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Abstract—We address the problem of identifying the structure
of an undirected graph from the observation of signals defined on
its nodes. Fundamentally, the unknown graph encodes direct rela-
tionships between signal elements, which we aim to recover from
observable indirect relationships generated by a diffusion process
on the graph. The fresh look advocated here leverages concepts
from convex optimization and stationarity of graph signals, in or-
der to identify the graph shift operator (a matrix representation of
the graph) given only its eigenvectors. These spectral templates can
be obtained, e.g., from the sample covariance of independent graph
signals diffused on the sought network. The novel idea is to find a
graph shift that, while being consistent with the provided spectral
information, endows the network with certain desired properties
such as sparsity. To that end, we develop efficient inference algo-
rithms stemming from provably tight convex relaxations of natural
nonconvex criteria, particularizing the results for two shifts: the
adjacency matrix and the normalized Laplacian. Algorithms and
theoretical recovery conditions are developed not only when the
templates are perfectly known, but also when the eigenvectors are
noisy or when only a subset of them are given. Numerical tests
showcase the effectiveness of the proposed algorithms in recover-
ing synthetic and real-world networks.

Index Terms—Graph signal processing, graph sparsification,
network deconvolution, network topology inference.

I. INTRODUCTION

ADVANCING a holistic theory of networks necessitates
fundamental breakthroughs in modeling, identification,

and controllability of distributed network processes – often con-
ceptualized as signals defined on the vertices of a graph [3], [4].
Under the assumption that the signal properties are related to
the topology of the graph where they are supported, the goal
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of graph signal processing (GSP) is to develop algorithms that
fruitfully leverage this relational structure [5], [6]. Instrumental
to that end is the so-termed graph-shift operator (GSO) [6], a
matrix capturing the graph’s local topology and whose eigen-
basis is central to defining graph Fourier transforms [7]. Most
GSP works assume that the GSO (hence the graph) is known,
and then analyze how the algebraic and spectral characteristics
of the GSO impact the properties of the signals and filters de-
fined on such a graph. Here instead we take the reverse path and
investigate how to use information available from graph signals
to infer the underlying graph topology; see also [1], [8]–[12].

Our focus in this paper is on identifying undirected graphs
that explain the structure of a random signal, meaning that there
exists a diffusion process in the GSO that can generate the
observed signal. Alternatively, we can say that the goal is to
recover the GSO which encodes direct relationships between
the elements of the signal from observable indirect relationships
generated by a diffusion process. Such a problem is shown to
be underdetermined and related to the concept of stationarity
of graph signals [13]–[15]. More precisely, it is established
that the sought GSO must have the same eigenvectors as the
stationary signal’s covariance matrix. This motivates a two-step
network topology inference approach whereby we: i) leverage
results from GSP theory to identify the GSO’s eigenbasis from
realizations of the diffused signal; and ii) rely on these (possibly
imperfect and incomplete) spectral templates to recover the
GSO by estimating its eigenvalues.

Network topology inference from a set of (graph-signal)
observations is a prominent problem in Network Science [4],
[16]. Since networks encode similarities between nodes,
several approaches infer the so-termed association networks
by constructing graphs whose edge weights correspond to
correlations or coherence measures indicating a nontrivial level
of association between signal profiles at incident nodes [4, Ch.
7.3.1]. This approach is not without merit and widely used
in practice, but it exhibits several drawbacks, the main one
being that links are formed taking into account only pairwise
interactions, ignoring that the observed correlations can be due
to latent network effects. Acknowledging these limitations, al-
ternative methods rely on partial correlations [4], [17], Gaussian
graphical models [18]–[21], structural equation models [22],
[23], Granger causality [16], [24], or their nonlinear (kernel-
ized) variants [25], [26]. Differently, recent GSP-based network
inference frameworks postulate that the network exists as a
latent underlying structure, and that observations are generated
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as a result of a network process defined in such graph. For in-
stance, network structure is estimated in [9] to unveil unknown
relations among nodal time series adhering to an autoregressive
model involving graph-filter dynamics. A factor analysis-based
approach is put forth in [8] to infer graph Laplacians, seeking
that input graph signals are smooth over the learned topologies;
see also [11], [26] and a recent variant where signals are
assumed to be spanned by few atoms from a graph dictionary
consisting of heat diffusion kernels [27]. Different from [8], [9],
[12], [27] that operate on the graph domain, the goal here is to
identify graphs that endow the given observations with desired
spectral (frequency-domain) characteristics. Two works have
recently explored this approach and addressed the problem of
identifying a GSO based on its eigenvectors. One is [1], which
assumes perfect knowledge of the spectral templates. The other
is [10], which only focuses on a sparse Laplacian GSO.

After surveying the required GSP background, in Section II
we formulate the problem of identifying a GSO that explains
the fundamental structure of a random signal diffused on a
graph. The novel idea is to search among all feasible networks
for the one that endows the resulting graph-signal trans-
forms with prescribed spectral properties (those guaranteeing
graph stationarity [13]–[15]), while the inferred graph also
exhibits desirable structural characteristics such as sparsity or
minimum-energy edge weights. It is argued that the required
spectral templates can be pragmatically obtained, e.g., via
principal component analysis (PCA) of a set of graph signals
resulting from network diffusion dynamics. Additional sources
for the spectral templates are provided in Section II-C. Using
the templates as input, a fairly general optimization problem is
formulated in Section II-A to identify the undirected network
structure. For concreteness, emphasis is laid on the recovery
of two particular GSOs; namely the adjacency matrix and the
normalized graph Laplacian, but our methodology can be ap-
plied to other matrix representations of graphs. In Section III-A
we derive conditions under which the feasible set of the
optimization problem reduces to a singleton, a situation in
which pursuit of additional network structure is rendered
vacuous. When multiple solutions exist, provably-tight convex
relaxations – leading to computationally-efficient algorithms –
are developed to identify the sparsest GSO consistent with the
given eigenspace (Section III-B). While arguably less useful
in practice, the idealized setting in Section III has important
conceptual value towards formulating and understanding the
pragmatic case where knowledge of the spectral templates
is imperfect (Section IV). In Section IV-A we establish that
the proposed algorithm can identify the underlying network
topology robustly. Last but not least, in Section IV-B we
investigate the case where only a subset of the GSO’s eigen-
vectors are known. Such incomplete spectral templates arise,
for example, when the observed graph signals are bandlimited.
Comprehensive numerical tests corroborate our theoretical
findings and confirm that the novel approach compares favor-
ably with respect to: (i) established methods based on (partial)
correlations; and (ii) recent graph signal processing-based
topology inference algorithms (Section V). Test cases include
the recovery of social and structural brain networks from
synthetically-generated signals, as well as the identification of

the structural properties of proteins [28] and the most relevant
collaborations in two co-authorship networks [29].

Notation: The entries of a matrix X and a (column) vector
x are denoted by Xij and xi , respectively. Sets are represented
by calligraphic capital letters and XI denotes a submatrix of X
formed by selecting the rows of X indexed by I. The notation
T and † stands for transpose and pseudo-inverse, respectively;
0 and 1 refer to the all-zero and all-one vectors. For a vector
x, diag(x) is a diagonal matrix whose ith diagonal entry is xi ;
when applied to a matrix, diag(X) is a vector with the diag-
onal elements of X. The operators ◦, ⊗, and � stand for the
Hadamard (elementwise), Kronecker, and Khatri-Rao (column-
wise Kronecker) matrix products. ‖X‖p denotes the �p norm of
the vectorized form of X, whereas ‖X‖M (p) is the matrix norm
induced by the vector �p norm. ker(X) and Im(X) refer to the
null space and the span of the columns of X, respectively.

II. PROBLEM STATEMENT

A weighted and undirected graph G consists of a node set N
of cardinality N , an edge set E of unordered pairs of elements
in N , and edge weights Aij ∈ R such that Aij = Aji �= 0 for
all (i, j) ∈ E . The edge weights Aij are collected as entries
of the symmetric adjacency matrix A and the node degrees in
the diagonal matrix D := diag(A1). These are used to form
the combinatorial Laplacian matrix Lc := D − A and the nor-
malized Laplacian L := I − D−1/2AD−1/2 . More broadly, one
can define a generic GSO S ∈ RN×N as any matrix whose off-
diagonal sparsity pattern is equal to that of the adjacency matrix
of G [6]. Although the choice of S can be adapted to the problem
at hand, most existing works set it to either A, Lc , or L.

