Network Diffusion Processes” section to draw connec-
tions between stationary graph signal-based topology infer-
ence approaches and some of the classical statistical methods 
reviewed in the “Statistical Methods for Network Topology 
Inference” section. Third, notice that the stationarity require-
ment is tantamount to the covariance of the process being 
a polynomial in the graph-shift operator. Accordingly, under 
stationarity we ask the  mapping from S to the covariance xR  
to be smooth (an analytic function), which is a natural and 
intuitively pleasing requirement [54].

The “Identifying the Structure of Network Diffusion Pro-
cesses” section will delve into this last issue when presenting 
models for topology inference from graph stationary observa-
tions. But before getting there, in the next section, we begin 
with a survey of statistical methods based on hypothesis testing 
and probabilistic graphical models.

Statistical methods for network topology inference
As presented in the “Graph-Theoretic Preliminaries and 
Problem Statement” section, networks typically encode simi-
larities between signal elements. Thus, a natural starting point 
toward constructing a graph representation of the data is to 
associate edge weights with nontrivial correlations or coher-
ence measures between signal profiles at incident nodes. In 
this vein, informal (but popular) scoring methods rely on ad 
hoc thresholding of user-defined edgewise score functions. 
Examples include the Pearson product-moment correlation 
used to quantify gene-regulatory interactions, the Jaccard co-
efficient for scientific citation networks, the Gaussian radial 
basis function to link measurements from a sensor network, 
or mutual information to capture nonlinear interactions. Often 
thresholds are manually tuned so that the resulting graph is 
deemed to accurately capture the relational structure in the 
data; a choice possibly informed by domain experts. In other 
cases, a prescribed number k of the top relations out of each 
node are retained, leading to the so-called k-nearest-neighbor 
graphs that are central to graph smoothing techniques in ma-
chine learning.

Such informal approaches fall short when it comes to assess-
ing whether the obtained graph is accurate in some appropri-
ate (often application-dependent) sense. In other words, they 
lack a framework that facilitates validation. Recognizing this 
shortcoming, a different paradigm is to cast the graph-learn-
ing problem as one of selecting the best representative from a 
family of candidate networks by bringing to bear elements of 
statistical modeling and inference. The advantage of adopting 
such a methodology is that one can leverage existing statistical 
concepts and tools to formally study issues of identifiability, 
consistency, robustness to measurement error and sampling, as 
well as those relating to sample and computational complexi-

ties. Early statistical approaches to the network topology infer-
ence problem are the main subject of this section.

Correlation networks
Arguably, the most widely adopted linear measure of similar-
ity between nodal random variables xi  and x j  is the Pearson 
correlation coefficient defined as

 :
( ) ( )

( , )
.

cov
x x

x x
var var

ij
i j

i j
t =  (8)

It can be obtained from entries : ( , )cov x xij i jv =  in the 
covariance matrix : ( ) ( )x xE Tn nR = - -6 @ of the random 
graph signal [ , , ] ,x xx N

T
1 f=  with mean vector : .xEn = 6 @  

Given this choice, it is natural to define the correlation net-
work ( , , )WG V E  with vertices : { , , }N1V f=  and edge set 

: {( , ) : }.i j 0VE V ij# !! t=  There is some latitude on the 
definition of the weights. To directly capture the correlation 
strength between xi  and ,x j  one can set Wij ijt=  or its unnor-
malized variant ( , ) ;covW x xij i j=  alternatively, the choice 
W 0Iij ij !t= " , gives an unweighted graph consistent with .E   
In GSP applications, it is often common to refer to the correlation 
network as one with graph-shift operator : .S R=  Regardless 
of these choices, what is important here is that the definition 
of E  dictates that the problem of identifying the topology of 
G becomes one of inferring the subset of nonzero correlations.

To that end, given independent realizations : { }xX p p
P

1= =  
of x  one forms empirical correlations ijtt  by replacing the 
ensemble covariances in (8), with the entries ijvt  of the unbi-
ased sample covariance matrix estimate .Rt  As discussed pre-
viously in this section, one could then manually fix a threshold 
and assign edges to the corresponding largest values .ijtt  
Instead, a more principled approach is to test the hypotheses

 : : ,H H0 0versusij ij0 1 !t t=  (9)

for each of the ( ) /N NN 1 2
2
= -` j  candidate edges in ,G  i.e., 

the number of unordered pairs in .VV #  While ijtt  would 
appear to be the go-to test statistic, a more convenient choice 
is the Fischer score : ( ).tanhzij ij

1 t= - t  The reason is that, un-
der ,H0  one (approximately) has ~ ( , / ( ));z P0 1 3Normalij -  see 
[29, p. 210] for further details and the justification based on 
asymptotic-theory arguments. This simple form of the null dis-
tribution facilitates computation of p-values or the selection of 
a threshold that guarantees a prescribed significance level (i.e., 
false alarm probability PFA  in SP parlance) per test.

However, such individual test control procedures might not 
be effective for medium-to-large-sized graphs because the total 
number of simultaneous tests to be conducted scales as ( ) .O N2  
Leaving aside potential computational challenges, the problem 
of large-scale hypothesis testing must be addressed [10, Ch. 15]. 
Otherwise, say, for an empty graph with ,E 4=  a constant false 
alarm rate PFA  per edge will yield on average ( )O N PFA

2  spuri-
ous edges, which can be considerable if N is large. A common 
workaround is to instead focus on controlling the false discov-
ery rate (FDR) defined as
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 : ,Pr
R
R

R R0 0FDR E
f 2 2= ; 6E @  (10)

where R denotes the number of rejections among all ( )O N2  
edgewise tests conducted, and R f  stands for the num-
ber of false rejections (here representing false-edge dis-
coveries). Let p p p( ) ( )1 2 VVf# # # #^ h  be the ordered p-
values for all tests. Then a prescribed-level qFDR #  can be 
guaranteed by following the Benjamini–Hochberg FDR 
control procedure, which declares edges for all tests i such 
that ( / ( )) ;p i N N q2 1( )i # -  see e.g., [10, Sec. 15.2]. It is worth 
noting that the FDR guarantee is only valid for independent 
tests, an assumption that rarely holds in a graph-learning 
setting. Hence, results and control levels should be inter-
preted with care; see also [29, p. 212] for a discussion on 
FDR extensions when some level of dependency is present 
between tests.

With regard to the scope of correlation networks, appar-
ently, they can only capture linear and symmetric pairwise 
dependencies among vertex-indexed random variables. Most 
importantly, the measured correlations can be due to latent net-
work effects rather than from strong direct influence among a 
pair of vertices. For instance, a suspected regulatory interac-
tion among genes (i, j), inferred from their highly correlated 
microarray expression-level profiles, could be an artifact due 
to a third latent gene k that is actually regulating the expression 
of both i and j. If seeking a graph reflective of direct influence 
among pairwise signal elements, clearly correlation networks 
may be undesirable.

Interestingly, one can in principle resolve such a confound-
ing by instead considering partial correlations

 :
\ \

,
,

\cov

x ij x ij

x x ij

var varV V

V
\ij ij

i

i j

j
Vt = ^

^
^h
h

h  (11)

where \ijV  symbolically denotes the collection of all N 2-  
random variables { }xk  after excluding those indexed by nodes 
i and j. A partial correlation network can be defined in anal-
ogy to its (unconditional) correlation network counterpart, but 
with edge set : {( , ) : }.i j 0VE V \ij ijV# !! t=  Again, the 
problem of inferring nonzero partial correlations from data 

: { }xX p p
P

1= =  can be equivalently cast as one of hypothesis 
testing. With minor twists, issues of selecting a test statistic 
and a tractable approximate null distribution, as well as suc-
cessfully dealing with the multiple-testing problem, can all be 
addressed by following similar guidelines to those in the Pear-
son correlation case [29, Sec. 7.3.2].

Gaussian graphical models, covariance selection,  
and graphical Lasso
Suppose now that the graph signal [ , , ]x xx N

T
1 f=  is a Gauss-

ian random vector, meaning that the vertex-indexed random 
variables are jointly Gaussian. Under such a distributional as-
sumption, 0\ij ijVt =  is equivalent to xi  and x j  being condi-
tionally independent given all of the other variables in .\ijV  
Consequently, the partial correlation network with edges 

: {( , ) : }i j 0VE V \ij ijV# !! t=  specifies conditional in-
dependence relations among the entries of x  and is known as 
an undirected Gaussian graphical model or Gaussian Markov 
random field (GMRF).

A host of opportunities for inference of Gaussian graphical 
models emerge by recognizing that the partial correlation coef-
ficients can be expressed as

 ,\ij ij
ii jj

ij
V

i i

i
t =-  (12)

where iji  is the (i, j)th entry of the precision or concentration 
matrix : ,1H R= -  i.e., the inverse of the covariance matrix R  
of .x  The upshot of (12) is that it reveals a bijection between 
the set of nonzero partial correlations (the edges of )G  and 
the sparsity pattern of the precision matrix .H  The graphical 
model selection problem of identifying the conditional inde-
pendence relations in G  given independent identically distrib-
uted (i.i.d.) realizations : { }xX p p

P
1= =  from a multivariate 

Gaussian distribution is known as the covariance selec-
tion problem.

The term covariance selection was first coined by Demp-
ster in the early 1970s, who explored the role of sparsity in 
estimating the entries of H  via a recursive, likelihood-based 
thresholding procedure on the entries of : 1H R= -t t  [8]. Com-
putationally, this classical algorithm does not scale well to 
contemporary large-scale networks. Moreover, in high-
dimensional regimes where ,N P&  the method breaks down 
since the sample covariance matrix Rt  is rank deficient. Such 
a predicament calls for regularization, and next we describe 
graphical model selection approaches based on 1, -norm regu-
larized global likelihoods for the Gaussian setting. Neighbor-
hood-based regression methods are the subject of the “Graph 
Selection via Neighborhood-Based Sparse Linear Regres-
sion” section.

Going forward, we will assume zero-mean Normalx +  ( , ),0 R   
since the focus is on estimating graph structure encoded in the 
entries of the precision matrix .1H R= -  Under this model, the 
maximum-likelihood (ML) estimate of the precision matrix is 
given by a strictly concave log-determinant program

 ( ) ,arg max log det trace
0

MLH H RH= -
*H

t t" ,  (13)

where 0*H  requires the matrix to be positive semidefinite 
(PSD) and : ( / )P1 x xp

P
p p

T
1RR = =

t  is the empirical covariance 
matrix obtained from the data in .X  It can be shown that if Rt  
is singular, the expression in (13) does not yield the ML esti-
mator, which, in fact, does not exist. This happens, e.g., when 
N is larger than P. To overcome this challenge or otherwise 
to encourage parsimonious (hence, more interpretable) graphs, 
the graphical Lasso regularizes the ML estimator (13) with the 
sparsity-promoting 1, -norm of H  [64], yielding

 ( ) .arg max log det trace 1
0

! mH H RH H- -
*H

t t" ,  (14)
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Variants of the model penalize only the off-diagonal entries 
of ,H  or incorporate edge-specific penalty parameters 0ij 2m  
to account for structural priors on the graph topology. Estima-
tors of graphs with nonnegative edge weights are of particular 
interest; see “Learning Gaussian Graphical Models With La-
placian Constraints.”

Although (14) is convex, the objective is nonsmooth 
and has an unbounded constraint set. As shown in [2], the 
resulting complexity for off-the-shelf interior point methods 
adopted in [64] is ( ) .O N6  Additionally, interior point meth-
ods require computing and storing a Hessian matrix of size 

( )O N2  every iteration. The memory requirements and com-
plexity are thus prohibitive for even modest-sized graphs, 
calling for custom-made scalable algorithms that are capable 
of handling larger problems. Such efficient first-order cyclic 
block-coordinate descent algorithms were developed in [2] 
and subsequently refined in [14], and can comfortably tackle 
sparse problems with thousands of nodes in under a few min-
utes. In terms of performance guarantees for the recovery 
of a ground-truth precision matrix ,0H  the graphical Lasso 
estimator (14) with ( / )log N P2m =  satisfies the operator 
norm bound ( / )logd N Pmax0 2

2
#HH-t  with high probabil-

ity, where dmax  denotes the maximum nodal degree in 0H  
[45]. Support consistency has been also established pro-
vided the number of samples scales as ( );logP d Nmax

2
X=  

see [45] for details.