The main focus in this paper is on identifying graphs that
explain the structure of a random signal. Formally, let x =
[x1 , ..., xN ]T ∈ RN be a graph signal in which the ith element
xi denotes the signal value at node i of an unknown graph
G with symmetric shift operator S. Further suppose that we
are given a zero-mean white signal w with covariance matrix
E
[
wwT

]
= I. We say that S represents the structure of the

signal x if there exists a diffusion process in the GSO S that
produces the signal x from the white signal w, that is

x = α0

∞∏

l=1

(I − αlS)w =
∞∑

l=0

βlSlw. (1)

While S encodes only one-hop interactions, each successive
application of the shift percolates (correlates) the original in-
formation across an iteratively increasing neighborhood; see
e.g. [30]. The product and sum representations in (1) are com-
mon – and equivalent – models for the generation of random
signals. Indeed, any process that can be understood as the linear
propagation of a white input through a static, undirected graph
can be written in the form in (1). These include processes gen-
erated by graph filters with time-varying coefficients or those
generated by the so-called diffusion Laplacian kernels [31], to
name a few.

The justification to say that S is the structure of x is that we
can think of the edges of S as direct (one-hop) relationships
between the elements of the signal. The diffusion described
by (1) generates indirect relationships. One of our goals is to
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recover the fundamental relationships described by S from a
set X := {xr}Rr=1 of R independent samples of the random
signal x.

We show next that this is an underdetermined problem. Since
we focus on the inference of undirected graphs, the shift op-
erator S is symmetric and diagonalizable. Hence, upon defin-
ing the orthogonal eigenvector matrix V := [v1 , . . . ,vN ] and
the eigenvalue matrix Λ := diag(λ) with λ := [λ1 , . . . , λN ]T ,
it holds that

S = VΛVT = Vdiag(λ)VT . (2)

Further observe that while the diffusion expressions in (1) are
polynomials on the GSO of possibly infinite degree, the Cayley-
Hamilton theorem implies that they are equivalent to polynomi-
als of degree smaller thanN . Upon defining the vector of coeffi-
cients h := [h0 , . . . , hL−1 ]T and the graph filter H ∈ RN×N as
H :=

∑L−1
l=0 hlS

l , the generative model in (1) can be rewritten
as

x =

(
L−1∑

l=0

hlSl
)

w = Hw (3)

for some particular h and L. Since a graph filter H is a polyno-
mial on S [6], graph filters are linear graph-signal operators that
have the same eigenvectors as the shift (i.e., the operators H and
S commute). More important for the present paper, the filter rep-
resentation in (3) can be used to show that the eigenvectors of S
are also eigenvectors of the covariance matrix Cx := E[xxT ].
To that end, substitute (3) into the covariance matrix definition
and use the fact that E[wwT ] = I to write

Cx = E
[
Hw

(
Hw

)T ] = HE
[
wwT

]
HT = HHT . (4)

If we further use the spectral decomposition of the shift
in (2) to express the filter as H =

∑L−1
l=0 hl(VΛVT )l =

V(
∑L−1

l=0 hlΛ
l)VT , we can write the covariance matrix as

Cx = V

(
L−1∑

l=0

hlΛl

)2

VT . (5)

A consequence of (5) is that the eigenvectors of the shift S
and the covariance Cx are the same. Alternatively, one can say
that the difference between Cx in (5), which includes indirect
relationships between components, and S in (2), which includes
exclusively direct relationships, is only on their eigenvalues.
While the diffusion in (1) obscures the eigenvalues of S, the
eigenvectors V remain present in Cx as templates of the original
spectrum.

Identity (5) also shows that the problem of finding a GSO that
generates x from a white input w with unknown coefficients
[cf. (1)] is underdetermined. As long as the matrices S and Cx

have the same eigenvectors, filter coefficients that generate x
through a diffusion process on S exist.1 In fact, the covariance
matrix Cx itself is a GSO that can generate x through a diffusion
process and so is the precision matrix C−1

x . To sort out this

1To simplify exposition, the general description of the recovery problem in
this section assumes that neither S nor Cx have repeated eigenvalues. Technical
modifications in the formulation to accommodate setups where the eigenvalues
are not all distinct are discussed in Section IV-B.

ambiguity, which amounts to selecting the eigenvalues of the
shift, we assume that the GSO of interest is optimal in some
sense. This is the subject of Section II-A, but before a remark is
in order.

Remark 1 (Graph stationarity): Recently, a group of works
has generalized the definition of stationarity to graph pro-
cesses [13]–[15]. Such a generalization is not trivial because
graph signals need not have a time-varying interpretation, and
also due to the irregularity of the underlying graph domain. The
aforementioned works consider that a graph signal is stationary
in a particular GSO S if either the signal can be expressed as
the output of a graph filter with white inputs [13, Def. 2], or if
its covariance matrix is simultaneously diagonalizable with S
[13, Def. 3]. These are precisely the conditions in (3) and (5),
respectively. Hence, our problem of identifying a GSO that ex-
plains the fundamental structure ofx is equivalent to the problem
of identifying a shift S in which the signal x is stationary.

A. Optimal GSO

Many large-scale, real-world networks are sparse [4], so it
is often meaningful to infer a GSO where most of the entries
in S are zero. Let S be a convex set that specifies the type of
shift operator we want to identify (details on S are provided in
Section II-B) and let ‖S‖0 count the number of nonzero entries
in the GSO. We then want to identify S∗

0 ∈ S with the smallest
number of nonzero entries (e.g., those corresponding to direct
relationships among signal elements), namely

S∗
0 := argmin

{S,λ}
‖S‖0 ,

s.t. S = VΛVT =
N∑

k=1

λkvkvTk , S ∈ S. (6)

To simplify notation we have purposely ignored the optimal
eigenvalues λ∗

0 that belong to the argument of the minimum.
Also, we have written VΛVT =

∑N
k=1 λkvkvTk to emphasize

that if the eigenvectors vk are known, the constraints in (6) are
linear on the unknown eigenvalues λk .

The definition in (6) provides a formal description of a sparse
GSO S that is considered to be the best possible description of
the structure of the signal x. Our goal is to find estimators of
this operator as described in the following two formal problem
statements.

Problem 1: Given the eigenvectors V, identify the optimal
graph-shift operator S∗

0 ∈ S defined in (6).

Problem 2: Given a set X := {xr}Rr=1 of R independent sam-
ples of the random signal x, estimate the optimal description of
the structure of x in the form of the graph-shift operator S∗

0 ∈ S
defined in (6) .

Finding the sparsest graph efficiently requires suitable relax-
ations for the non-convex �0 objective. To find the structure of
x when the covariance matrix Cx is known, we solve Prob-
lem 1 by using the eigenvectors of Cx in (6) and show that
the estimation of the eigenvalues yields consistent estimators of
sparse network structures. Problem 1 is addressed in Section III
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and while it could be perceived as idealized and rather limited
in scope, its conceptual value is key towards formulating and
analyzing the more challenging and pragmatic Problem 2. Nev-
ertheless, Section II-C illustrates additional settings in which the
estimation of a GSO with (possibly approximated) prescribed
eigenvalues is of practical interest. To solve Problem 2 we first
use independent samples of the random signal to estimate the co-
variance eigenvectors. Then we estimate the eigenvalues using
reformulations of (6) which are robust to errors stemming from
the aforementioned eigenvector estimation step; see Section IV
for a detailed treatment of Problem 2.

Remark 2 (Sparse precision matrices): The precision ma-
trix C−1

x (alternatively, the pseudo-inverse C†
x if the covariance

is degenerate) is a possible solution to the problem of finding a
GSO that explains the structure ofx. This establishes a clear con-
nection between (6) and the problem of finding sparse estimates
of precision matrices [4, Ch. 7]. For the specific cases in which
the precision matrix C−1

x is the sparsest matrix that explains the
structure of x, this matrix is also the solution to (6) and we have
that S∗

0 = C−1
x . In general, however, C−1

x may not be sparse
and, even if it is, there may be sparser graphs that explain x. A
case of particular relevance is that of structural equation mod-
els where the observations are modeled as x = Ax + w [26].
If the so-called exogenous input w is white, it follows read-
ily that Cx = (I − A)−1(I − A)−T . With this model, classical
precision-based methods will identify (I − AT )(I − A) as the
underlying topology. Differently, (6) will generate the more par-
simonious A. We can then think of (6) as a general formulation
that reduces to the problem of finding a sparse precision matrix
for the cases when the random signal x is indeed associated with
a sparse C−1

x .
Remark 3 (Beyond sparse GSOs): Different from the mini-

mum zero-norm formulation in (6), we can introduce alterna-
tive criteria in the form of generic convex functions f(S,λ) and
define the shift operator that is optimal with respect to these
criteria. Beyond f(S,λ) = ‖S‖0 as in (6), other possible con-
vex choices for the criterion are to: (i) Adopt f(S,λ) = f(S) =
‖S‖F which finds a GSO that minimizes the total energy stored
in the weights of the edges. (ii) Set f(S,λ) = f(S) = ‖S‖∞
which yields shifts S associated with graphs of uniformly
low edge weights. This can be meaningful, e.g., when iden-
tifying graphs subject to capacity constraints. (iii) Minimize
f(S,λ) = f(λ) = −λ2 , where λ2 is the second smallest eigen-
value of S. If the GSO is further assumed to be a Laplacian
matrix, then I − S corresponds to a shift operator with fast mix-
ing times [32].

B. A Priori Knowledge About the GSO

The constraint S ∈ S in (6) incorporates a priori knowledge
about S. If we let S = A represent the adjacency matrix of an
undirected graph with non-negative weights and no self-loops,
we can explicitly write S as follows

SA :=
{
S |Sij ≥ 0, S∈MN, Sii = 0,

∑

j
Sj1 = 1

}
.

(7)

The first condition in SA encodes the non-negativity of the
weights whereas the second condition incorporates the fact that

the unknown graph is undirected, hence, S must belong to the
set MN of real and symmetric N ×N matrices. The third
condition encodes the absence of self-loops, thus, each diagonal
entry of S must be null. Finally, the last condition fixes the scale
of the admissible graphs by setting the weighted degree of the
first node to 1, and also rules out the trivial solution S = 0.
Naturally, the choice of the first node is (almost) arbitrary; any
node with at least one neighbor in the sought graph suffices.
Although not considered here, additional sources of information
such as knowing the existence (or not) of particular edges can
be incorporated into S as well.

Alternatively, when S = L represents a normalized Laplacian
[5], the associated SL is

SL:={S |Sij ∈ [−1, 0] for i �=j, S∈MN
+ ,

Sii =1 for all i, λ1 = 0, λi ≤ 2}. (8)

In SL we impose that S is symmetric and positive semi-definite,
its diagonal entries are 1, its off-diagonal entries are non-
positive, and its eigenvalues are no larger than 2. Moreover,
since S is a normalized Laplacian we know that the vector

√
d

containing as entries the square roots of the node degrees is
an eigenvector whose associated eigenvalue is zero, and this is
incorporated into the last constraint. Notice that for this last con-
straint to be implementable we should be able to identify

√
d

among all the spectral templates in V. This can be done since√
d is the only eigenvector whose entries have all the same sign

[33]. In the same way that fixing a scale discards the solution
S = 0 for adjacency matrices, the constraint λ1 = 0 rules out
the uninformative solution S = I from the feasible set SL . For
the cases where the underlying graph has D connected com-
ponents, SL can be modified accordingly by forcing λi = 0 for
i = 1, . . . , D. The corresponding eigenvectors v1 , . . . ,vD can
be identified from the eigenbasis of Cx as those corresponding
to a repeated eigenvalue and spanning

√
d.

Naturally, the identification of other GSOs can be of interest as
well, including for instance the combinatorial Laplacian Lc and
the random walk Laplacian [34]. These can be accommodated
in our proposed framework via minor modifications to the set
S; see e.g. Section V-C for an experiment on recovering Lc . For
concreteness, we henceforth focus exclusively on adjacency and
normalized Laplacian matrices, and the theoretical guarantees
presented refer to the specific recovery of these two GSOs.

C. Additional Sources for the Spectral Templates

The central focus of this paper is to solve (6) when eigen-
vectors vk are estimated from a sample set X (cf. Problem 2).
Notwithstanding, the network topology inference problem
in (6) is applicable as long as eigenvectors or eigenvector
estimates are available. Four settings where solving Problem 1
is of independent interest are outlined next.

GSO associated with orthogonal transformations: Expressing
signals x in an alternative domain x̃ by using an orthonor-
mal transform x̃ := KT x, such as Fourier, wavelets, Karhunen-
Loève, or discrete-cosine, is a cornerstone operation in signal
processing. If we set V = K in (6) we formulate the problem of
identifying a graph shift S = VΛVT = KΛKT whose graph
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Fourier transform [7] x̃ := VT x = KT x is the given orthonor-
mal transform of interest. This is important because it reveals
the proximity structure between signal components that is im-
plicitly assumed and exploited by the transform K.

Design of graph filters: In addition to describing linear diffusion
dynamics [cf. (3)], graph filters represent linear transformations
that can be implemented in a distributed manner [35]–[37]. In the
context of distributed algorithms, consider the approximation of
a prescribed linear transformation represented by the square ma-
trix B ∈ RN ×N using a graph filter H =

∑N−1
l=0 hlSl [30]. A

necessary condition for this approximation to be exact is that the
eigenvectors of the shift S = VΛVT and those of the transfor-
mation B = VBΛBVT

B must coincide; [30, Prop. 1]. Since VB

can be obtained from the prescribed B, the optimization in (6)
can be solved using V = VB as input. Solving Problem 1 using
VB enables us to design the sparsest S which facilitates im-
plementation of a given transformation B via distributed graph
filtering.

Graph sparsification: Given a GSO T, we can use our frame-
work to obtain a sparse shift S with the same eigenvectors as
T, and desirable properties encoded in S. This graph sparsifi-
cation problem can be addressed by solving (6) using as inputs
the eigenvectors of T. Note that, different from the setup where
the goal is to explain the structure of x (cf. Problem 2), the
matrix T is not necessarily a covariance matrix. Moreover, in
general the input T need not belong to S. Thus, (6) is effectively
promoting sparsity while ensuring that the output GSO adheres
to the specifications in S.

Network deconvolution: The network deconvolution problem is
the identification of an adjacency matrix S that encodes direct
dependencies when given an adjacency T that includes indi-
rect relationships. The problem is a generalization of channel
deconvolution and can be solved by setting S = T (I + T)−1

[38]. This solution assumes a diffusion as in (1) that results in
a single-pole-single-zero graph filter. A more general approach
is to assume that T can be written as a polynomial of S but be
agnostic to the form of the filter. This leads to Problem 1, with
V given by the eigenvectors of T.

III. TOPOLOGY INFERENCE FROM SPECTRAL TEMPLATES

The focus of this section is on Problem 1, that is to find the
sparsest graph shift S that is diagonalized by given spectral
templates V = [v1 , . . . ,vN ]. The structure of the feasible set
in (6) plays a critical role in solving this network inference
problem. In fact, it can be shown that in a number of setups
the feasible set reduces to a singleton, or otherwise to a
low-dimensional subspace. This is important because even if
the objective is non-convex as in (6), searching over a small
space is not necessarily hard.

We first investigate the size of the feasible set and provide
conditions under which it reduces to a singleton, thus rendering
the objective function inconsequential to the optimization. For
the cases where there are multiple feasible solutions, the opti-
mization (6) is non-convex and in fact NP-hard [39]. We then

propose convex relaxations that can be solved in polynomial
time and are provably tight under some technical conditions
(see Theorems 1 and 2 for details).

A. Size of the Feasibility Set

The feasible set of problem (6) for both SL and SA is in
general small. To be more precise, some notation must be in-
troduced. Define W :=V � V∈RN 2×N , where � denotes the
Khatri-Rao product. Notice that from the definition of S we can
write s := vec(S) as s = Wλ. Hence, each row of W repre-
sents theN weighting coefficients that map λ to the correspond-
ing entry of S. Further, define the set D containing the indices
of s corresponding to the diagonal entries of S and select the
corresponding rows of W to form WD ∈RN ×N . Also, define
the matrix U := V1 ◦ V1 ∈RN×N , where ◦ denotes the ele-
mentwise product and V1 := [1,v2 ,v3 , . . . ,vN ]. Using these
conventions, the following result holds.

Proposition 1: Assume that (6) is feasible, then it holds that:
a) If S = SA , then rank(WD) ≤ N − 1. Similarly, if

S = SL , then rank(U) ≤ N − 1.
b) If rank(WD) = N − 1 whenS = SA or rank(U) = N −

1 when S = SL , then the feasible set of (6) is a singleton.
Proof: We show statements a) and b) for the case S = SA .

The proofs for S = SL are analogous and thus omitted.
Note that we may write WDλ = diag(S) = 0 for all feasible

λ. Hence, feasibility implies that WD is rank-deficient as stated
in a). To show b), assume that rank(WD) = N − 1 so that λ

in ker(WD) is unique up to a scaling factor. However, since
one of the conditions in SA forces the first row of S to sum up
to 1 [cf. (7)], this scaling ambiguity is resolved and the unique
feasible λ (and hence S) is obtained. �

Proposition 1 offers sufficient conditions under which (6)
reduces to a feasibility problem. More specifically, when condi-
tion b) is met, the objective in (6) is inconsequential since there
exists only one feasible S. In practice, we have observed that for
random graphs with real-valued weights, condition b) is satis-
fied except for graphs with a very simple structure such as trees.
Interestingly, this implies that most random weighted graphs
can be uniquely determined by their eigenvectors. For these
cases, the analysis of the solution to the convex relaxation of (6)
carried out in the remaining of this section serves as a theoreti-
cal underpinning for the more practical findings in Section IV.
On the other hand, when the random graphs are unweighted or
the edges take values in a small finite set, condition b) is often-
times not satisfied. For these cases, however, among all feasible
GSOs the sparsest one can be (in theory) recovered by solving
(6). The level of rank deficiency of WD and U for the adjacency
and normalized Laplacian cases, respectively, offers a practical
indicator of the difficulty in recovering S via convex relaxations
of (6); see also Section III-B and Fig. 1(c). Consequently, the
recovery of highly structured graphs such as grids, cycles, and
other regular graphs – which in practice lead to low-rank WD
and U – tends to be more challenging than for random graphs.