Graph selection via neighborhood-based  
sparse linear regression
Another way to estimate the graphical model is to find the 
set of neighbors : { : ( , ) }j i jN Ei !=  of each node i V!  
in the graph by regressing xi  against all other variables 

: [ , , , , , ] .x x x xx R\i i i N
T N

1 1 1
1f f != - +
-  To illustrate this idea, 

note that in the Gaussian setting where ~ ( , ),0Normalx 1H-  we 
have that the conditional distribution of xi  given x \i  is also 
Gaussian. The minimum mean-square error predictor of xi  
based on x \i  is ,x x xE \ \

( )
i i i

T ib=6 @  which is linear in ,x \i  and 
yields the decomposition

 ,x x ( )
\\i i

T i
ib f= +  (15)

where \if  is the zero-mean Gaussian prediction error, inde-
pendent of x \i  by the orthogonality principle. The dependen-
cy between xi  and x \i  (what specifies the incident edges to 
i V!  in )G  is thus entirely captured in the regression coef-
ficients ,R( )i N 1!b -  which are expressible in terms of the 
entries of H  as

 .( )
j
i

ii

ij
b

i

i
=-  (16)

Importantly, (16) together with (12) reveals that a candidate 
edge ( , )i j  belongs to : {( , ) : }i j 0VE V \ij ijV# !! t=  if 
and only if 0( )

j
i
!b  (and also ) .0( )

i
j
!b  Compactly, we have 

( ) : { : } ,j 0supp N( ) ( )i
j
i

i! /b b=  which suggests casting 
the problem of Gaussian graphical model selection as one of 
sparse linear regression using observations : { } .xX p p

P
1= =

The neighborhood-based Lasso method in [36] cycles over 
vertices , ,i N1 f=  and estimates [cf. (15)]

 

( ),

( ) .arg min x

supp where

x

N ( )

( )
,\

i
i

i
pi p i

T

p

P
2

1
1

RN 1
!

b

b b bm

=

- +
!b =

-

t

t

t

) 3/  
(17)

For finite data, there is no guarantee that 0( )
j
i
!bt  implies 

0( )
i
j
!bt  and vice versa, so the information in Ni

t  and N j
t  

should be combined to enforce symmetry. To declare an edge 
( , ) ,i j E!  the algorithm in [36] requires that either ( )

j
i
bt  or ( )

i
j

bt  
is nonzero (the OR rule) or alternatively consider the AND rule 
requiring that both coefficients be nonzero. Interestingly, for a 
judicious choice of m  in (17) and under suitable conditions on 
(possibly) P N%  as well as the sparsity of the ground-truth 
precision matrix ,0H  the graph can be consistently identi-
fied using either edge selection rule; see [36] for the techni-
cal details.

Comparative summary
The estimator (17) is computationally appealing because all 
N Lasso problems can be solved in parallel. Such a decom-
posability can be traced to the fact that the neighborhood-
based approach relies on conditional likelihoods per vertex 
and does not enforce the PSD constraint ,0*H  whereas the 
graphical Lasso maximizes a penalized version of the global 
likelihood ( ; ) ( ).log det traceL XH H RH= - t  For these rea-
sons, the neighborhood-based Lasso method in [36] is com-
putationally faster while the graphical Lasso tends to be more 
(statistically) efficient [64]. Another advantage of relying 
on neighborhood-based conditional likelihoods is that they 
yield tractable graph-learning approaches even for discrete or 
mixed graphical models, where computation of global likeli-
hoods is generally infeasible. For binary { , } ,1 1x N! - +  an 

1, -norm penalized logistic regression counterpart of (17) was 
proposed for Ising model selection in [44]. To summarize and 
relate the approaches for Gaussian graphical model selection 
covered, Figure 1 shows a schematic conceptual road map of 
this section.

Thus far, we have shown how to cast the graph topology 
identification problem as one of statistical inference, where 
modern topics such as multiple-testing, learning with sparsity, 
and high-dimensional model selection are prevalent. While 
fairly mature, the methods of this section may not be as famil-
iar to the broad SP community and provide the needed histori-
cal context on the graph-learning problem. Next, we shift gears 
to different topology inference frameworks that postulate the 
observed signals as either smoothly varying or stationary with 
respect to the unknown graph (the “Learning Graphs From 
Observations of Smooth Signals” and “Identifying the Struc-
ture of Network Diffusion Processes” sections, respectively). In 
the “Further Insights on Choosing a Suitable Graph-Learning 
Method” section, we come full circle and offer a big-picture 
summary of the new perspectives, connections, benefits, and 
limitations of the GSP-based approaches relative to the statisti-
cal methods of this section.
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Learning graphs from 
observations of smooth signals
In various GSP applications, it is de-
sirable to construct a graph on which 
network data admit certain regularity. 
Accordingly, in this section, we survey 
a family of topology identification ap-
proaches that deal with the follow-
ing general problem. Given a set 

: { }xX p p
P

1= =  o f  p oss ib ly  no i sy 
graph signal  observations, the goal 
is to learn a graph ( , , )WG V E  with 

NV =  nodes such that the observa-
tions in X  are smooth on .G  Recall that 
a graph signal is said to be smooth if the 
values associated with vertices inci-
dent to edges with large weights in the 
graph tend to be similar. As discussed 
in the “Graph Fourier Transform and 
Signal Smoothness” section, the so-de-
fined smoothness of a signal can be 
quantified by means of a TV measure 
given by the Laplacian quadratic form 
in (1). Such a measure offers a natural 
criterion to search for the best topology 
(encoded in the entries of the Laplacian), 
which endows the signals in X  with 
the desired smoothness property.

There are several reasons that motivate this graph-learning 
paradigm. First, smooth signals admit low-pass, band-limited 
(i.e., sparse) representations using the GFT basis [cf. the discus-
sion following (1)]. From this vantage point, the graph-learning 
problem can be equivalently viewed as one of finding efficient 
information-processing transforms for graph signals. Sec-
ond, smoothness is a cornerstone property at the heart of 
several graph-based statistical learning tasks including nearest-
neighbor prediction (also known as graph smoothing), denoising, 
semisupervised learning, and spectral clustering. The success of 
these methods hinges on the fact that many real-world graph sig-
nals are smooth. This should not come as a surprise when graphs 
are constructed based on similarities between nodal attributes 
(i.e., signals), or when the network formation process is driven 
by mechanisms such as homophily or proximity in some latent 
space. Examples of smooth graph signals include natural images 
[25], average annual temperatures recorded by meteorological 
stations [5], types of practice in a network of lawyer collabora-
tions [29, Ch. 8], and product ratings supported over similarity 
graphs of items or consumers [24].

Laplacian-based factor analysis model  
and graph kernel regression
A factor analysis-based approach was advocated in [9] to 
estimate graph Laplacians, seeking that input graph sig-
nals be smooth over the learned topologies. Specifically, let 
L V VTK=  be the eigendecomposition of the combinato-
rial Laplacian associated with an unknown, undirected graph 

( , , )WG V E  with N V=  vertices. The observed graph 
signal x RN!  is assumed to have zero mean for simplicity 
and adheres to the following graph-dependent factor analy-
sis model:

 ,x V| e= +  (18)

where the factors are given by the Laplacian eigenvectors 
,V RN!|  represents latent variables or factor loadings, and 

~ ( , )0Normal I2e v  is an isotropic error term. Adopting V  as 
the representation matrix is well motivated, since Laplacian 
eigenvectors comprise the GFT basis—a natural choice for 
synthesizing graph signals as explained in the “Graph Fourier 
Transform and Signal Smoothness” section. Through this lens, 
the latent variables in (18) can be interpreted as GFT coeffi-
cients. Moreover, the Laplacian eigenvectors offer a spectral 
embedding of the graph vertices, which is often useful for 
higher-level network analytic tasks such as data visualization, 
clustering, and community detection. The representation ma-
trix establishes a first link between the signal model and the 
graph topology. The second one comes from the adopted latent 
variables’ prior distribution | ~ ( , ),0Normal K@  where @  de-
notes pseudoinverse and thus the precision matrix is defined 
as the eigenvalue matrix K  of the Laplacian. From the GFT 
interpretation of (18), it follows that the prior on |  encourages 
low-pass bandlimited .x  Indeed, the mapping " KK @  trans-
lates the large eigenvalues of the Laplacian (those associated 
with high frequencies) to low-power factor loadings in |. On 

Testing Partial Correlations 

Covariance Selection 

Neighborhood-Based Regression 

For Each (i, j ) ∈     ×    , Test the Hypothesis

H0: ρij ν \ij  = 0 Versus H1: ρij ν \ij  ≠ 0

ρij ν \ij  = –
θij

θiiθjj√
S ρij ν \ij  ≠ 0 3 θij  ≠ 0 

Infer Nonzero Entries θij  ≠ 0 of the Precision Matrix

Θ := ∑–1

β (i ) =
j

–
θij

θii
Sβ (i ) ≠ 0 3 θij  ≠ 0 j
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FIGURE 1. The conceptual road map for a Gaussian graphical model selection with edge set 
: {( , ) : }.i j 0VE V \ij ijV# !! t= ;  The problem of inferring nonzero partial correlations can be cast as 

one of covariance selection because there is a bijection between the set of nonzero partial correlations 
(the edges of G ) and the sparsity pattern of the precision matrix .H  Another equivalent approach to 
estimate the graphical model is to find the set of neighbors Ni  of each node i V!  in the graph by 
regressing xi  against all the other variables in .x \i  The regression coefficients ( )ib  are expressible in 
terms of the entries of the precision matrix ,H  and it follows that ( ) .supp N( )i

ib =
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the other hand, small eigenvalues associated with low frequen-
cies are translated to high-power factor loadings—a manifesta-
tion of the model imposing a smoothness prior on .x

Given the observed signal ,x  the maximum a posteriori 
(MAP) estimator of the latent variables is given by ( 2v  is sub-
sequently assumed known and absorbed into the param-
eter )02a

 ,arg min x V T2
MAP| | | |a K= - +

|
$ .  (19)

which is, of course, parameterized by the unknown eigenvec-
tors and eigenvalues of the Laplacian. With :y V|=  denoting 
the predicted graph signal (or error-free representation of ),x  it 
follows that [cf. (1)]

 ( ).TVy V V y y Ly yT T T T| |K K= = =  (20)

Consequently, one can interpret the MAP estimator 
(19) as a Laplacian-based TV denoiser of ,x  which effec-
tively imposes a smoothness prior on the recovered signal 

.y V|=  One can also view (19) as a kernel ridge-regression 
estimator with (unknown) Laplacian kernel :K L= @  [29, 
Sec. 8.4.1].

Building on (19) and making the graph topology an explicit 
variable in the optimization, the idea is to jointly search for the 
graph Laplacian L  and a denoised representation y V|=  of 

,x  thus solving

 .min x y y Ly
,

T2

L y
a- +$ .  (21)

The objective function of (21) encourages both 1) data fidel-
ity through a quadratic loss penalizing discrepancies between 
y  and the observation ;x  and 2) smoothness on the learned 
graph via TV regularization. Given data in the form of multiple 
independent observations : { }xX p p

P
1= =  that we collect in the 

matrix [ , , ] ,X x x RP
N P

1 f != #  the approach of [9] is to solve

min
2

trace  X Y Y LY L
, F

T
F

2 2

L Y
a

b
- + +^ h' 1

 . ( ) , , , ,N L L i j01 0s to trace L L ij ji !#= = =  (22)

which imposes constraints on L  so that it qualifies as a valid 
combinatorial Laplacian. Notably, ( ) Ntrace L =  avoids the 
trivial all-zero solution and essentially fixes the 1, -norm of 

.L  To control the sparsity of the resulting graph, a Frobenius-
norm penalty is added to the objective of (22) to shrink its edge 
weights. The tradeoff between data fidelity, smoothness and 
sparsity is controlled via the positive regularization parameters 
a  and .b

While not jointly convex in L  and ,Y  (22) is biconvex, 
meaning that, for fixed L , the resulting problem with respect 
to Y  is convex and vice versa. Accordingly, the algorithmic 
approach of [9] relies on alternating minimization, a proce-
dure that converges to a stationary point of (22). For fixed 

,Y  (22) reduces to a quadratic program (QP) subject to linear 
constraints, which can be solved via interior point methods. 

For large graphs, scalable alternatives include the alternating-
direction method of multipliers (ADMM) or primal-dual solv-
ers of the reformulation described in the following section; 
see (25). For fixed ,L  the resulting problem is a matrix-valued 
counterpart of (21). The solution is given in closed form as 

( ) ,Y I L X1a= + -  which represents a low-pass, graph filter-
based smoother of the signals in .X

Signal smoothness meets edge sparsity
An alternative approach to the problem of learning graphs un-
der a smoothness prior was proposed in [25]. Recall the data 
matrix [ , , ] ,X x x RP

N P
1 f != #  and let x Ri

T P1! #r  denote its 
ith row collecting those P measurements at vertex i. The key 
idea in [25] is to establish a link between smoothness and spar-
sity, revealed through the identity

 ( ) race( ) ,
2
1TV tx X LX W Z

p

P

p
T

1
1%= =

=

/  (23)

where the Euclidean-distance matrix Z RN N! #
+  has entries 

: , , .Z i jxx Vij i j
2

!= -r r  The intuition is that, when the 
given distances in Z  come from a smooth manifold, the cor-
responding graph has a sparse edge set, with preference giv-
en to those edges (i, j) associated with smaller distances .Zij  
Identity (23) offers an advantageous way of parameterizing 
graph-learning formulations under smoothness priors, because 
the space of adjacency matrices can be described via simpler 
(meaning entry-wise decoupled) constraints relative to its La-
placian counterpart. It also reveals that, once a smoothness 
penalty is included in the criterion to search for ,G  adding an 
extra sparsity-inducing regularization is essentially redundant.