Proposition 1 can also help in selecting the type of GSO (ad-
jacency or Laplacian) that is more likely to explain the structure
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of the signal x. This is relevant for settings where the type of
shift is unknown a priori, and we may exploit the structure of
V to make an informed decision on the GSO. For instance, at
first one can look at the columns of V and check whether one
of them is a constant vector, which is a requirement for the
shift to be a combinatorial Laplacian. One could also examine
WD or U. For example if WD has full rank, it follows from
Proposition 1 that S cannot be an adjacency matrix with ze-
ros in the diagonal. Analogously, in the pragmatic setting of
Section IV-A where the eigenvectors are estimated imperfectly,
one can check how close the noisy versions of WD and U are
to being rank deficient and choose the GSO type accordingly.

B. Convex Relaxation

One usual approach to handle the non-convex �0 (pseudo)
norm objective in (6) is to relax it to an iteratively re-weighted
�1 norm. Specifically, with t denoting an iteration index, we aim
to solve a sequence t = 1, . . . , T of weighted �1-norm mini-
mization problems

S∗
ω :=argmin

{S,λ}

∑

i,j

ωij (t)|Sij | s.t. S =
N∑

k=1

λkvkvTk , S∈S,

(9)

with weights ωij (t) := τ/ (|Sij (t− 1)| + δω ), for appropri-
ately chosen positive constants τ and δω . Intuitively, the goal
of the re-weighted scheme in (9) is that if |Sij (t− 1)| is small,
in the next iteration the penalization ωij (t) is large, promoting
further shrinkage of Sij towards zero [40].

Naturally, under condition b) in Proposition 1 the solutions
S∗

0 of (6) and S∗
ω of (9) are guaranteed to coincide given that the

feasible set is reduced to a singleton. Moreover, even when con-
dition b) is not satisfied, there exist weights ωij that guarantee
the equivalence of both solutions. To state this formally, define
the set J containing the indices identifying the support of S∗

0
and denote by J c its complement. Whenever S∗

0 is the unique
solution to (6), it is not hard to establish that by setting weights
in (9) as ωij = 1 for (i, j) ∈ J c and ωij = 0 otherwise, then
S∗
ω is unique and equal to S∗

0 .
The upshot of this simple observation is that there exist op-

timal weights so that the sparsest solution S∗
0 can be recovered

by solving a convex optimization problem. Being convex, this
approach incurs substantially lower computational complexity
when compared to the original NP-hard optimization. This result
confers validity to the re-weighted formulation in (9), nonethe-
less, we can neither choose these weights without knowing S∗

0
a priori nor there is a guarantee that the succession of weights
ωij (t) converges to these optimal weights. Hence, we now focus
on the derivation of theoretical guarantees for a particular set of
weights that can be set a priori, namely, we consider the formu-
lation in which each entry of the GSO is equally weighted. This
boils down to solving the convex optimization

S∗
1 := argmin

{S,λ}
‖S‖1 s.t. S =

N∑

k=1

λkvkvTk , S ∈ S. (10)

Interestingly, under certain conditions we can ensure that the
solution S∗

1 to the relaxed problem (10) coincides with S∗
0 . To

be more specific, define s∗0 := vec(S∗
0), denote by Dc the com-

plement of D and partition Dc into K and Kc , with the former
indicating the positions of the nonzero entries of s∗0Dc := (s∗0)Dc ,
where we recall that matrix calligraphic subscripts select rows.
Recalling that † denotes the matrix pseudo-inverse, we define

M := (I − WW†)Dc ∈ RN 2 −N×N 2
, (11)

i.e., the orthogonal projector onto the kernel of WT constrained
to the off-diagonal elements in Dc . With e1 denoting the first
canonical basis vector, we construct the matrix

R := [M, e1 ⊗ 1N−1 ] ∈ RN 2 −N×N 2 +1 , (12)

by horizontally concatenating M and a column vector of size
|Dc | with ones in the firstN − 1 positions and zeros elsewhere.
With this notation in place, the following recovery result holds.

Theorem 1: If S = SA and (10) is feasible, then S∗
1 = S∗

0 pro-
vided that the two following conditions are satisfied:

A-1) rank(RK) = |K|; and
A-2) There exists a constant δ > 0 such that

ψR := ‖IKc (δ−2RRT + ITKc IKc )−1ITK‖M (∞) < 1. (13)

Proof: See Appendix A. �
Theorem 1 offers sufficient conditions under which the

relaxation (10) is tight, namely that solving (10) incurs no loss
of optimality and S∗

1 = S∗
0 . In other words, under A1)-A2) one

can still recover the sparsest adjacency matrix defined in (6),
by solving a convex optimization problem in polynomial time.
Simulations in Section V reveal that the bound (13) imposed on
ψR is tight by providing examples where ψR is equal to 1 and
for which recovery fails. In Theorem 1, condition A-1) ensures
that the solution to (10) is unique, a necessary requirement to
guarantee sparse recovery. Condition A-2) is derived from the
construction of a dual certificate specially designed to ensure
that the unique solution to (10) also has minimum �0 norm [41].

Recall that the �∞ norm in (13) is the maximum �1 norm
across the rows of the argument matrix, which has |Kc | rows
each containing |K| elements. It is thus expected that sparser
graphs (small |K|) might have smaller values of ψR . Further-
more, to have an intuitive understanding ofψR it is helpful to see
that condition A-2) is always satisfied whenever RRT is non-
singular. More specifically, for small values of δ we have that
ψR ≈ δ2‖IKc (RRT )−1ITK‖M (∞) , which can be made arbitrar-
ily small and, in particular, strictly smaller than 1. Matrix RRT

can be shown to be invertible whenever rank(WD) = N − 1
(cf. Proposition 1). Thus, in the extreme case where the feasible
set is a singleton, Theorem 1 guarantees recovery, as expected.
A more general characterization of the classes of random graphs
that tend to satisfy (13) with high probability is of interest, but
left as future research.

The recovery result of Theorem 1 can be replicated for the
case where the shift of interest is a normalized Laplacian, i.e.,
when S = SL . To state this formally, if we define Q := (I −
ŨŨ†)Dc , where Ũ := Ṽ � Ṽ for Ṽ := [v2 ,v3 , . . . ,vN ] the
following result holds. .
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Theorem 2: If S = SL and (10) is feasible, then S∗
1 = S∗

0 pro-
vided that the two following conditions are satisfied:

L-1) rank(QK) = |K|; and
L-2) There exists a constant δ > 0 such that

ψQ := ‖IKc (δ−2QQT + ITKc IKc )−1ITK‖M (∞) < 1. (14)

Proof: The proof follows the same steps as those in
Theorem 1 and, thus, is omitted. �

IV. IMPERFECT SPECTRAL TEMPLATES

Whenever the number of observed graph signals is limited
or the observations are noisy as in Problem 2, assuming perfect
knowledge of the spectral templates V may be unrealistic. This
section broadens the scope of the network inference problems
dealt with so far, to accommodate imperfect spectral templates
that can either be noisy or incomplete. Specifically, we investi-
gate pragmatic scenarios where: i) only an approximate version
of V can be obtained (e.g., from the eigenvectors of a sample
covariance matrix); and ii) where only a subset of V is available
(e.g., when the observed signals are bandlimited and one can
only estimate the non-zero frequencies that are present).

A. Noisy Spectral Templates

We first address the case where knowledge of an approximate
version of the spectral templates V̂ = [v̂1 , . . . , v̂N ] is available.
The question here is how to update the general formulation
in (6) to account for the discrepancies between the estimated
spectral templates V̂ and the actual eigenvectors of S. An in-
structive reformulation is to include V = [v1 , . . . ,vN ] as deci-
sion variables and formulate the following problem

min
{S,λ,V}

‖S‖0

s.t. S =
N∑

k=1

λkvkvTk , S ∈ S, d(vk , v̂k ) ≤ εk for all k, (15)

where d(·, ·) is a convex vector distance function, such as the
�p norm of the vector difference for p ≥ 1. The idea in (15)
is to find a sparse S that satisfies the desired properties in S,
while its eigenvectors vk are each of them close to the observed
ones v̂k . The value of εk must be chosen based on a priori
information on the imperfections, such as the number of signals
used to estimate the sample covariance, the magnitude of the
eigenvalues (eigenvectors associated with small eigenvalues are
harder to estimate [42, Ch. 3]), or the statistics of the observation
noise. While conceptually simple, (15) is a formidable problem
since both λk and vk are optimization variables, rendering the
first constraint non-convex.

To bypass this issue, our approach is to form S′ :=∑N
k=1 λk v̂k v̂Tk and search for a shift S that possesses the desired

properties while being close to S′. Formally, one can solve

Ŝ∗ := argmin
{S,λ,S ′}

‖S‖0

s.t. S′ =
N∑

k=1

λk v̂k v̂Tk , S ∈ S, d(S,S′) ≤ ε, (16)

where d(·, ·) is a convex matrix distance whose form depends
on the particular application. E.g., if ‖S − S′‖F is chosen, the
focus is more on the similarities across the entries of the shifts,
while ‖S − S′‖M (2) focuses on their spectrum. Additional conic
constraints of the form ‖(S − S′)v̂k‖2 ≤ λk εk enforcing that
particular eigenvectors are well approximated can also be in-
corporated. From an application point of view, the formulation
in (16) is also relevant to setups where the templates V̂ are not
necessarily noisy but the goal is to enlarge the set of feasible
GSOs. This can be of interest if, for example, finding an S that
is both sparse and with the exact templates collected in V̂ is
impossible (cf. Section II-C).

Solving (16) faces similar challenges to those in Section III.
The �1 norm relaxation of (16) yields [cf. (10)]

Ŝ∗
1 := argmin

{S,λ,S ′}
‖S‖1

s.t. S′ =
N∑

k=1

λk v̂k v̂Tk , S ∈ S, d(S,S′) ≤ ε, (17)

where iteratively re-weighted schemes are also possible. More-
over, further uncertainties can be introduced in the definition of
the feasible set S, e.g. in the scale of the admissible graphs for
the case of S = SA (cf. Proposition 2 and (33) for additional
details).

When the interest is in recovering a normalized Laplacian
[cf. (8)], a possible implementation is to enforce the constraint
λ1 = 0 talis qualis on (17) entailing that one of the eigenvalues
of S′ (and not S) is equal to zero. However, the smallest eigen-
value of S must be close to zero due to the constraint on the
distance between S and S′. Alternatively, the objective can be
augmented by also considering the nuclear norm ‖S‖∗ to further
promote rank-deficiency on S.

To assess the effect of the noise in recovering the sparsest S,
we define matrices Ŵ, R̂ and Q̂ which are counterparts of W,
R and Q defined prior to Theorem 1, but based on the noisy
templates V̂ instead of V. Further, we drop the non-negativity
constraint in SA – to obtain S̃A – and incorporate the scale
ambiguity by augmenting d(S,S′) as d̃(S,S′) = (d(S,S′)2 +
(
∑

j Sj1 − 1)2)1/2 . With this notation, the following result on
robust recovery of network topologies holds.

Proposition 2: When d(S,S′) = ‖S − S′‖F , and assuming that
there exists at least one S′ such that d̃(S∗

0 ,S
′) ≤ ε, the solution

ŝ∗1 := vec(Ŝ∗
1) to (17) for S = S̃A with scale ambiguity satisfies

‖ŝ∗1 − s∗0‖1 ≤ Cε, with C = 2C1 + 2C2C3 , (18)

if the same conditions stated in Theorem 1 hold but for R̂ instead
of R. Constants C1 , C2 , and C3 are given by

C1 =

√|K|
σmin(R̂T

K)
, C2 =

1 + ‖R̂T ‖M (2)C1

1 − ψR̂
, C3 =‖R̂†‖M (2)N,

(19)
where σmin(·) denotes the minimum singular value of the ar-
gument matrix. An analogous result can be derived for the case
S = S̃L (where the non-positivity constraint is dropped) when-
ever Q̂ satisfies the conditions in Theorem 2.
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Proof: See Appendix B. �
When given noisy versions V̂ of the spectral templates of our

target GSO, Proposition 2 quantifies the effect that the noise has
on the recovery. More precisely, the recovered shift is guaranteed
to be at a maximum distance from the desired shift bounded by
the tolerance ε times a constant, which depends on R̂ and the
supportK. The value of εmust be chosen based on the (expected)
discrepancy between V and V̂. The smaller the discrepancy,
the smaller the value of ε needed to guarantee feasibility via
d̃(S∗

0 ,S
′) ≤ ε. Indeed, when V̂ is obtained from the sample

covariance Ĉx , we have that as the number of observed signals
R increases, Ĉx tends to the covariance Cx . Hence, if Cx has
no repeated eigenvalues, V̂ will tend to the actual eigenvectors
V (see, e.g., [42, Th. 3.3.7]) and the tolerance ε in (17) can be
set to a smaller value. In the limit when R→ ∞ and one has
that V̂ = V then the tolerance ε can be set to zero. This yields
S′ = S∗

0 and (18) guarantees perfect recovery under conditions
A-1) and A-2) in Theorem 1 or L-1) and L-2) in Theorem 2.

B. Incomplete Spectral Templates

Thus far we have assumed that the entire set of eigenvectors
V = [v1 , . . . ,vN ] is known, either perfectly or corrupted by
noise. However, it is conceivable that in a number of scenarios
only some of the eigenvectors (say K out of N ) are available.
This would be the case when e.g., V is found as the eigenbasis
of Cx where x is bandlimited in the graph Fourier domain [43].
More generally, whenever Cx contains repeated eigenvalues
there is a rotational ambiguity in the definition of the associated
eigenvectors. Hence, in this case, we keep the eigenvectors that
can be unambiguously characterized and, for the eigenvectors
with repeated eigenvalues, we include the rotational ambiguity
as an additional constraint in our optimization problem.

Formally, assume that the K first eigenvectors VK =
[v1 , ...,vK ] are those which are known. Then, the network topol-
ogy inference problem with incomplete spectral templates can
be formulated as [cf. (10)]

S̄∗
1 := argmin

{S,SK̄ ,λ}
‖S‖1

s.t. S = SK̄ +
K∑

k=1

λkvkvTk , S ∈ S, SK̄VK = 0, (20)

where we already particularized the objective to the �1 convex
relaxation. The formulation in (20) enforces S to be partially
diagonalized by the known spectral templates VK , while its
remaining component SK̄ is forced to belong to the orthogonal
complement of Im(VK ). Notice that, as a consequence, the rank
ofSK̄ is at mostN −K. As in the previous cases,S incorporates
a priori information about the GSO. Notice that the constraint in
S imposing symmetry on S combined with the first constraint
in (20) automatically enforce symmetry on SK̄ , as wanted. An
advantage of using only partial information of the eigenbasis as
opposed to the wholeV is that the set of feasible solutions in (20)
is larger than that in (10). This is particularly important when
the templates do not come from a preexisting shift but, rather,
one has the freedom to choose S provided it satisfies certain
spectral properties. A practical example is the selection of the

topology of a sensor network aimed at implementing estimation
tasks such as consensus averaging, which can be oftentimes
written as rank-one transformations of the sensor observations
(cf. Section II-C and [30]).

Theoretical guarantees of recovery analogous to those pre-
sented in Section III-B can be derived for (20). To formally
state these, the following notation must be introduced. De-
fine WK := VK � VK and Υ := [IN 2 ,0N 2 ×N 2 ]. Also, de-
fine matrices B(i,j ) ∈ RN×N for i < j such that B(i,j )

ij = 1,

B
(i,j )
j i = −1, and all other entries are zero. Based on this, we

denote by B ∈ R(N2 )×N 2
a matrix whose rows are the vector-

ized forms of B(i,j ) for all i, j ∈ {1, 2, . . . , N} where i < j. In
this way, Bs = 0 when s is the vectorized form of a symmetric
matrix. Further, we define the following matrices

P1 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

I − WKW†
K

ID
B

0NK×N 2

(e1 ⊗ 1N )T

⎤

⎥
⎥
⎥
⎥
⎥
⎦

T

, P2 :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

WKW†
K − I

0N×N 2

0(N2 )×N 2

I ⊗ V T
K

01×N 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

T

, (21)

and P := [PT
1 ,P

T
2 ]T . With this notation in place, and denoting

by J the support of s∗0 = vec(S∗
0), the following result holds.

Theorem 3: If S = SA and (20) is feasible, then S̄∗
1 = S∗

0 pro-
vided that the two following conditions are satisfied:

A-1) rank([P1
T
J ,P

T
2 ]) = |J | +N 2 ; and

A-2) There exists a constant δ > 0 such that

ηP := ‖ΥJ c (δ−2PPT + ΥT
J c ΥJ c )−1ΥT

J ‖M (∞) < 1. (22)

Proof: See Appendix C. �
Theorem 3 provides sufficient conditions for the relaxed

problem in (20) to recover the sparsest graph, even when
incomplete information about the eigenvectors is available. In
practice it is observed that for smaller number K of known
spectral templates the value of ηP in (22) tends to be larger,
indicating a less favorable setting for recovery. This observation
is aligned with the results obtained in practice; see Fig. 2(c).