Given these considerations, a general-purpose model for 
learning graphs is advocated in [25], i.e.,

( )min log
2

1 1W Z W WT
F1
2

W
% a

b
- +' 1

 . ( ) , , ,W W i j00s to diag W ij ji !$= =  (24)

where a  and b  are tunable regularization parameters. Unlike 
[9], the logarithmic barrier on the vector W1 of nodal degrees 
enforces each vertex to have at least one incident edge. The 
Frobenius-norm regularization on the adjacency matrix W  
controls the graph’s edge sparsity pattern by penalizing larger 
edge weights. Overall, this combination forces degrees to be 
positive but does not prevent most individual edge weights 
from becoming zero. The sparsest graph is obtained when 

,0b =  and edges form preferentially between nodes with 
smaller ,Zij  similar to a 1-nearest neighbor graph.

The convex optimization problem (24) can be solved effi-
ciently with complexity ( )O N2  per iteration, by leveraging prov-
ably convergent primal-dual solvers amenable to parallelization. 
The optimization framework is quite general, and it can be used 
to scale other related state-of-the-art graph- learning problems. 
For instance, going back to the alternating minimization algo-
rithm in the “Laplacian-Based Factor Analysis Model and Graph 
Kernel Regression” section, recall that the computationally 
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intensive step was to minimize (22) with respect to ,L  for fixed 
.Y  Leveraging (23) and noting that ,L W1 WF F

2 2 2
= +  

said problem can be equivalently reformulated as

( { )}Nmin log
2

1W Z W W WI F1
2 2

1
W

% < <
b

- + += ` j' 1

 . ( ) , , ,W W i j00s to diag W ij ji !$= =  (25)

As shown in [25, Sec. 5], (25) has a favorable structure that 
can be exploited to develop fast and scalable primal-dual algo-
rithms to bridge the computational gap in [9].

Graph learning as an edge subset selection problem
Consider identifying the edge set E  of an undirected, unweight-
ed graph ( , )G V E  with NV =  vertices. The observations 

[ , , ]X x x RP
N P

1 f != #  are assumed to vary smoothly on the 
sparse graph G and the actual number of edges E  is assumed  
to be considerably smaller than the maximum possible num-
ber of edges : ( ) / .NM N N

2
1 2= = -` j  We describe the ap-

proach in [5], whose idea is to cast the graph-learning problem 
as one of edge subset selection. As we show in the sequel, it 
is possible to parametrize the unknown graph topology via a 
sparse edge-selection vector. This way, the model provides an 
elegant handle to directly control the number of edges in .G

Let : [ , , ]B b b RM
N M

1 f != #  be the incidence matrix of 
the complete graph on N  vertices. The rows of the incidence 
matrix index the vertices of the graph and the columns its 

( ) /M N N 1 2= -  edges. If edge m  connects nodes i  and ,j  e.g., 
the mth column : [ , , ] { , , }b b b 1 0 1m m mN

T N
1 f != -  is a vector 

of all zeros except for b 1mi =  and b 1mj =-  (the sign choice 
is inconsequential for undirected graphs). Next, consider the 
binary edge selection vector : [ , , ] { , } ,0 1M

T M
1 f !~ ~ ~=  

where 1m~ =  if edge ,m E!  and 0m~ =  otherwise. In other 
words, we have ( ) : { : } .supp m 0E m !/ ~ ~=  Using the col-
umns of ,B  one can express the Laplacian of candidate graphs 
as a function of ,~  i.e.,

 ( ) .L b bm m m
T

m

M

1

~ ~=
=

/  (26)

For example, an empty graph with E 4=  corresponds to ,0~ =  
while the complete graph is recovered by setting .1~ =  Here 
we are interested in sparse graphs having a prescribed number 
of edges ,K M%  which means : ( ) .supp K0~ ~= =

We can now formally state the problem studied in [5]. Given 
graph signals : { } ,xX p p

P
1= =  determine an undirected and 

unweighted graph G with K  edges such that the signals in X  
exhibit smooth variations on .G  A natural formulation given 
the model presented so far is to solve the optimization problem

 ( ( ) ), . .min trace s toX L X K
{ , }

T

0 1
0

M
~ ~ =

!~
 (27)

The problem in (27) is a cardinality-constrained Boolean 
optimization, hence nonconvex. Interestingly, the exact solu-
tion can be efficiently computed by means of a simple rank 
ordering procedure. In a nutshell, the solver entails comput-

ing edge scores ( ( ) )trace X b b Xcm
T

m m
T=  for all candidate 

edges and setting 1m~ =  for those K  edges having the 
smallest scores. Computationally, the sorting algorithm costs 

( ) .logO K K
One can also consider a more pragmatic setting where the 

observations x yp p pe= +  are corrupted by Gaussian noise 
,pe  and it is the unobservable noise-free signal y p  that varies 

smoothly on ,G  for , , .p P1 f=  In this case, selection of the 
best K-sparse graph can be accomplished by solving
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T
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M
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a- +

=
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(28)

which can be tackled using alternating minimization or as a 
semidefinite program obtained via convex relaxation [5].

Comparative summary
Relative to the methods in the “Laplacian-Based Factor Analy-
sis Model and Graph Kernel Regression” and “Signal Smooth-
ness Meets Edge Sparsity” sections, edge sparsity can be ex-
plicitly controlled in (27), and the graph-learning algorithm is 
simple (at least in the noise-free case). There is also no need 
to impose Laplacian feasibility constraints as in (22), because 
the topology is encoded via an edge selection vector. However, 
(27) does not encourage connectivity of ,G  and there is no 
room for optimizing edge weights. The framework in [25] is 
not only attractive due to is computational efficiency but also 
due to its generality. In fact, through the choice of ( )Wg  in the 
advocated inverse problem [cf. (24) and (25)]

 
( ) ,

( ) , , ,

min

s. to diag

W Z W

W

g

W W i j00
W

ij ji
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!

<

$

< +

= =

" ,
 

(29)

one can span a host of approaches to graph inference from 
smooth signals. Examples include the Laplacian-based fac-
tor analysis model [9] in (25), and common graph construc-
tions using the Gaussian kernel to define edge weights 

: /exp x xW i jij
2 2< < v= - -r r^ h  a re recovered for ( )Wg =

( ( ) ) .logW W 1,i j ij ij
2v R -

Next, we search for graphs under which the observed sig-
nals are stationary. This more flexible model imposes struc-
tural invariants that call for innovative approaches that operate 
in the graph spectral domain.

Identifying the structure of network  
diffusion processes
Here we present a novel variant of the problem of inferring a 
graph from vertex-indexed signals. In previous sections, the 
relation between the signals in X  and the unknown graph G  
was given by statistical generative priors (see the “Statistical 
Methods for Network Topology Inference” section) or by prop-
erties of the signals with respect to the underlying graph such 
as smoothness (see the “Learning Graphs From Observations 
of Smooth Signals” section). Here instead, we consider observa-
tions of linear diffusion processes in ,G  such as those introduced 
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in the “Graph Filters as Models of Network Diffusion” section. 
As we will see, this is a more general model where we require 
the covariance structure of the observed signals to be explained 
by the unknown network structure. This loose notion of explana-
tory capabilities of the underlying graph, when formalized, has 
strong ties with the theory of stationary processes on graphs out-
lined in the “Stationary Graph Processes” section. Stationarity 
and graph-filtering models can be accurate for real-world signals 
generated through a physical process akin to network diffusion. 
Examples include information cascades spreading over social 
networking platforms [1], vehicular mobility patterns [56], [63], 
consensus dynamics [21], and progression of brain atrophy [22].

Learning graphs from observations of  
stationary graph processes
As in previous sections, we are given a set : { }xX p p

P
1= =  of 

graph signal observations and wish to infer the symmetric 
shift S V VTK=  associated with the unknown underlying 
graph .G  We assume that x p  comes from a network diffusion 
process in .S  Formally, consider a random network process 
x S w Hwhl

L
l

l
0
1R= ==
-  driven by a zero-mean input .w  We as-

sume for now that w  is white, i.e., .ww IEw
TR = =6 @  This as-

sumption will be lifted in the “Diffused Nonstationary Graph 
Signals” section. As explained in the “Graph Filters as Models 
of Network Diffusion” section, the graph filter H  represents 
a global network transformation that can be locally explained 
by the operator .S  The goal is to recover the direct relations 
described by S from the set X  of P-independent samples of 
the random signal .x  We consider the challenging setup when 
we have no knowledge of the filter degree L 1-  or the coef-
ficients ,h  nor do we get to observe the specific realizations of 
the inputs { } .w p p

P
1=

The stated problem is severely underdetermined and noncon-
vex. It is underdetermined because for every observation x p  we 
have the same number of unknowns in the input w p  on top of 
the unknown filter coefficients h and the shift ,S  the latter being 
the quantity of interest. The problem is nonconvex because the 
observations depend on the product of our unknowns and, nota-
bly, on the first L 1-  powers of .S  To overcome the underdeter-
minacy we will rely on statistical properties of the input process 
w  as well as on some imposed regularity on the graph to be 
recovered, such as edge sparsity or least-energy weights. To sur-
mount the nonconvexity, we split the overall inference task by 
first estimating the eigenvectors of S—that remain unchanged 
for any power of S—and then its eigenvalues. This naturally 
leads to a two-step process whereby we 1) leverage the observa-
tion model to estimate V  from the signals ;X  and 2) combine 
V  with a priori information about G and feasibility constraints 
on S to obtain the optimal eigenvalues .K  We specify these two 
steps next; see Figure 2(a) for a schematic view of the strategy 
in [53]. A similar two-step approach was proposed in [40], but it 
relies on a different optimization problem in (2).

Step 1: Inferring the eigenvectors
From the described model, it follows that the covariance ma-
trix xR  of the signal x  is given by
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(30)

where we have used IwR =  and the fact that H HT=  since  
S  is assumed to be symmetric. It is apparent from (30) that 
the eigenvectors (i.e., the GFT basis) of the shift S and the co-
variance xR  are the same. Hence, the difference between ,xR  
which includes indirect relationships between signal elements, 
and ,S  which contains exclusively direct relationships, is only 
on their eigenvalues. While the underlying diffusion in H  ob-
scures the eigenvalues of S as per the frequency response of 
the filter, the eigenvectors V  remain unaffected in xR  as tem-
plates of the original spectrum. So, if we have access to ,xR  
then V  can be obtained by performing an eigendecomposition 
of the covariance. The attentive reader will realize that obtain-
ing xR  perfectly from a finite set of signals X  is, in general, 
infeasible. Hence, in practice we estimate the covariance, e.g., 
via the sample covariance xRt  leading to a noisy version of the 
eigenvectors .Vt  The robustness of this two-step process to the 
level of noise in Vt  is analyzed in the “Step 2: Inferring the 
Eigenvalues” section.

The fact that S  and xR  are simultaneously diagonaliz-
able implies that x  is a stationary process on the unknown 
graph-shift operator S (cf. Definition 3). Consequently, one 
can restate the graph inference problem as one of finding a 
shift on which the observed signals are stationary. Moreover, 
(30) reveals that the assumption on the observations being 
explained by a diffusion process is in fact more general than 
the statistical counterparts outlined in the “Statistical Methods 
for Network Topology Inference” section; see “Diffusion Pro-
cesses as an Overarching Model.” Smooth signal models are 
subsumed as special cases found with diffusion filters having 
a low-pass response.

Step 2: Inferring the eigenvalues
From the previous discussion, it follows that any S  that 
shares the eigenvectors with xR  can explain the observa-
tions, in the sense that there exist filter coefficients h  that 
generate x  through a diffusion process on .S  In fact, the 
covariance matrix xR  itself is a graph that can generate x  
through a diffusion process and so is the precision matrix 

1
xR-  (of partial correlations under Gaussian assumptions). 