To state results similar to those in Theorem 3 but for the
recovery of normalized Laplacians, we define ŨK := ṼK �
ṼK where ṼK := [v2 ,v3 , . . . ,vK ] and define the matrices

T1 :=

⎡

⎢
⎢
⎢
⎣

I − ŨK Ũ†
K

ID
B

0NK×N 2

⎤

⎥
⎥
⎥
⎦

T

, T2 :=

⎡

⎢
⎢
⎢
⎣

ŨK Ũ†
K − I

0N×N 2

0(N2 )×N 2

I ⊗ V T
K

⎤

⎥
⎥
⎥
⎦

T

, (23)

and T := [TT
1 ,T

T
2 ]T . Under the assumption that the first eigen-

vector (i.e., the one whose associated eigenvalue is zero) is
among the K eigenvectors known, the following result holds.

Theorem 4: If S = SL and (20) is feasible, then S̄∗
1 = S∗

0 pro-
vided that the two following conditions are satisfied:

L-1) rank([T1
T
J ,T

T
2 ]) = |J | +N 2 ; and

L-2) There exists a constant δ > 0 such that

ηT := ‖ΥJ c (δ−2TTT + ΥT
J c ΥJ c )−1ΥT

J ‖M (∞) < 1. (24)
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Fig. 1. (a) Proportion of topology inference problems with a unique feasible point for Erdős-Rényi graphs as a function of N and p for adjacency (top) and
normalized Laplacian (bottom) matrices. (b) Recovery rate for the same set of graphs in (a) when implementing the iteratively re-weighted approach in (9).
(c) Histogram of the rank of matrix U for N =10 and p=0.2. (d) Experimental validation of Theorem 1. The total height of the bars represents the empirical
frequency of the norm ψR . Each bar is then split into two parts (colors) one representing the fraction of cases where recovery succeeds and the other one where it
fails. Whenever ψR < 1, perfect recovery is achieved.

Proof: The proof follows the same steps as those in
Theorem 3 and, thus, is omitted. �

Notice that scenarios that combine the settings in
Sections IV-A and IV-B, i.e. where the knowledge of the K
templates is imperfect, can be handled by combining the formu-
lations in (17) and (20). This can be achieved upon implementing
the following modifications to (20): considering the shift S′ as a
new optimization variable, replacing the first constraint in (20)
with S′ = SK̄ +

∑K
k=1λkvkv

T
k , and adding d(S,S′) ≤ ε as a

new constraint [cf. (17)].
Regarding the computational complexity of our algorithms,

notice that there are two major tasks to consider: (i) computing
the eigenvectors which incurs O(N 3) complexity [44]; and (ii)
solving iteratively the various sparsity minimization problems to
recover the GSO, which incur O(N 3) complexity per iteration
using naively e.g., the solvers in [45] or [46]. Simulations in
Section V were run using the CVX package for Matlab [47], an
off-the-shelf tool which may incur suboptimal complexity both
in terms of the number of variables and constraints. Building on
optimization advances for sparse recovery problems, custom-
made scalable algorithms that exploit the structure of (10), (17)
and (20) could be developed. This is an interesting direction that
we are currently pursuing, but is beyond the scope of this paper.

V. NUMERICAL EXPERIMENTS

We test the proposed topology inference methods on different
synthetic and real-world graphs. A comprehensive performance
evaluation is carried out whereby we: (i) investigate the recovery
of both adjacency and normalized Laplacian matrices; (ii) cor-
roborate our main theoretical findings; (iii) assess the impact of
imperfect information in the recovery; (iv) carry out compar-
isons with state-of-the-art methods; and (v) illustrate how our
framework can promote sparsity on a given network.

A. Topology Inference From Noiseless Templates

Consider Erdős-Rényi (ER) graphs2 [48] of varying size
N ∈ {10, 20, . . . , 50} and different edge-formation probabili-

2Although for conciseness theresults in Section V-A are only presented for
ER graphs, these results are consistent with those for other types of random
graphs including, small-world and preferential attachment graphs [48].

ties p ∈ {0.1, 0.2, . . . , 0.9}. For each combination of N and
p we generate 100 connected graphs and try to recover their
adjacency A and normalized Laplacian L matrices from the
corresponding spectral templates V. In Fig. 1(a) we plot the
proportion of instances where the corresponding optimization
problems – problem (6) for S = SA and S = SL – have sin-
gleton feasibility sets. Notice that multiple solutions are more
frequent when the expected number of neighbors of a given node
is close to either 1 orN . For intermediate values of p, the rank of
both WD and U is typically N − 1, guaranteeing a single fea-
sible point (cf. Proposition 1). Using the same set of graphs that
those in Fig. 1(a), Fig. 1(b) shows the recovery rate when solving
the iteratively re-weighted problem (9) for both the adjacency
(top) and the normalized Laplacian (bottom). As expected, the
rates in Fig. 1(b) dominate those in Fig. 1(a) since every in-
stance with a unique feasible point is recovered successfully.
Moreover, the improved rates observed in Fig. 1(b) are indica-
tive of the beneficial effect that the weighted �1 norm objective
has in the recovery. The aforementioned experiment was re-
peated for (weighted) random geometric graphs of varying size
and connectivity range, and similar findings were observed.

As indicated by Proposition 1, the rate of recovery is inti-
mately related to the ranks of WD and U for the adjacency and
normalized Laplacian cases, respectively. Fig. 1(c) further illus-
trates this relation via a histogram of the rank of U for the 100
graphs with N = 10 and p = 0.2. Given that ER graphs are un-
weighted, we have that rank(U) < N − 1 for a non-negligible
fraction of the realizations (cf. discussion after Proposition 1).
Nevertheless, for more than half of the instances, the rank of
U is equal to 9 (blue bar) and, as stated in Proposition 1, for
all these graphs there is a unique feasible point (yellow bar)
that is successfully recovered (cyan bar). We see that, as the
rank of U degrades, uniqueness is no longer guaranteed but for
most cases the true graph can still be recovered following the
iteratively re-weighted scheme proposed. Only in 8 of the cases
where rank(U) < 9 the recovery was not successful, entailing
a recovery rate of 0.92, as reported in the corresponding entry
(N = 10, p = 0.2) of the bottom plot in Fig. 1(b).

Finally, in order to corroborate the conditions for noiseless
recovery stated in Theorem 1, we draw ER random graphs of
sizeN = 20 and edge-formation probability p = 0.25. For each
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Fig. 2. (a) Brain graph recovery error for three patients as a function of the number of synthetic signals observed in the estimation of the spectral templates.
(b) Recovery error for four social networks as a function of the number of synthetic signals observed in the estimation of the spectral templates. (c) Recovery error
for four social networks (with N = 32 nodes) as a function of K , the number of spectral templates that are known.

graph, we make sure that the associated WD matrix has rank
strictly smaller than N − 1 (to rule out the cases where the
feasible set is a singleton), and that condition A-1) in Theorem 1
is satisfied. In Fig. 1(d) we plot the number of successes and
failures in recovering the adjacency as a function of ψR in (13).
We consider 1000 realizations and for each of them the constant
δ in (13) is chosen to minimize ψR . Fig. 1(d) clearly depicts
the result of Theorem 1 in that, for all cases where ψR < 1,
relaxation (10) achieves perfect recovery. Equally important,
it is clear that the bound stated in (13) is tight since a large
proportion of the realizations with ψR equal to 1 or just above
this value lead to failed recoveries.

B. Topology Inference From Noisy and Incomplete Templates

In this set of experiments we consider imperfect spectral tem-
plates, real-world graphs, and synthetic signals. We start with
the identification of unweighted and undirected graphs corre-
sponding to human brains [49]. Each graph consists of N = 66
nodes, which represent brain regions of interest (ROIs). An edge
between two ROIs exists if the density of anatomical connec-
tions is greater than a threshold, which is chosen as the largest
one that entails a connected graph [49]. We test the recovery
from noisy spectral templates V̂ [cf. (17)] obtained from sam-
ple covariances of synthetic signals generated through diffusion
processes (cf. Section II). We model such processes as graph
filters of random degree between 3 and 7, and with indepen-
dent and normally distributed coefficients. Denoting by V̂i the
noisy spectral templates of patient i∈{1, 2, 3} and by Âi the
adjacency matrices recovered, Fig. 2(a) plots the recovery error
as a function of the number of signals observed in the compu-
tation of the sample covariance. The error is quantified as the
proportion of edges misidentified, i.e., ‖Ai−Âi‖0/‖Ai‖0 , and
each point in Fig. 2(a) is the average across 50 realizations. No-
tice that for an increasing number of observed signals we see a
monotonous decrease in the recovery error. For example, when
going from 104 to 105 observations the error is (approximately)
divided by seven, when averaged across patients. This is reason-
able since a larger number of observations gives rise to a more
reliable estimate of the covariance matrix entailing less noisy
spectral templates. Traditional methods like graphical lasso [17]
fail to recover S from the sample covariance of filtered white
signals. For example, when signals are generated using a filter
of the form H = h0I + h1S, graphical lasso performs signifi-
cantly worse than the method based on spectral templates. More

precisely, when 105 signals are observed, the recovery error of
graphical lasso averaged over 50 realizations and with optimal
tuning parameters is 0.303, 0.350, and 0.270 for patients 1, 2,
and 3, respectively. Such errors are between 5 and 50 times
larger than those reported in Fig. 2(a). Further comparisons of
our method with graphical lasso and other existing alternatives
are provided in Section V-C.