To sort out this ambiguity, which amounts to selecting the 
eigenvalues of ,S  we assume that the shift of interest is opti-
mal in some sense [53]. Our idea is then to seek for the shift 
operator S  that 1) is optimal with respect to (often convex) 
criteria ( );f S  2) belongs to a convex set S  that specifies 
the desired type of shift operator (e.g., the adjacency W  or 
Laplacian );L  and 3) has the prescribed V  as eigenvectors. 
Formally, one can solve

 ( ), ,min f s.toS S V V
,

T

S S
K=

! K
 (31)

which is a convex optimization problem provided ( )f S  is convex.
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Within the scope of the signal model (2), the formulation (31) 
entails a general class of network topology inference problems 
parametrized by the choices of ( )f S  and .S  The selection of 

( )f S  enables the incorporation of physical characteristics of the 
desired graph into the formulation, while being consistent with 
the spectral basis .V  For instance, the matrix (pseudo) norm 

( ) ,f S S 0< <=  which counts the number of nonzero entries in ,S  
can be used to minimize the number of edges, while ( )f S S 1< <=  
is a convex proxy for the aforementioned edge cardinality 
function. Alternatively, the Frobenius norm ( )f S S F< <=  can 
be adopted to minimize the energy of the edges in the graph, 
or ( ) ,f S S< <= 3  which yields shifts S associated with graphs 
of uniformly low-edge weights. This can be meaningful when 
identifying graphs subject to capacity constraints. Finally, one 
can minimize ( ) ,f S 2m=-  where 2m  is the second-smallest 
eigenvalue of .S  If S is further constrained to be a combina-
torial Laplacian via { , , },S i j0 00  forS S S1S ij !#; *= =  
then I S-  is a shift with fast mixing times. Alternatively, to 
impose that S represents the adjacency matrix of an undirected 
graph with nonnegative weights and no self-loops, one can set 

: { , , }.S S S S 10 0  SS ij ji ii jj 1; $ R= = ==  The first condition 
in S  encodes the nonnegativity of the weights and incorpo-
rates that G is undirected; hence, S must be symmetric. The 
second condition encodes the absence of self-loops thus, each 
diagonal entry of S must be null. Finally, the last condition 
fixes the scale of the admissible graphs by setting the weight-
ed degree of the first node to 1 and rules out the trivial solu-
tion  .0S =

Robust network topology inference
The optimization problem formulated in (31) assumes perfect 
knowledge of the eigenvectors ,V  which is only feasible if we 
have access to the ensemble covariance matrix .xR  In practice, 

we form the empirical covariance xRt  that results in a noisy ei-
genbasis .Vt  It is thus prudent to account for the (finite sample) 
discrepancies between Vt  and the actual eigenvectors of .S  To 
that end, we modify (31) by relaxing the equality constraint 
to obtain

 : ( ), , ,arg min df s.toS S S V V*

,

T

S S

# eK=
! K

t t^ h  (32)

where ( , )d $$  is a convex matrix distance and e  is a tuning 
parameter chosen based on a priori information on the noise 
level. The form of the distance ( , )d $$  depends on the particular 
application. For instance, if S VV T

F< <K- t t  is chosen, the focus 
is more on the similarities across the entries of the compared 
matrices, while S V V ( )

T
M 2< <K- t t  focuses on their spectrum.

One may ponder how the noise level in Vt  affects the recov-
ery performance of .S  To provide an answer, we focus on the 
particular case of sparse shifts, where we adopt ( )f S S 1< <=  as 
a criterion in (32) and ( )d ,S V V S V VT T

F< <K K-=t t t t  to obtain

 : , .arg min s.toS S S V V*

,

T
F1 1

S S

< < < < # eK= -
!K

t t  (33)

We denote by S*
0  the sparsest S with the true eigenbasis 

,V  and we assume that e  is chosen large enough to ensure 
that S*

0  belongs to the feasibility set of (33). It was shown 
in [53] that under two conditions on matrices derived from 
Vt  it can be guaranteed that ,CS S* *

1 0 11< < e-  where C  is a 
well-defined constant that depends, among other things, on 
the size of the support of the sparse graph .S*

0  This means 
that, when given noisy versions Vt  of the eigenvectors, the 
recovered shift is guaranteed to be at a distance from the de-
sired shift bounded by the tolerance e  times a constant. This 
also implies that, for fixed ,N  as the number of observed 
signals P  increases, we recover the true shift. In particular, 

In some settings, such as opinion formation in 
social networks, it is reasonable to assume the 
existence of a bona fide diffusion process that 
shapes the observed signals. For instance, individ-
uals observe the opinions of their neighbors and, 
as influences or beliefs propagate across the net-
work, they form their own opinion. However, the 
fact that we are modeling the observations as 
being represented by the output of a diffusion pro-
cess does not require such a diffusion process to 
be the true generative mechanism. Indeed, this 
assumption is valid in the absence of “any” gener-
ative model since (30) reveals that it translates 
into concrete statistical requirements on the 
observed process (Figure S2).

Diffusion Processes as an Overarching Model 

General Diffusion Framework

S ∑x
φ

φ is an analytic matrix function.

Particular Cases

φ (S) = SCorrelation Networks

φ (S) = S–1Covariance Selection

φ (S) = (I – S)–2Symmetric Structural
Equation Models

FIGURE S2. Assuming a diffusion-based representation is equivalent to assuming 
that the covariance xR  of the observed process is an analytic matrix function z  
of the unknown shift .S  In this sense, correlation networks ,SxR =^ h  covariance 
selection ,S 1

xR = -^ h  and symmetric structural equation models driven by white 
noise ( ( ))I S 2

xR = - -  are special cases of this framework.
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the empirical covariance x x"R Rt  as P "3  and, for the 
cases where xR  has no repeated eigenvalues, the noisy ei-
genvectors Vt  converge to the eigenvectors V  of the desired 
shift ;S*

0  see, e.g., [39, Th. 3.3.7]. Moreover, with better esti-
mates ,Vt  the tolerance e  in (33) needed to guarantee feasi-
bility can be made smaller, entailing a smaller discrepancy 
between the recovered S*

1  and the  sparsest shift .S*
0  In the 

limit when V V=t  and under no additional uncertainties, the 
tolerance e  can be made zero, and solving (33) guarantees per-
fect recovery under the two aforementioned conditions. For 
a comprehensive performance evaluation that includes com-
parisons with the statistical methods of the “Statistical Meth-
ods for Network Topology Inference” section as well as with 
graph-learning algorithms that rely on smoothness priors (the 

“Learning Graphs From Observations of Smooth Signals” 
section), the interested reader is referred to [53].

An alternative scenario for robustness analysis arises when 
we have partial access to the eigenbasis V  and, as a result, we 
can only access K  out of the N  eigenvectors of the unknown 
shift .S  This would be the case when, e.g., the given signal 
ensemble is bandlimited and V  is found as the eigenbasis of the 
low-rank ;xR  when the noise level is high and the eigenvectors 
associated with low-power components cannot be effectively 
estimated; or when xR  contains repeated eigenvalues, giving 
rise to a rotation ambiguity in the definition of the associated 
eigenvectors. In this latter case, we keep the eigenvectors that 
can be unambiguously characterized, and, for the remaining 
ones, we include the rotation ambiguity as an additional con-
straint in the optimization problem.

To state the problem in this setting, assume that the K  first 
eigenvectors [ , , ]V v vK K1 f=  are those which are known. For 
simplicity of exposition, suppose as well that VK  is estimated 
error-free. Then, the network topology inference problem with 
incomplete eigenbasis can be formulated as [cf. (31)]

: , ,arg min s. toS S S S v v S V 0*

, ,
K

k

K

k k k
T

K K1 1
1S SS K

< < m= = + =
! m =

/r r r

r

,
 (34)

where we already particularized the objective to the -1, norm 
convex relaxation. The formulation in (34) constrains S to be 
diagonalized by the subset of known eigenvectors ,VK  with 
its remaining component SKr  being forced to belong to the 
orthogonal complement of range( ) .VK  This implies that the 
rank of SKr  can be at most .N K-  An advantage of using only 
partial information of the eigenbasis as opposed to the whole 
V  is that the set of feasible solutions in (34) is larger than that 
in (31). This is particularly important when the desired eigen-
vectors do not come from a prescribed shift but, rather, one has 
the freedom to choose S provided it satisfies certain spectral 
properties (see [52] for examples in the context of distributed 
estimation). Performance guarantees can also be derived for 
(34); see [53] for the technical details and formulations to ac-
commodate scenarios where the knowledge of the K templates 
is imperfect.

Regarding the computational complexity incurred by the 
two-step network topology inference strategy depicted in 
Figure 2(a), there are two major tasks to consider: 1) comput-
ing the eigenvectors of the sample covariance, which incurs 

( )O N3  complexity; and 2) solving iteratively the sparsity 
minimization problems in (33) or (34) to recover the graph-
shift operator, which cost ( )O N3  per iteration [53]. The cost 
incurred by the linear programming-based algorithms in 
[40] is of the same order. Admittedly, cubic complexity could 
hinder applicability of these approaches to problems involv-
ing high-dimensional signals. To bridge this complexity gap, 
progress should be made in developing custom-made scalable 
algorithms that exploit the particular structure of the prob-
lems; see the research outlook in the “Concluding Remarks 
and Research Outlook” section.

{xp}p = 1
P
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• Compute Sample Covariance
• Perform Eigendecomposition

• Convex and Robust Optimization
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FIGURE 2. A schematic view of the two-step network inference method for 
(a) stationary and (b) nonstationary diffusion processes. The main differ-
ences between both approaches lie in Step 1. For stationary processes, we 
are given only one set of realizations of a random process, whose covari-
ance is guaranteed to share the eigenvectors with .S  For nonstationary 
processes, covariance matrices are no longer simultaneously diagonaliz-
able with ,S  thus requiring a more challenging system identification step 
to facilitate estimating .H  In both cases, the output of Step 1 is an estimate 
of the eigenvectors Vt  of the sought shift. During Step 2, this estimate 
is combined with a priori information about the shift in an optimization 
problem to obtain the estimate .S*
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Diffused nonstationary graph signals
We now deal with more general nonstationary signals x  that 
adhere to linear diffusion dynamics ,hx S w Hwl

L
l

l
0
1R= ==
-  

but where the input covariance wwE T
wR = 6 @ can be ar-

bitrary. In other words, we relax the assumption of w  being 
white, which led to the stationary signal model dealt with so 
far [cf. Definition 2 and (30)]. Such a model is, e.g., relevant to 
(geographically) correlated sensor network data or to models 
of opinion dynamics, where (even before engaging in discus-
sion) the network agents can be partitioned into communities 
according to their standing on the subject matter.

For generic (nonidentity) ,wR  we face the challenge that the 
signal covariance [cf. (6)]

 H HT
x wRR =  (35)

is no longer simultaneously diagonalizable with .S  This rules 
out using the eigenvectors of the sample covariance xRt  as ei-
genbasis of ,S  as proposed in Step 1 for the stationary case. 
Still, observe that the eigenvectors of the shift coincide with 
those of the graph filter H  that governs the underlying diffu-
sion dynamics. This motivates adapting Step 1 in the “Step 1: 
Inferring the Eigenvectors” section when given observations 
of nonstationary graph processes. Simply put, the approach in 
[56] is to use snapshot observations X  together with additional 
(statistical) information on the excitation input w  to identify 
the filter ,H  with the ultimate goal of estimating its eigenvec-
tors .V  These estimated eigenvectors Vt  are then used as inputs 
to the shift identification problem (32), exactly as in the robust 
version of Step 2 in the “Step 2: Inferring the Eigenvalues” sec-
tion. Accordingly, the focus is placed on the graph filter (i.e., 
system) identification task; see Figure 2(b).

Identification of the graph filter H  from nonstationary sig-
nal observations is studied in detail in [56], for various sce-
narios that differ on what is known about the input process 

.w  Of particular interest is the setting where realizations of 
the excitation input are challenging to acquire, but informa-
tion about the statistical description of w  is still available. 
Concretely, consider M different excitation processes that are 
zero mean and their covariance w wE,m m m

T
wR = 6 @ is known 

for all , , .m M1 f=  Further suppose that for each input 
process wm  we have access to a set of independent realiza-
tions xX ( )

m
p

p
P

1
m

= =m " ,  from the diffused signal ,x Hwm m=  
which are then used to estimate the output covariance as 

( / ) ( ) .P1 x x,
( ) ( )

m m p
P

m
p

m
p T

1x
mRR = =

t  Since the ensemble covariance 
is x x H HE, ,m m m

T
m

T
x wRR = =6 @  [cf. (35)], the aim is to identi-

fy a filter H  such that matrices ,x mRt  and H H,m
T

wR  are close 
in some appropriate sense.

Assuming for now perfect knowledge of the signal covari-
ances, the previously discussed rationale suggests studying the 
solutions of the following system of matrix quadratic equations:

 , , , .m M1H H, ,m m
T

x w fR R= =  (36)

Given the eigendecomposition of the PSD covariance 
matrix ,V V, , , ,m m m m

T
w w w wKR =  its principal square root is 

given by .V V,
/

, ,
/

,m m m m
T1 2 1 2

w w w wKR =  With this notation in place, 
let us introduce the matrix : ., ,

/
, ,

/
m m m m

1 2 1 2
wxw w x wR R RR =  We now 

study the set of solutions of (36) for two different settings 
where we 1) assume that H  is PSD and 2) do not make any 
assumption on ,H  other than symmetry.

PSD graph filters
PSD graph filters arise, e.g., with heat diffusion processes of the 
form , ,0x L wl

l l
0 2b bR= 3
=^ h  where the graph Laplacian L is 

PSD and the filter coefficients hl
lb=  are all positive. In this 

setting, if m,wR  is nonsingular, then the filter H  can be recov-
ered via [56]

 .H ,
/

,
/

,
/

m m m
1 2 1 2 1 2

w wxw wR RR= - -  (37)

The solution in (37) reveals that the assumption 0H *  gives 
rise to a strong identifiability result. Indeed, if { },m m

M
1xR =  are 

known perfectly, the graph filter is identifiable even for .M 1=
However, in pragmatic settings where only empirical 

covariances are available, the observation of multiple ( )M 12  
diffusion processes improves the performance of the system 
identification task. Given empirical covariances ,m m

M
1xR =

t" ,  
respectively estimated with enough samples Pm  to ensure that 
they are full rank, define :, ,

/
, ,

/
m m m m

1 2 1 2
wxw w x wR R RR=t t  for each .m  

Motivated by (37), one can estimate the graph filter by solving 
the constrained linear least-squares (LS) problem [56]

 .argminH H,
/

,
/

,
/

m m m F
m

M
1 2 1 2 1 2 2

10H
wxw w wR R R= -

* =

t t/  (38)

Whenever the number of samples Pm—and, accordingly, the 
accuracy of the empirical covariances ,x mRt —differs significant-
ly across diffusion processes , , ,m M1 f=  it may be prudent to 
introduce nonuniform coefficients to downweigh those residuals 
in (38) associated with inaccurate covariance estimates.

General symmetric graph filters
Consider now a more general setting whereby H  is only as-
sumed to be symmetric, and denote by V ,mwxw  the unitary 
matrix containing the eigenvectors of .,mwxwR  While for PSD 
graph filters the solution to (36) is unique and given by (37), 
when H  is symmetric any matrix obtained by changing the 
sign of one (or more) of the eigenvalues of ,

/
m

1 2
wxwR  is also a 

feasible solution. Leveraging this and provided that the input 
covariance matrix m,wR  is nonsingular, it follows that all sym-
metric solutions of H H, ,m m

T
x wR R=  are described by the set

( )

{ , }
.

1 1

diag

and

H H V b V

b
H

,
/

,
/

, , ,
/

m
m m m m m

T
m

m
N

1 2 1 2 1 2
sym w wxw wxw wxw w;

!

R R R
=

=

-

- -

) 3
 (39)

Inspection of H m
sym  confirms that, in the absence of the PSD 

assumption, the problem for M 1=  is nonidentifiable. Indeed, for 
each m there are 2N  possible solutions to the quadratic equation 
(35), which are parameterized by the binary vector .bm  If 0,H *  
the solution is unique and corresponds to ,1bm =  consistent 
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with (37). For ,M 12  the set of feasible solutions to the system of 
(36) is naturally given by .H H:M m

M
1 1

sym sym=
= m(

If only empirical covariances { },m m
M

1xR =
t  are available, (39) 

can be leveraged to define the matrices :A V,
/

,m m m
1 2

w wxw 9R= -t t^ h  
V,

/
,

/
,m m m

1 2 1 2
w wxw wxwR R- t t^ h  and solve the binary-constrained 

LS problem

 
,

{ , } , , , .

min

m M1 1 1s. to
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m m m m
m m

2
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M

1
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-

- =

=

l l

l

t t/
 

(40)

Both terms within the -2, norm in (40) should equal vec( )H  
in a noiseless setting. Thus, we are minimizing the residuals 
across the M  processes considered. While the objective in (40) 
is convex in the { } ,bm m

M
1=  the binary constraints render the 

optimization nonconvex and particularly hard. Interestingly, 
this problem can be tackled using a convexification technique 
known as semidefinite relaxation [31]. More precisely, (40) can 
be recast as a Boolean QP and then equivalently expressed as 
a semidefinite program subject to a rank constraint. Dropping 
this latter constraint, one arrives at a convex relaxation with 
provable approximation bounds; see [56] for full algorithmic, 
complexity, and performance details.

Learning heat diffusion graphs
A different graph topology identification method was put forth 
in [63], which postulates that the observed signals consist of 
superimposed heat diffusion processes on the unknown graph. 
Mathematically, the observed graph signals are modeled as a 
linear combination of a few (sparse) components from a dic-
tionary consisting of heat diffusion filters with different heat 
rates. The graph-learning task is then formulated as a regu-
larized inverse problem where both the graph—hence, the fil-
ters—and the sparse combination coefficients are unknown.

Similar to the “Learning Graphs From Observations of 
Smooth Signals” section, let us define the matrix [ , , ]X x xP1 f=  
collecting the P-observed graph signals, as well as the vector 

[ , , ]S
T

1 fx x x=  of heat rates corresponding to each of the S 
diffusion filters ( ) ! .Le lHs l s

l
0

Ls xR= = 3x
=  With those nota-

tions in place, the inference problem is formulated as

, , , ,min re e eX R L
, , F

p

P

p F
2

1
1

2

L R

L L LS1 2 f < < < <a b- + +
x

x x x

=

6 @) 3/

( ) , , , , ,N L L i j0 00s . to trace L L1 ij ji i!# $x= = =   
 (41)

where ,r Rp
NS!  which corresponds to the pth column of ,R  

collects the (sparse) coefficients that combine the columns of 
the dictionary to approximate the graph signal .x p  The ob-
jective function in (41) has three components. The first term 
seeks to explain the observations with a dictionary model, 
where the atoms of the dictionary are the potential outputs of 
heat diffusion processes centered at every possible node and 
for several candidate heat diffusion rates .sx  The model pos-
tulates that every observation x p  can be synthesized as a few 
diffusion processes, thus, the coefficients associated with the 

dictionary should be sparse. Accordingly, the second term in 
the objective function imposes sparsity on the columns of .R  
Finally, the last term regularizes the unknown Laplacian .L  
The  constraints in (41) basically ensure that L  is a well-de-
fined Laplacian and that heat diffusion rates are nonnegative; 
see [63] for more details.

The optimization problem in (41) is nonconvex, thus poten-
tially having multiple local minima and hindering its solution. 
Moreover, solving (41) only with respect to L  is challenging 
because of its matrix exponential, rendering the problem non-
convex even for fixed x  and .R  This discourages traditional 
alternating minimization techniques. To overcome this diffi-
culty, the approach in [63] is to apply a proximal alternating 
linearized minimization algorithm, which can be interpreted as 
alternating the steps of a proximal forward-backward scheme. 
The basis of the algorithm is alternating minimization between 

, ,L R  and ,x  but, in each step, the nonconvex fitting term is lin-
earized with a first-order function at the solution obtained from 
the previous iteration. In turn, each step becomes the proximal 
regularization of the nonconvex function, which can be solved 
in polynomial time. The computational cost of the aforemen-
tioned graph-learning algorithm is O N 3^ h per iteration, stem-
ming from the computation of matrix exponentials, gradients, 
and required Lipschitz constants. Savings can be achieved by 
relying on truncated (low-degree) polynomial approximations 
of the heat diffusion filters ;Hs  see [63, Sec. IV-C].

Comparative summary
An inspection of (41) reveals the main differences between the 
method in [63] and the ones outlined in the “Robust Network 
Topology Inference” and “Diffused Nonstationary Graph 
Signals” sections. For instance, (41) assumes a specific filter 
type (heat diffusion) parametrized by a single scalar (the dif-
fusion rate). Moreover, the inputs to these filters are required 
to be sparse. On the other hand, in the previous methods the 
filters were arbitrary—thus, not necessarily modeling heat 
diffusion—while the available information on the inputs was 
statistical (white or known covariance) instead of structural 
(e.g., sparsity). In this respect, when there are strong reasons to 
believe that the true diffusion model is (close to) a heat diffu-
sion, then the more model-specific approach in [63] would be 
preferable. Otherwise, a more data-driven approach like the 
one explained in the “Robust Network Topology Inference” 
and “Diffused Nonstationary Graph Signals” sections can at-
tain better estimation performance, possibly at the price of a 
larger sample size. This tradeoff is nicely conveyed through 
the numerical tests reported in [63].

Further insights on choosing a suitable  
graph-learning method
Having presented several methods for (undirected) network to-
pology inference that we summarize in Table 1, it is prudent to 
reflect for a moment on a few general questions. First, what is 
the most suitable algorithm for a given network-analytic task? 
On a related note, what are the key considerations in mak-
ing such a decision? Second, what are the new perspectives, 
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benefits, and limitations of the GSP-based approaches in the 
“Learning Graphs From Observations of Smooth Signals” and 
“Identifying the Structure of Network Diffusion Processes” 
sections, relative to, e.g., the statistical methods for graphical 
model selection in the “Statistical Methods for Network Topol-
ogy Inference” section? While there are certainly no definite 
answers to at least some of these questions, here we shed some 
light based on our experience with graph-learning problems. 
To this end, the qualitative comparison that follows will delve 
into three central characteristics of the approaches, i.e., 1) sig-
nal models and their relationships; 2) computational and sam-
ple complexities; and 3) relevance to applications.

Graph signal models and their relationships
A general principle to unveil (network) structure from data is 
to adopt a parametric model; thus, modeling has been a re-
current theme in our presentation of topology inference algo-
rithms; see the third column in Table 1. Correlation networks 
advocate an intuitive notion of similarity between signal ele-
ments, where the interactions are modeled by the covariance 
matrix .R  They are widely adopted especially when imple-
mented using simple ad hoc thresholding rules on the ijtt  to 
define edges. If seeking a graph reflective of direct pairwise 
influence among signal elements, then partial-correlation 
networks represent a more sensible alternative. For both of 
these network models, recall that their scope is limited to lin-

ear and symmetric dependencies. Formal network inference 
in this context requires conducting multiple hypothesis tests 
(one per vertex pair), so, e.g., FDR control procedures should 
be implemented. A word of caution is due here since classi-
cal multiple-testing theory considers independent tests—
an assumption that can be grossly violated for network data 
[29, Ch. 7].

Gaussian models are ubiquitous in machine learning and 
statistical analysis of real-valued network data because of 
their widespread applicability and analytical tractability. Most 
recent advances to GMRF model selection have explored ways 
of incorporating Laplacian or otherwise graph topological 
constraints in the precision matrix estimation task [11], [21], 
[41], [43]. These approaches are well suited to settings when 
prior information dictates that, e.g., feasible graphs should 
have a tree structure or edge weights should be positive given 
the physics of the problem. Interestingly, one can motivate the 
signal modeling framework in the “Learning Graphs From 
Observations of Smooth Signals” section through the lens of 
Gaussian graphical models. To this end, it suffices to notice 
that smooth signals have a higher likelihood under GMRF 
models with a Laplacian-constrained precision matrix. Refer-
ring to the “Statistical Methods for Network Topology Infer-
ence” section, it is therefore not surprising to see that the ML 
estimator (13) minimizes ,trace x xp

P
p
T

p1? RRH H=
t^ h  a term 

that represents a smoothness penalty for graphical models with 

Table 1. A comparison of surveyed undirected network topology inference algorithms. 

Method Equation(s) Observed Signals Target Complexity Salient Characteristics 

Correlation network  
[29, Sec. 7.3.1]

(8) i.i.d. R PO N2^ h ✓ Flexible signal model, intuitive notion of pairwise interaction
✗ Misses latent effects, limited to linear and symmetric interactions

Partial correlation 
 network  
[29, Sec. 7.3.2]

(11) i.i.d 1R- O N3^ h ✓ Flexible signal model, controlling for latent effects
✗ Statistical and computational issues of large-scale hypothesis testing

Graphical Lasso  
[2], [14], [64]

(14) Jointly Gaussian 1R- O N31 ^ h ✓ Sparse regularization to handle high-dimensional setting  
✓ Efficient first-order algorithms, statistical support consistency
✗ Gaussianity may be restrictive, intractable for discrete models

Laplacian-constrained 
GMRF [11], [30]

(S1) Jointly Gaussian L1R =- O N31 ^ h ✓ Incorporates Laplacian and other structural constraints
✓ Nonnegativity of edge weights can aid interpretability
✗ Attractive and improper GMRF can be restrictive

Neighborhood-based 
regression [36] 

(17) Jointly Gaussian 
Discrete distributions

1R- PO N22 ^ h ✓ Scalable via per-node parallelization, statistical support consistency
✓ Tractable even for discrete or mixed graphical models
✗ Symmetry and positive-definiteness is not naturally enforced

Laplacian-based  
factor analysis [9]

(22) Smooth L O N23 ^ h ✓ Natural graph-based factor analysis model (akin to iGFT synthesis)
✗ Biconvex criterion lacking global optimality guarantees

Smoothness-based 
graph-learning [25]

(24), (29) Smooth W O N23 ^ h ✓ General graph-learning framework under smoothness prior
✓ Efficient, scalable primal-dual solver
✗ No explicit generative model for the observations

Edge subset selection 
[5]

(27), (28) Smooth L logO EE4 ; ; ; ;^ h ✓ Explicit handle on edge sparsity
✗ No control on graph connectivity or edge weights

Spectral templates  
[40], [53], [56]

(33), (34) Graph stationary 
Network diffusion

S O N3 3^ h ✓ Flexible model, data covariance as analytic function of the shift
✓ Robust formulations to accommodate imperfections
✗ Limited sample size can hinder covariance eigenvector estimates

Heat diffusion 
graphs [63]

(41) Heat diffusions L O N3 3^ h ✓ Dictionary model of superimposed heat diffusion processes
✓ Can capture localized properties of the data
✗ Nonconvex criterion lacking global optimality guarantees

1This is the complexity for dense graphs. In practice, the computation time markedly decreases for sparse graphs.
2Complexity per node.
3Complexity per step of an iterative algorithm.
4This complexity is attained for the noiseless case. In the presence of noise, a convex optimization problem with N2 variables must be solved.
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LH=  [cf. (1)]. This connection notwithstanding, the optimi-
zation problems (24) and (29) are motivated by smooth signal 
priors, but there is no explicit generative model for the obser-
vations, unlike the graphical models in the “Statistical Meth-
ods for Network Topology Inference” section, which have a 
clear interpretation.