We repeat the previous experiment on four social networks
defined on a common set of N = 32 nodes, which represent
students from the University of Ljubljana3. Links for each of
the networks capture different types of interactions among the
students, and were built by asking each student to select a group
of preferred college mates for different situations, e.g., to discuss
a personal issue or to invite to a birthday party (see footnote 2
for further details). The considered graphs are unweighted and
symmetric, and the edge between i and j exists if either student
i picked j in the questionnaire or vice versa. As done for the
brain graphs, we test the recovery performance for noisy spectral
templates V̂ obtained from sample covariances. Fig. 2(b) plots
the reconstruction error as a function of the number of observed
signals for the different networks studied. As was observed in
Fig. 2(a), we see a monotonous decrease in recovery error for
all the analyzed networks.

Finally, we illustrate the recovery performance in the pres-
ence of incomplete spectral templates by solving (20) for the
four networks in Fig. 2(b). More specifically, in Fig. 2(c) we plot
the recovery error as a function of the numberK of eigenvectors
available. Each point in the plot is the average across 50 real-
izations in which different K eigenvectors were selected from
the N = 32 possible ones. As expected, the performance for all
four networks improves with the number of spectral templates
known. The performance improvement is sharp and precipitous
going from a large error of over 0.85 for three of the networks
when 17 spectral templates are known to a perfect recovery for
all the networks when 24 eigenvectors are given. Moreover, no-
tice that network 4 is consistently the easiest to identify both
for noisy [cf. Fig. 2(b)] and incomplete [cf. Fig. 2(c)] spectral
templates. For example, when given 19 spectral templates the
error associated with network 4 is 0.224 whereas the average
across the other three networks is 0.584. This could be partially
explained by the fact that network 4 is the sparsest, containing

3Access to the data and additional details are available at http://
vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
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TABLE I
PERFORMANCE COMPARISON BETWEEN SPECTRAL TEMPLATES (SPECTEMP), KALOFOLIAS [12], AND DONG et al. [8]

Inverse Laplacian Diffusion Exponential

SpecTemp Kalofolias Dong et al. SpecTemp Kalofolias Dong et al. SpecTemp Kalofolias Dong et al.

Erdős-Rényi
F-measure 0.896 0.791 0.818 0.924 0.868 0.828 0.703 0.651 0.667
edge error 0.108 0.152 0.168 0.071 0.149 0.177 0.276 0.318 0.332
degree error 0.058 0.071 0.105 0.040 0.055 0.111 0.162 0.201 0.222
Barabási-Albert
F-measure 0.926 0.855 0.873 0.945 0.845 0.894 0.814 0.732 0.798
edge error 0.143 0.173 0.209 0.135 0.154 0.235 0.310 0.314 0.393
degree error 0.108 0.124 0.169 0.109 0.092 0.188 0.240 0.244 0.282

16.7% of all possible edges while this indicator attains 32.5%,
31.3%, and 27.2% for the rest of the networks. Hence, the
sparsity promoting objectives in (17) and (20) could be more
effective in recovering network 4. Nevertheless, a formal anal-
ysis of which classes of graphs are inherently more robust for
identification when given imperfect spectral templates is left as
future work.

C. Performance Comparison

We compare the performance of the presented method based
on spectral templates (we refer to it as SpecTemp for concise-
ness) with broadly used statistical approaches as well as recent
GSP-based algorithms.

Comparison with baseline statistical methods: We analyze
the performance of SpecTemp in comparison with two broadly
used methods, namely, (thresholded) correlation [4, Ch. 7.3.1]
and graphical lasso [17]. Our goal is to recover the adjacency
matrix of an undirected and unweighted graph with no self-
loops from the observation of filtered graph signals. For the
implementation of SpecTemp, we use the eigendecomposition
of the sample covariance of the observed signals in order to
extract noisy spectral templates V̂. We then solve problem (17)
for S = SA , where ε is selected as the smallest value that admits
a feasible solution. We include as a priori knowledge that each
node has at least one neighbor, i.e., we replace the constraint∑

j Sj1 = 1 by the constraint S1 ≥ β1 for a small positive con-
stant β in the set SA . For the correlation-based method, we keep
the absolute value of the sample correlation of the observed
signals, force zeros on the diagonal and set all values below a
certain threshold to zero. This threshold is determined during a
training phase, as explained in more detail in the next paragraph.
Lastly, for graphical lasso we follow the implementation in [17]
based on the sample covariance and select the tuning parameter
ρ (see [17]) during the training phase. We then force zeros on
the diagonal and keep the absolute values of each entry. Lever-
aging that the sought graphs are unweighted, for SpecTemp and
graphical lasso a fixed threshold of 0.3 is used so that, after
recovery, every edge with weight smaller than the threshold is
set to zero.

We test the recovery of adjacency matrices S=A of ER
graphs with N=20 nodes and edge probability p = 0.2. We
vary the number of observed signals from 101 to 106 in pow-

ers of 10. Each signal is generated by passing white Gaussian
noise through a graph filter H. Two different types of filters
are considered. As a first type we consider a general filter
H1 = Vdiag(ĥ1)VT , where the entries of ĥ1 are independent
and chosen randomly between 0.5 and 1.5. The second type is a
specific filter of the form H2 = (δHI + S)−1/2 , where the con-
stant δH is chosen so that δHI + S is positive definite to ensure
that H2 is real and well-defined. Following the discussion in
Section II, this implies that the precision matrix of the filtered
signals is given by C−1

x = H−2
2 = δHI + S, which coincides

with S in the off-diagonal elements. For each combination of
filter type and number of observed signals, we generate 10 ER
graphs that are used for training and 20 ER graphs that are used
for testing. Based on the 10 training graphs, the optimal thresh-
old for the correlation method and parameter ρ for graphical
lasso are determined and then used for the recovery of the 20
testing graphs. Given that for SpecTemp we are fixing ε before-
hand, no training is required.

As figure of merit we use the F-measure [50], i.e. the har-
monic mean of edge precision and edge recall, that solely takes
into account the support of the recovered graph while ignoring
the weights. In Fig. 3(a) we plot the performance of the three
methods as a function of the number of filtered graph signals
observed for filters H1 and H2 , where each point is the mean
F-measure over the 20 testing graphs.

When considering a general graph filter H1 , SpecTemp
clearly outperforms the other two. For instance, when 105 sig-
nals are observed, our average F-measure is 0.81 while the
measures for correlation and graphical lasso are 0.29 and 0.25,
respectively. Moreover, of the three methods, our approach is
the only consistent one, i.e., achieving perfect recovery with
increasing number of observed signals. Although striking at a
first glance, the deficient performance of the baseline statisti-
cal methods was expected. For general filters H1 , neither the
correlation nor the precision matrices are sparse or share the
support of the GSO to be recovered S. When analyzing the spe-
cific case of graph filters H2 , where the precision matrix exactly
coincides with the desired graph-shift operator, graphical lasso
outperforms both our method and the correlation-based method.
This is not surprising since graphical lasso was designed for the
recovery of sparse precision matrices. Notice however that for
large number of observations SpecTemp, without assuming any
specific filter model, also achieves perfect recovery and yields
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Fig. 3. (a) Performance comparison between spectral templates (SpecTemp), graphical lasso, and correlation-based recovery. For general filters, SpecTemp
outperforms the other two. (b) Comparison of edge recovery error for the combinatorial Laplacian as a function of the number of signals observed for SpecTemp,
Kalofolias [11], Dong et al. [8], as well as Lake and Tenenbaum [17]. (c) Comparison of edge recovery error for the normalized Laplacian as a function of the
number of signals observed for SpecTemp and two alternatives of Pasdeloup et al. [10].

an F-measure equal to 1. Consequently, if a practitioner knows a
priori that the sought graph is (close to) the precision matrix and
Gaussian signal assumptions are tenable, then graphical lasso
will be the preferred method. However, for the general case
in which this information is unavailable, SpecTemp is a more
prudent alternative.

Comparison with GSP methods: We compare the recovery
using SpecTemp with two classes of algorithms in the GSP
literature: i) methods designed to identify the (combinatorial)
Laplacian of a graph when given a set of smooth graph signals
([8] and [12]); and ii) methods designed to recover the normal-
ized Laplacian of a graph by observing stationary signals on the
graph ([10]).