Stationarity models, on the other hand, are suitable when 
second-order statistical invariance to graph shifts is a suspect-
ed property of the data. Moreover, Definition 2 offers a clear 
generative mechanism in terms of network diffusion [40], [53], 
well suited to model observations from cascading or epidem-
ic processes. This perspective also suggests that smoothness 
models can be recovered via diffusion filters with low-pass 
frequency response. Equivalently, stationarity implies a graph-
dependent model ( )SzR=  for the data covariance, where z  
is some analytic function of the graph-shift operator. Through 
this lens, one can recover correlation networks and covariance 
selection as special cases when z is the identity or inverse 
operator, respectively [53]. A similar model ( )LzH=  was 
recently advocated in [12] for graph Laplacian learning within 
the GMRF framework. Notice how all of these insightful links 
and rich interpretations are facilitated through the fresh per-
spective GSP brings to the topology inference problem.

Computational and sample complexities
In the current era of information, computation and data have 
arguably emerged as the key resources over which to optimize 
performance of signal and information-processing algorithms. 
We encountered this computational versus statistical tradeoff 
in the “Statistical Methods for Network Topology Inference” 
section: neighborhood-based regression algorithms for GMRF 
model selection are faster, while graphical Lasso is statistically 
more efficient. Both of these schemes, along with the methods 
from the “Signal Smoothness Meets Edge Sparsity” section, 
come with efficient solvers that scale relatively well to large-
size problems; see the fifth column of Table 1 for a summary 
of the incurred computational complexities.

Methods in the “Identifying the Structure of Network Dif-
fusion Processes” section that require computing eigenvectors 
from the empirical covariance matrix are likely to fail when 
there are few data samples, unless some form of regularization 
is introduced in the process. This is to be contrasted with the 
P N%  regime under which sparse GMRFs can be successfully 
identified. In this direction, fundamental statistical questions on 
the sample complexity of GSP-based topology inference algo-
rithms are yet to be addressed. Returning to the approach in the 
“Robust Network Topology Inference” section, an analytical 
(even approximate) characterization of recovery performance 
as a function of P X=  remains elusive. Such an analysis has 
to jointly account for the signal model (2) (plus possibly a model 
for ),S  the imperfections in estimating Vt  from the empirical 
covariance, and how these errors affect the result of the opti-
mization (32). The challenges could be compounded for the 
approaches in [9], [50], and [63], which rely on nonconvex cri-
teria lacking global  optimality guarantees. Methods based on 
graphical models can be analyzed in theory under the model 

assumptions, e.g., [36], [43], and [45] show statistical consis-
tency. Consequently, for a given problem size and some prior 
knowledge on graph sparsity (possibly informed by physical 
constraints or interpretability considerations), existing sample-
complexity bounds can inform the amount of data required to 
attain a prescribed performance goal.

Relevance to applications
It is ultimately the applications and the characteristics of the 
data involved that largely dictate what is a suitable graph-
learning algorithm for the information-processing task at 
hand. For instance, graph-filtering-based models of network 
diffusion have been adopted to unveil urban mobility patterns 
in New York City from Uber pickup data [63], [56]. A sparse 
graph explaining the (presumed smooth) temperature observa-
tions collected across weather stations in the French region of 
Brittany was obtained in [5].

The graph frequency decomposition of neuroimaging data 
shows promise for analyzing brain signals and connectivity 
[23]; see also the numerical test in the “Graph Frequency Anal-
ysis of Brain Signals During Learning” section. For supervised 
classification of brain states (in response to different visual 
stimuli), GFT-based dimensionality reduction of functional 
magnetic resonance imaging (fMRI) data has been shown to 
outperform state-of-the art reduction techniques relying on 
PCA or independent component analysis (ICA) [37]; see also 
[47] for related approaches dealing with electroencephalogram 
data. Results in [37] indicate that the smooth signal prior along 
with the graph-learning approach in [25] yield the best per-
formance for the aforementioned classification task. This is a 
valuable insight because most software for constructing func-
tional connectivity network relies on the correlation methods 
of the “Correlation Networks” section [62].

Graph frequency analyses require a description of the 
underlying network, which suggests learning graphs that yield 
orthonormal transforms over which signals admit parsimoni-
ous (i.e., bandlimited) representations. Such a design principle 
was recently advocated in [50] through the following two-
step procedure: 1) learn the GFT basis and the sparse signal 
representation jointly from the observed signals; and 2) infer 
the graph-weighted Laplacian, and then the graph topology, 
from the estimated Laplacian eigenvectors (similar to [40] and 
[53]). This signal representation perspective to graph-learning 
is also implicit to the factor analysis model (18) that is cen-
tral to the method in [9]. These ideas have been successfully 
applied to recovering brain functional connectivity networks 
associated to epilepsy [50], and to learn climate graphs from 
evapotranspiration data recorded by meteorological stations 
in California [9].

GSP tools are also envisioned to have major impact on 
image, point cloud, and video processing applications [38]. 
Though a digital image contains pixels that reside on a regu-
lar 2D lattice, if one can design an appropriate underlying 
graph connecting pixels with weights that reflect the image 
structure, then one can interpret the image as a graph sig-
nal and apply GSP tools for processing and analysis of the 
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signal in the graph spectral domain [6]. For image restoration 
tasks such as denoising and deblurring, a major challenge is 
how to design appropriate signal priors to regularize other-
wise ill-posed inverse problems. Learning graph Laplacians 
that endow the signal representations with desired sparsity or 
smoothness properties is thus well motivated and an active 
area of research.

Increasingly, applications call for learning graph represen-
tations of dynamic, multiaspect data, possibly accounting for 
nonlinear and directional (causal) effects among nodal signals. 
While a thorough treatment is beyond the scope of this article, 
for completeness, we offer a brief account in the next section. 
For a comprehensive survey of these emerging topics, the read-
er is referred to [15].

Emerging topic areas
Thus far, the focus has been on learning static and undirected 
graphs from data. In this section, we first consider the identifi-
cation of digraphs given nodal time series, which is intimately 
related to the problem of causal inference. We then cross the 
boundary of linear time-invariant network models and outline 
recent advances for tracking topologies of dynamic graphs as 
well as mechanisms to account for nonlinear pairwise interac-
tions among vertex processes.

Digraphs and causality
Undirected graphs, like correlation networks, can inform prox-
imity between nodal signals but cannot inform causality. Here 
we will lift the assumption that graph-shift operators are sym-
metric and consider estimation of digraphs with the intent of 
inferring causality from snapshot observations.

To that end, structural equation modeling encapsulates a 
family of statistical methods that model causal relationships 
between interacting variables in a complex system. This is 
pursued by estimating linear relationships among endogenous 
as well as exogenous traits, and symmetric structural equation 
models (SEMs) have been extensively adopted in economics, 
psychometrics, social sciences, and genetics, among others; 
see, e.g., [27]. The appeal of SEMs can be attributed to sim-
plicity and the inherent ability to capture edge directionality 
in graphs, represented through a (generally) asymmetric adja-
cency matrix W RN N! #  whose entry wij  is nonzero only if a 
diedge connects nodes i  and j  (pointing from j  to ) .i

SEMs postulate a linear time-invariant network model of 
the form

, ,x w x u i x Wx uV
,

it ij
j j i

N

jt ii it it t t t t
1

&! e~ e X= + + = + +
!=

/
 (42)

where [ , , ]x xxt t Nt
T

1 f=  represents a graph signal of endog-
enous variables at discrete time t  and [ , , ]u uut t Nt

T
1 f=  is a 

vector of exogenous influences. The term Wxt  in (42) mod-
els network effects, implying xit  is a linear combination of 
the instantaneous values x tj  of node i’s in-neighbors .j Ni!  
The signal xit  also depends on ,uit  where weight ii~  captures 

the level of influence of external sources and we defined 
: ( , , ) .diagΩ NN11 f~ ~=  Vector te  accounts for measurement 

errors and unmodeled dynamics.
Depending on the context, xt  can be thought of as an output 

signal while ut  corresponds to the excitation or control input. 
In the absence of noise and letting Ω I=  for simplicity, (42) 
becomes ( ) ,x I W ut t

1= - -  where : ( )H I W 1= - -  is a poly-
nomial graph filter in the graph-shift operator .S W=  If W  
is further assumed to be symmetric, one recovers a particular 
instance of the signal model adopted in the “Diffused Nonsta-
tionary Graph Signals” section; see also [55].

Given snapshot observations : { , } ,x ut t t
T

1| = =  SEM param-
eters W  and : [ ,…, ]NN

T
11~ ~ ~=  are typically estimated via 

penalized LS, e.g., by solving [4]
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 ( ) , , , ,NW i0 1s . to diag ij f~X= = =  (43)

where the -1, norm penalty promotes sparsity in the adjacency 
matrix. Both edge sparsity and the endogenous inputs play a 
critical role toward guaranteeing the SEM parameters (42) are 
uniquely identifiable; see also [15].

While SEMs only capture contemporaneous relation-
ships among the nodal variables (i.e., SEMs are memoryless), 
the class of sparse vector autoregressive models (SVARMs) 
account for linear time-lagged (causal) influences instead; 
see, e.g., [3] and [32]. Specifically, for given model order L and 
unknown sparse evolution matrices { } ,W( )l

l
L

1=  SVARMs pos-
tulate a multivariate linear dynamical model of the form

 .x W x( )
t

l

l

L

t l t
1

e= +
=

-/  (44)

Similar to the neighborhood-based regression approaches 
we encountered in the “Graph Selection via Neighborhood-
Based Sparse Linear Regression” section, here a diedge from 
vertex j  to i  is present in G if at least one of { }w( )

ij
l

l
L

1=  is 
nonzero (the OR rule). The other common alternative relies on 
the AND rule, which requires w 0( )

ij
l
!  for all , ,l L1 f=  to 

have ( , ) .i j E!  The AND rule is often explicitly imposed as 
a constraint during estimation of SVARM parameters through 
the requirement that all matrices W( )l  have a common sup-
port. This can be achieved, e.g., via a group Lasso penalty, 
which promotes sparsity over edgewise coefficients :wij = 

, ,w w( ) ( )
ij ij

L T1
f6 @  jointly [3]. The sparsity assumption is often 

well justified because of physical considerations or for the sake 
of interpretability, but here it is also critical to reliably estimate 
the graph from limited and noisy data.

The benefits of SEMs and SVARMs can be leveraged 
jointly through so-termed structural VARMs, which augment 
the right-hand side of (44) with a term W x( )

t
0  to also capture 

instantaneous relationships among variables, as in (42); see 
also [15]. In [19], the inference of the autoregressive param-
eters and associated network structure is studied within a gen-
eralized SVARM framework that includes discrete Poisson 
and Bernoulli autoregressive processes. SVARMs are also 
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central to popular digraph topology identification approaches 
based on the principle of Granger causality [18]. Said principle 
is based on the concept of precedence and predictability, where 
node j’s time series is said to “Granger-cause” the time series 
at node i  if knowledge of { }x ,j t l l

L
1- =  improves the prediction 

of xit  compared to using only { } .x ,i t l l
L

1- =  Such form of causal 
dependence defines the status of a candidate edge from j  to 
,i  and it can be assessed via judicious hypothesis testing [32].

Recently, a notion different from Granger’s was advocated 
to associate a graph with causal network effects among ver-
tex time series, effectively blending VARMs with graph filter-
based dynamical models. The so-termed causal graph process 
(CGP), introduced in [35], has the form
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where S  is the (possibly asymmetric) graph-shift operator 
encoding the unknown graph topology. The CGP model cor-
responds to a generalized VARM [cf. (44)], with coefficients 
given by graph filters ( , ) : ,hH S h Sl i

l
li

i
0R= =

r  and where :h =r  
, , , , .h h h hli LL

T
10 11 f f6 @  This way, the model can possibly 

account for multihop nodal influences per time step. Unlike 
SVARMs, matrices ( , )H S hl r  need not be sparse for larger val-
ues of ,l  even if S is itself sparse.

Given data : { }xX t t
T

1= =  and a prescribed value of ,L  the 
approach to estimating S entails solving the nonconvex opti-
mization problem

( , ) .min x H S h x S h
,

t l
l

L

t l
t L

T

1

2
1 1

1S h
< < < <a b- + +

=

-

= +

r r
r
) 3//  (46)

Similar to sparse SEMs in (43) and SVARMs, the estima-
tor encourages sparse graph topologies. Moreover, the -1, norm 
regularization on the filter coefficients hr  effectively imple-
ments a form of model-order selection. A divide-and-conquer 
heuristic is advocated in [35] to tackle the challenging problem 
(46), whereby one 1) identifies the filters : ( , )H H S hl l= r  so that 

,x H xt l
L

i
l

l t l1 0. RR = = -  exploiting that Hl  and Hll  commute 
for all , ;l ll  2) recovers a sparse S  using the estimates { }Hl

t  
and leveraging the shift-invariant property of graph filters; and 
3) estimates hr  given { , }H Sl

t t  via the Lasso. For full algorith-
mic details and an accompanying convergence analysis under 
some technical assumptions, please see [35].

Dynamic networks and multilayer graphs
As data become more complex and heterogeneous, possibly 
generated in a streaming fashion by nonstationary sources, it is 
becoming increasingly common to rely on models comprising 
multiple related networks describing the interactions among 
various entities. While dynamic graphs with time-varying to-
pologies naturally fall within this general class of models, the 
multiple graphs of interest need not be indexed by time, but 
possibly instead by different subjects, demographic variables, 

or sensing modalities. This is, e.g., the case in neuroscience, 
where observations for different patients are available and 
the objective is to estimate their functional brain networks; 
and in computational genomics, where the goal is to identify 
pairwise interactions between genes when measurements for 
different tissues of the same patient are available. To unveil 
hidden structures, detect anomalies, and interpret the temporal 
dynamics of such data, it is essential to understand the relation-
ships between the different entities and how these relationships 
evolve over time or across different modalities. Joint identifica-
tion of multiple graph-shift operators can be useful even when 
interest is only in one of the networks because joint formu-
lations exploit additional sources of information and, hence, 
they are likely to result in more accurate topology estimates. 
Although noticeably less than its single-network counterpart, 
joint inference of multiple graphs has attracted attention, 
especially for the case of GMRFs and in the context of dy-
namic (time-varying) topologies [1], [15], [20], [26], [58]. All 
of the aforementioned works consider that the multiple graphs 

( , , ), , , ,t T1WG V Et t t f=  share a common vertex set while 
being allowed to have different edge sets and weights, a struc-
ture oftentimes referred to as a multilayer graph. Given the 
earlier motivation, here we extend several of the problem for-
mulations in the previous sections to accommodate (dynamic) 
multilayer graphs.

To state the joint network topology inference problem 
in its various renditions, consider a scenario with T  differ-
ent graphs ( , ,  )WG V Et t t  defined over a common set V  of 
nodes, with .NV ;; =  This implies the existence of T  different 
graph-shift operators { }St t

T
1=  that we want to recover, all rep-

resented by N N#  matrices, whose sparsity pattern and non-
zero values may be different across .t  Suppose that, for each 
graph, we have access to a set of graph signals : { }xX ( )

t t
p

p
P

1
t= =  

collecting information associated with the nodes. Equivalent-
ly, it will be convenient to represent Xt  through the matrix 

: , ,X x x R( ) ( )
t t t

P N P1 t tf != #6 @  containing the Pt  signals asso-
ciated with graph .Gt  A popular approach to joint inference 
of multilayer networks assumes that graphs Gt  and Gt 1-  
are similar in some application-dependent sense, which we 
encode as some matrix distance ( , )r S St t 1-  being small. For 
instance, this could be well motivated for identification of a 
sequence of slowly time-varying graphs. In this context, a 
general formulation of the multilayer graph-learning problem 
entails solving

{ } : ( , ) ( , ) ,arg min rS S X S S*

{ }
t t

T
t

t

T

t t
t

T

t t1
1 2

1
S St t

T
1

aU= +
!

=

= =

-
=

) 3/ /  (47)

where tU  is an often-convex objective function stemming from 
the adopted topology identification criterion, and 02a  is a 
regularization parameter. In [20], the so-termed time-varying 
graphical Lasso estimator was proposed to identify a collection 
of GMRFs encoded in the precision matrices : .St t t

1H R= = -  
Therein, ( , ) log det traceS Xt t t t t t t 1< <mU H R H H=- + +t^ h  
corresponds to the penalized global likelihood for ~xt  

( , )0Normal tR  we encountered in the “Gaussian Graphical 
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Models, Covariance Selection, and Graphical Lasso” section. 
They also propose a comprehensive list of distance functions 
r  to encode different network evolutionary patterns including 
smooth and abrupt topology transitions; see [20] for additional 
details. From an algorithmic standpoint, an ADMM solver is 
adopted to tackle (47) efficiently.

A general estimator for learning slowly time-varying graphs 
over which signals in Xt  exhibit smooth variations was put forth 
in [26]. Let S Wt t=  denote the adjacency matrix of ,Gt  and 
recall the Euclidean-distance matrix Zt  defined in the “Signal 
Smoothness Meets Edge Sparsity” section. The idea in [26] is to 
set ( , ) ( ) ( / )log 21 1W X W Z W Wt t t t t

T
t t F1

2%< < < <a bU = - +  
in (47) along with ( , ) ,r S S S St t t t F1 1

2<<= -- -  and rely on the 
primal-dual algorithmic framework of [25] to tackle the result-
ing separable optimization problem. Through a different choice 
of ( , ),W Xt t tU  the framework therein can also accommodate 
a time-varying counterpart of the model in [9]. Network topol-
ogy inference approaches that rely on observations of station-
ary signals have been extended to the multilayer graph setting 
as well. As done for ,T 1=  we assume that : { }xX ( )

t t
p

p
P

1
t= =  are 

independent realizations of a random process xt  whose structure 
is represented by St  [cf. the model of network diffusion in (2)]. 
Mimicking the development in the “Step 2: Inferring the Eigen-
values” section, given estimates { }Vt t

T
1=

t  of the eigenvectors of 
each of the sought graph-shift operators (e.g., obtained from the 
sample covariances of the different sets of observations { } ),Xt t

T
1=  

recovery of the shifts boils down to selecting the optimal eigen-
values { } .t t

T
1K =  To this end, (31) can be adapted to obtain [54]

{ } : ( ) ( , ) ,argmin f rS S S S*

{ , }
t t

T

t

T

t
t t

t t1
1S St t t

T
1

a= +
2!K

=

== l

l) 3/ /

 , , , , .d t T1s. to S V Vt t t t
T f# eK =t t^ h  (48)

As discussed in the “Step 2: Inferring the Eigenvalues” sec-
tion, the optimality criterion f  and the constraint set S  can be 
selected to promote or enforce desirable properties in the sought 
graphs .Gt  Specific to formulation (48), choosing the distance 
function r  as S St t 1< <- l  would promote the pair of shifts to 
have the same sparsity pattern and weights, whereas the choice 
S S Ft t

2< <- l  as in [26], would promote similar weights regardless 
of the sparsity pattern. Check [54] for further details and results 
including provable guarantees of the associated algorithms. 
Last but not least, for a recent work dealing with inference of 
both di and multilayer graphs from observations of diffused 
graph signals, we refer the readers to [51].

On a related note, network inference from temporal traces 
of infection events has recently emerged as an active area of 
research, which is relevant to epidemic processes, propagation 
of viral news events between blogs, or acquisition of new buy-
ing habits by consumer groups. It has been observed in these 
settings that information often spreads in cascades by follow-
ing implicit links between nodes in a time-varying graph .Gt  
Reasoning that infection times depend on both topological 
(endogenous) and external (exogenous) influences, a dynamic 
SEM-based scheme was proposed in [1] for cascade  modeling. 
With , ,c C1 f=  indexing cascades, similar to (42) we model 

topological influences as linear combinations of infection 
times x( )

it
c  of other nodes in the network, whose weights cor-

respond to entries in a time-varying asymmetric adjacency 
matrix .Wt  External influences u( )

i
c  such as those due to 

on site reporting in news propagation contexts are useful for 
model identifiability, and they are taken to be time invariant 
for simplicity. It is assumed that the networks Gt  vary slowly 
with time, facilitating adaptive SEM parameter estimation by 
minimizing a sparsity-promoting exponentially weighted LS 
criterion [1]

,min x W x u W
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( ), , , , , , , ,W i N t T0 1 1s. to diag ,t t ii t f f~X = = = =  (49)

where ( , ]0 1!c  is the forgetting factor that forms estimates 
using all measurements acquired until time .T  Whenever 

,11c  past data are exponentially discarded, thus enabling 
tracking of dynamic network topologies; see also the “Track-
ing the Propagation of Information Cascades” section for a 
numerical test with real data from blog posts in 2011. Related 
likelihood-based approaches have been proposed to identify 
traces of network diffusion [46], as well as tensor-based to-
pology identification for dynamic SEMs that can account for 
(abruptly) switching topological states representing the layers 
of the graph [58].

Nonlinear models of interaction
Network models such as SEMs or SVARMs are linear, and 
the same is true for most measures of pairwise similarity we 
encountered; notably, those based on Pearson or partial cor-
relations. However, in complex systems such as the brain, there 
is ample evidence that dynamics involve nonlinear interactions 
between neural regions, and accordingly linear models fall 
short in capturing such dependencies.

Measures capable of summarizing nonlinear association, 
such as mutual information, might be used depending on the 
suspected dependencies in the data. Building on the relation-
ship between linear prediction and partial correlations, one 
can, by analogy, construct nonlinear measures of interaction 
among nodal time series by relying on nonlinear (e.g., kernel-
based) predictors instead [28]. Subsequent hypothesis testing 
can be performed to decide between presence or absence of 
edges in the graph. Special care should be exercised when 
selecting a test statistic because the challenges faced in deter-
mining a (tractable, even approximate) null distribution may be 
compounded. Issues of multiple testing should be accounted 
for as well, similar to those discussed for (partial) correlation 
networks. Such an approach cannot infer directionality and 
therefore result in an undirected graph of nonlinear correla-
tions. Kernelized counterparts of structural VARMs (and 
subsumed SEMs) have been proposed in [57] to identify the 
topology of digraphs, while explicitly accounting for non-
linearities. For a comprehensive treatment of the problem of 
learning graphs from data involving nonlinear dependencies, 
the interested reader is referred to the recent survey [15], which 
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also touches upon prediction of (nonlinear and dynamic) pro-
cesses supported on graphs.

Applications
This section presents numerical tests conducted on real data 
to demonstrate the effectiveness of selected graph-learning 
methods, ranging from ad hoc thresholding-based network 
constructions all the way to algorithms for identification of di, 
time-varying graphs. Through test cases, we show impact to 
diverse application domains including the economy, computa-
tional biology, neuroscience, and online social media.

Efficient representation of signals supported on a network 
of U.S. economic sectors
The Bureau of Economic Analysis of the U.S. Department 
of Commerce publishes a yearly table of inputs and outputs 
organized by economic sectors. More precisely, we have a 
set of 62 industrial sectors as defined by the North Ameri-
can Industry Classification System and a similarity function 

: ,W RVV "# +  where Wij  represents how much of the pro-
duction of sector ,i  expressed in trillions of U.S. dollars per 
year, was used as an input of sector j  on average from 2008 
to 2010. Moreover, for each sector we are given two economic 
markers: the added value (AV) generated and the level of pro-
duction destined to the market of final users (FUs). Thus, we 
define a graph G on the set of N 64=  nodes comprising the 
original 62 sectors plus the two synthetic ones (AV and FUs) 
and an associated symmetric graph-shift operator Sr  defined as 

: ( ) / .S W W 2ij ij ji= +r  We then threshold Sr  by setting to 0 all the 
values lower than 0.01 to obtain the sparser, symmetric shift 
operator ;S V VTK=  see Figure 3(a).

While this is an intriguing network that helps to explain the 
interactions among sectors and reveals how these sectors are 
clustered, arguably, signals defined by such graphs are equally 

interesting and the subject of economic studies. For instance, 
consider the disaggregated GDP signal x R64! +  on ,G  where xi  
represents the total production (in trillion of dollars) of sector i  
(including AV and FU) during 2011. As shown in Figure 3(c), 
signal x  is approximately bandlimited in S because most of the 
elements of V xx T=u  are close to zero. In particular, the recon-
structed signal xx vk k k1

4R= =t u  obtained by just keeping the first 
four GFT coefficients attains a relative reconstruction error of 

. ;3 5 10 3# -  see Figure 3(b), which shows the original GDP signal 
superimposed to .xt  To present a reasonable scale for illustration, 
sectors AV and FU are not included in Figure 3(b) and (c) since 
the signal takes out-of-scale values for these sectors. All in all, 
this example shows that, while heuristic, the adopted graph con-
struction approach still yields a useful graph to sparsely represent 
the disaggregated GDP signal. In a way, this serves as validation 
of ,G  and it also highlights the value of the GFT decomposition.

Identifying protein structure via network deconvolution
The network deconvolution problem is to identify a sparse ad-
jacency matrix S W=  that encodes direct dependencies, when 
given a symmetric adjacency T  of indirect relationships. The 
problem broadens the scope of, e.g., channel deconvolution to 
networks and can be tackled by adopting the model [13]

 ( ) .T S I S Sl

l

1

1

= - =
3

-

=

/  (50)

This solution assumes a diffusion as in (2) but for the par-
ticular case of a single-pole, single-zero graph filter, with very 
specific filter coefficients. This way, the indirect dependencies 
observed in T  arise due to the higher order terms S S2 3 f+ +  
superimposed to the fundamental interactions in .S  In this 
numerical test case, we adopt a more general approach in 
assuming that T  can be written as a polynomial in ,S  but being 
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FIGURE 3. (a) A heat map of the graph-shift operator S  of the U.S. economic network. It is sparse across the real economic sectors (from sector 1 to 62) 
while the synthetic sectors AV and FU are highly connected. (b) and (c) A disaggregated GDP signal x  (blue) and its reconstruction xt  (magenta) when 
keeping (b) only the first four frequency components. (c) Frequency representation of the graph signal x  in the basis of eigenvectors of the graph-shift 
.S  The signal is approximately bandlimited [33].
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agnostic to the form of the filter [53]. This naturally leads back 
to formulation (31), with V  given by the eigenvectors of T  and 

( )f S  chosen as an edge sparsity-promoting criterion. Different 
from the problem dealt with in the “Identifying the Structure 
of Network Diffusion Processes” section, note that matrix T  is 
not necessarily a covariance matrix.

Consider identifying the structural properties of proteins 
from a mutual information graph of the covariation between 
the constitutional amino acids [13], [53]. Pictorially, for a par-
ticular protein we want to recover the structural graph in the 
top left of Figure 4(a) when given the graph of mutual infor-
mation in the top right corner. The graph recovered by net-
work deconvolution [13] is illustrated in the bottom left corner 
of Figure 4(a), whereas the one recovered using the approach 
in (31) (with the sparsity-promoting ( ) )f S S 1< <=  is depicted 
in the bottom right corner. The comparison of the recovered 
graphs demonstrates that using a general filter model translates 
to a sparser graph that captures more accurately the desired 
structure. To quantify this latter assertion, Figure 4(b) depicts 
the fraction of the real contact edges recovered for each meth-
od as a function of the number of edges considered. For exam-
ple, if for a given method the 100 edges with largest weight in 
the recovered graph contain 40% of the edges in the ground-
truth graph, we say that the 100 top edge predictions achieve 
a fraction of recovered edges equal to 0.4. From Figure 4(b) it 
follows that the method in the “Learning Graphs From Obser-
vations of Stationary Graph Processes” section outperforms 

network deconvolution and the raw mutual information data. 
For instance, when considering the top 200 edges, the mutual 
information and the network deconvolution methods recover 
36% and 43% of the desired edges, respectively, while the solu-
tion of (31) achieves a recovery of 53%. Figure 4(c) shows the 
results for a different protein network, and similar trends can 
be appreciated.

Graph frequency analysis of brain signals during learning
Graph frequency analyses have been recently applied to study 
brain activity signals under the setup of an experiment in 
which subjects learned a simple motor task [23]. Participants 
responded to sequentially presented stimuli with their domi-
nant hand. Sequences were presented using a horizontal ar-
ray of five square stimuli with the responses mapped from 
left to right such that the thumb corresponded to the leftmost 
stimulus. The next square in the sequence was highlighted im-
mediately following each correct key press; the sequence was 
paused awaiting the depression of the appropriate key if an in-
correct key was pressed. All of the participants completed the 
task inside an MRI scanner.

To construct brain networks, the whole brain is parcellated 
into a set of N 112=  regions that correspond to the set V  of 
112 cortical and subcortical structures specified in the Harvard-
Oxford atlas. For each individual fMRI data set, the regional 
mean BOLD time series is estimated by averaging voxel time 
series in each of the N  regions. Pearson correlations between 
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FIGURE 4. (a) Real and inferred contact networks between amino acid residues for protein BPT1 BOVIN. The ground-truth contact network (top left), 
mutual information of the covariation of amino acid residues (top right), contact network inferred by network deconvolution [13] (bottom left), and contact 
network inferred by the approach in [53] (bottom right). (b) A fraction of the real contact edges between amino acids recovered for each method as a 
function of the number of edges considered. (c) A counterpart of (b) for protein YES HUMAN [53].
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the activities of all possible pairs of regions are then evaluated 
and tested (at 5% significance level) to construct N N#  func-
tional connectivity matrices .W  The graph-shift operator is 
defined as the associated Laplacian : .S L V VTK= =  Regard-
ing brain signals, we normalize the regional mean BOLD 
observations xtt  at any time t  and consider : / ,x x xt t t 2< <= t t  such 
that the total energy of activities at all structures is consistent at 
different t  to avoid extreme spikes due to head motion or drift 
artifacts in fMRI; see [23] for details.

Signal x  is not highly bandlimited in ;S  however, recall 
from the “Graph Fourier Transform and Signal Smoothness” 
section, when the graph-shift operator ,S L=  the eigenvalue km  
associated with a given eigenvector vk  expresses a level of spa-
tial variation with respect to the brain network. Following this 
direction, we analyze the decomposed signals of x  associated 
with different levels of spatial variation. Figure 5(a) presents the 
distribution of the decomposed signal : xx v( )

k k k1
40L R= = u  corre-

sponding to smooth spatial variations; Figure 5(b) displays the 
decomposed signals : xx v( )

k k k41
72M R= = u  associated with moder-

ate spatial variation; Figure 5(c) represents : xx v( )
k k k73
112H R= = u  

corresponding to the fast-spatial variation.
A deep analysis yields several interesting observations. 

First, decomposed signals of a specific level of variation, e.g., 
,x( )L  are highly similar with respect to different sets of partici-

pants [23]. This reflects the fact that frequency decomposition 
is formed by applying graph filters with different pass bands 
upon signals and therefore should express some consistent 
aspects of brain signals. Second, because of the signal nor-
malization at every sample point and for all subjects, ,x x(L) (M)  
and x(H)  would be similarly distributed across the brain if 
bandpass graph filtering segments brain signals into three 
equivalent pieces. However, it is observed (see Figure 5) that 
many brain regions possess magnitudes higher than a thresh-
old in x(L)  and ,x(H)  while not many brain regions exceed the 
thresholding with respect to .x(M)  Besides, brain regions with 
high magnitude values in x(L)  and x(H)  are highly similar to 

the visual and sensorimotor cortices, whose associations with 
motor learning task have been well recognized; see [23] and 
references therein. It has long been understood that the brain 
is a complex system combining some degree of disorganized 
behavior with some degree of regularity and that the com-
plexity of a system is high when order and disorder coex-
ist [62]. The low-pass signal x(L)  varies smoothly across the 
brain network and therefore can be regarded as regularity 
(order), whereas x(H)  fluctuates vibrantly and consequently 
can be considered as randomness (disorder). This observa-
tion can be leveraged in designing preprocessing steps to 
extract brain signals that are more informative and pertinent 
with learning and to utilize the GFT to further analyze the 
association between different level of spatial variability with 
learning success.

Tracking the propagation of information cascades
Here we test the dynamic-SEM estimator (49) for unveiling 
sparse time-varying topologies, given real information cascade 
data obtained by monitoring blog posts and news articles on 
the web between March 2011 and February 2012 (45 weeks). 
Popular textual phrases, (also known as memes) due to globally 
popular topics during this period were identified, and the times 
x( )

it
c  when they were mentioned on the websites were recorded. 

To illustrate tracking of dynamic propagation graphs, we ex-
tracted cascade traces x( )

t
c  related to the keyword “Kim Jong-

un,” the current leader of North Korea whose popularity rose 
after the death of his father (and predecessor in power) Kim 
Jong-il. Only significant cascades that propagated to at least 
seven websites were retained. This resulted in a data set with 
N 360=  websites, C 466=  cascades, and T 45=  weeks. The 
exogenous inputs typically capture prior knowledge about the 
susceptibility of nodes to contagions. In the web context dealt 
with here, u( )

i
c  could be aptly set to the average search engine 

ranking of website i  on keywords pertaining to .c  In the ab-
sence of such real data for the observation interval, the signal 

(a) (b) (c)

FIGURE 5. The brain activity patterns for a visual-motor learning task decomposed in (a) low-, (b) medium-, and (c) high-frequency components of 
the GFT relative to the brain connectivity network. The signals are dominated by low- and high-frequency components with minimal contribution from 
medium-frequency components [23].
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values u( )
i
c  were uniformly sampled over the interval [ , . ];0 0 01  

see [1].
The algorithm in [1] was run on the data set, and Figure 6(a) 

and (b) shows visualizations of the inferred network at t 10=  
and t 04=  weeks. Speculation about the possible successor of 
the dying North Korean ruler, Kim Jong-il, rose until his death 
on 17 December 2011 (week 38). He was succeeded by Kim 
Jong-un on 30 December 2011 (week 40). The visualizations 
show an increasing number of edges over the 45 weeks, illus-
trating the growing interest of international news websites and 
blogs in the new ruler, about whom little was known in the first 
10 weeks. Unfortunately, the observation horizon does not go 
beyond T 45=  weeks. A longer span of data would have been 
useful to investigate the rate at which global news coverage on 
the topic eventually subsided. Figure 6(c) depicts the time evo-
lution of the total number of edges in the inferred dynamic net-
work. Of particular interest are the weeks during which 1) Kim 
Jong-un was appointed as the vice chair of the North Korean 
military commission; 2) Kim Jong-il died; and 3) Kim Jong-un 
became the ruler of North Korea. These events were the topics 
of many online news articles and political blogs, an observation 
that is reinforced by the experimental results shown in the plot.

Concluding remarks and research outlook
Contending that GSP provides novel insights and relevant 
tools to address network topology inference problems, this ar-
ticle outlines recent approaches that use information available 
from graph signals to learn the underlying network structure 
in a variety of settings. Aligned with current trends in data-
driven scientific inquiry into complex networks, the overarch-
ing aim is to shift from 1) descriptive accounts to inferential 
GSP techniques that can explain as well as predict network 
behavior and 2) ad hoc graph constructions to rigorous formu-
lations rooted in well-defined models and principles. Accord-
ingly, this article stretches in a comprehensive and unifying 
manner all the way from (today, rather mature) statistical ap-

proaches including correlation analyses and graphical model 
selection to recent GSP advances facilitated by spectral rep-
resentations of network diffusion processes. A diverse gamut 
of network inference challenges and application domains was 
selectively covered, based on importance and relevance to SP 
expertise, as well as on our own experience and contributions 
to the area. Admittedly, some important topics have been 
overlooked including tomographic network topology iden-
tification [29, Sec. 7.4] and inference of diacyclic graphs (a 
particular favorable class of digraphical models, also known 
as Bayes networks) [7].

A wide variety of potential research avenues naturally 
follows from the developments presented here. In terms of 
formal performance guarantees, the GSP-based methods in 
the “Learning Graphs From Observations of Smooth Sig-
nals” and “Identifying the Structure of Network Diffusion 
Processes” sections are less understood than their statistical 
counterparts (the “Statistical Methods for Network Topology 
Inference” section), posing a clear opportunity for improve-
ment. In particular, one might investigate if smoothness 
alone is sufficient to provide topology recovery guarantees 
or if there is a fundamental requirement for edge sparsity that 
cannot be forgone. In practice, it sometimes holds that signals 
are discrete (such as prespecified rating levels) or belong to 
a finite alphabet (such as node labels or classes). However, 
diffusion-based techniques for these types of signals have not 
been explored in sufficient depth. Moreover, graph topology 
inference is oftentimes an intermediate step in a larger pro-
cessing or learning task. In this direction, one can think of 
bilevel topology inference formulations where the graph is 
designed explicitly taking into account the ultimate task, e.g., 
searching for a graph that induces a classifier that is maxi-
mally discriminative for some training data. In addition, in 
line with the diffusion-based methods in the “Identifying the 
Structure of Network Diffusion Processes” section, it would 
be interesting to explore innovative generative models of 
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nonlinear interactions for network data such as those given 
by median or other nonlinear graph filters.

In terms of computational complexity, there is room for 
improving scalability of some of the algorithms described via 
parallelization and decentralized implementations. Moreover, 
adaptive algorithms that can track the (possibly) time-varying 
structure of the network and achieve both memory and compu-
tational savings by processing the signals on the fly are natu-
rally desirable, but so far largely unexplored.

Finally, one can explore the links between network decon-
volution—as described in the “Identifying Protein Structure 
via Network Deconvolution” section—and graph sparsifica-
tion approaches. The latter consists on approximating a given 
graph via a sparser one while preserving the associated Lapla-
cian-based TV measure. From a GSP perspective, this implies 
approximately preserving the smoothness of signals supported 
on those graphs. Clearly, this approximation notion is not too 
different from network deconvolution, where the premise is 
that the sparse graph approximate should preserve the eigen-
basis (hence the GFT) of the original network. Formalizing 
this intuition could enable further cross-pollination between 
established graph-theoretical problems and the exciting family 
of GSP approaches for network topology inference.
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