Small modifications can be made to our framework to accom-
modate the recovery of a combinatorial Laplacian, thus permit-
ting a fair comparison with [8] and [12]. More precisely, in
solving (17) we use the set of admissible shifts given by

SLc := {S |Sij ≤ 0 for i �=j, S∈MN
+ , S1 = 0}. (25)

Moreover, in order to account for the smoothness of the ob-
served signals in the unknown graph we sort the eigenvectors
v̂k of the sample covariance in increasing order of their corre-
sponding eigenvalues, and we require the recovered eigenvalues
λ to satisfy λi ≥ λi+k + δλ for all i, and fixed k and δλ. In this
way, we assign the frequencies with larger presence in the ob-
served signals to low eigenvalues in the recovered Laplacian.
Unless otherwise noted, we set δλ = 0.1 and k = 3.

We compare the three methods of interest on two different
types of graphs and three different signal generation models. We
consider the recovery of the combinatorial Laplacian S = Lc of
ER graphs with N = 20 nodes and edge probability p = 0.3
as well as Barabási-Albert preferential attachment graphs [48]
with N=20 generated from m0 = 4 initially placed nodes,
where each new node is connected to m = 3 existing ones.
Following [12] we consider three models for smooth graph sig-
nals: i) multivariate normal signals with covariance given by
the pseudo-inverse of Lc , i.e., x1 ∼ N (0,Lc

†); ii) white sig-
nals filtered through an autoregressive (diffusion) process, that
is x2 = (I + Lc)−1w, where w ∼ N (0, I); and iii) white sig-
nals passed through an exponential filter, x3 = exp(−Lc)w.
For each of the six settings considered (two graphs combined
with three signal types) we generate 10 training graphs, 100 test-

ing graphs, and for every graph we generate 1000 graph signals.
The training set is used to set the parameters in [8] and [12], and
in our case it serves the purpose of selecting the best ε [cf. (17)].
To increase the difficulty of the recovery task, every signal x is
perturbed as x̂ = x + σ x ◦ z, for σ = 0.1 and where each en-
try of z is an independent standard normal random variable. We
focus on three performance measures, namely, the F-measure
as explained in the previous experiment, the �2 relative error of
recovery of the edges, and the �2 relative error of recovery of
the degrees. The performance achieved by each method in the
testing sets is summarized in Table I. In all but one case, our
method attains the largest F-measures and the smallest errors
for all the graphs and signal types considered.

Finally, for the particular cases of ER graphs and signals x1
(inverse Laplacian), we replicate the above procedure varying
the number of observed signals R from 20 to 100 in steps of 20
and from 100 to 1000 in steps of 100. For SpecTemp, we in-
crease k when the number of observations decreases to account
for the noisier ordering of the eigenvectors in the sample co-
variance. In this experiment we use k = 5 for R ≤ 400, k = 4
for 400 < R < 800 and k = 3 for R ≥ 800. In Fig. 3(b) we
plot the associated �2 edge recovery errors. We also present the
performance of [18] to serve as a baseline for Laplacian re-
covery based on smooth signals. However, for the experiment
at hand, the GSP-based methods achieve better performance,
ratifying the findings in [8]. For small number of observations
R ≤ 60 both [12] and [8] outperform SpecTemp, whereas for
60 < R ≤ 200 only [12] recovers a better graph than SpecTemp.
For larger number of observed signals, SpecTemp outperforms
the alternative methods. This can be attributed to the fact that
SpecTemp assumes no specific model on the smoothness of the
signal other than decreasing energy for increasing frequencies.
Thus, when enough signals are observed, our more model ag-
nostic, data-driven approach exhibits a performance advantage.
Similar results were found for the other combinations of graph
and signal models tabulated under Table I.

The last experiment in this section compares SpecTemp with
the related approach in [10], which considers signals that are sta-
tionary in a normalized Laplacian GSO. More precisely, [10] fo-
cuses on the recovery of a diffusion matrix T = D−1/2AD−1/2 .
Since the normalized Laplacian L = I − T has the same
eigenvectors than T, recovering one is equivalent to recover-
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Fig. 4. (a) Real and inferred contact networks between amino-acid residues for protein BPT1 BOVIN. Mutual information of the co-variation of amino-acid
residues (top left), ground truth contact network (top right), contact network inferred by network deconvolution (bottom left), contact network inferred by our
method based on spectral templates (bottom right). (b) Fraction of the real contact edges between amino-acids recovered for each method as a function of the
number of edges considered. (c) Counterpart of (b) for protein YES HUMAN.

Fig. 5. (a) Real and inferred collaboration networks between 31 network scientists. Unweighted co-authorship network (top left), true weighted collaboration
network (top right), weighted collaboration network inferred by network deconvolution (bottom left), weighted collaboration network inferred by our method
based on spectral templates (bottom right). (b) Fraction of the important collaboration edges between scientists recovered for each method as a function of the
number of edges considered. (c) Counterpart of (b) for a different collaboration network between 28 network scientists.

ing the other. However, the fundamental difference between
[10] and SpecTemp is the (explicit) consideration of imprecise
eigenvectors. In [10] there is no analogous treatment to the one
we propose in (17). This precludes the approach in [10] from
enforcing both zeros in the diagonal (simplicity) and sparsity of
T simultaneously.

Specifically, we run the comparison considering ER random
graphs (N = 10 and p = 0.2), setting the shift to the normal-
ized Laplacian, and varying the number of observed filtered
signals R from 100 to 1,000. We test three different recov-
ery algorithms: i) SpecTemp, i.e., solving problem (17) for
S = SL ; ii) Pasdeloup1, i.e., solving [10, problem (15)]; and
iii) Pasdeloup2, i.e., solving [10, problem (16)]. Fig. 3(c) de-
picts the obtained recovery rates. It is apparent that SpecTemp
markedly outperforms the other two methods, possibly due to
the fact that our formulation models the actual and the imper-
fect shift as two different entities and accounts explicitly for the
imperfections.

D. Network Sparsification

With reference to the network sparsification problem out-
lined in Section II-C, our goal here is to identify the structural
properties of proteins from a mutual information graph of the
co-variation between the constitutional amino-acids [28]; see
[38] for details. For example, for a particular protein, we want
to recover the structural graph in the top right of Fig. 4(a) when
given the graph of mutual information in the top left corner. No-
tice that the structural contacts along the first four sub-diagonals

of the graphs were intentionally removed to assess the capability
of the methods in detecting the contacts between distant amino-
acids. The graph recovered by network deconvolution (NetDec)
[38] is illustrated in the bottom left corner of Fig. 4(a) whereas
the one recovered using SpecTemp is depicted in the bottom
right corner of the figure. Comparing both recovered graphs,
SpecTemp leads to a sparser graph that follows more closely
the desired structure to be recovered. We show this in Fig. 4(b)
by plotting the sensitivity of the top edge predictions, i.e., the
fraction of the real contact edges recovered, as in [38]. For ex-
ample, if for a given method the 100 edges with largest weight
in the recovered graph contain 40% of the edges in the ground
truth graph we say that the sensitivity of the 100 top edge predic-
tions is 0.4. As claimed in [38], NetDec improves the estimation
when compared to raw mutual information data. Nevertheless,
from Fig. 4(b) it follows that SpecTemp outperforms network
deconvolution. Notice that when ε = 0 [cf. (17)] we force the
eigenvectors of S to coincide exactly with those of the matrix
of mutual information S′. However, since S′ is already a valid
adjacency matrix, we recover S = S′. By contrast, for larger
values of ε the additional flexibility in the choice of the eigen-
vectors allows us to recover shifts S that more closely resemble
the ground truth. E.g., when considering the top 200 edges, the
mutual information and the network deconvolution methods re-
cover 36% and 43% of the desired edges, respectively, while
our method for ε=1 achieves a recovery of 53%. In Fig. 4(c)
we present this same analysis for a different protein and similar
results can be appreciated.
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E. Collaboration Networks

We now illustrate how SpecTemp can be used to unveil the
most relevant collaborations in a social network encoding co-
authorship information. To that end, consider the network of
31 scientists working in the field of network science presented
in [29], whose unweighted adjacency matrix A is depicted in
the top left of Fig. 5(a). In A, an unweighted edge exists be-
tween two authors if they have co-authored at least one paper.
The importance of these relationships [top right of Fig. 5(a)]
has been assessed using additional information beyond network
connectivity, including number of co-authored papers and total
number of authors in each publication [29]; see [38] for de-
tails. Our goal is to use as input the unweighted connectivity
graph A (top left) to estimate the weighted importance (top
right). Intuitively, our method is a candidate to carry out this
task because one can think of more meaningful collaborations
as direct influences between authors, whereas indirect relations
would correspond to weak collaborations diluted over many co-
authors. The network deconvolution approach in [38] seeks this
same objective and outputs the network in the bottom left cor-
ner of Fig. 5(a). The network (weighted graph) inferred using
our SpecTemp algorithm is depicted in the bottom right corner
of the figure. This latter graph was obtained by solving (17),
where the eigenbasis V̂ corresponds to A and where we force
the edges not in A to attain zero value in the recovered S.
The graph obtained by SpecTemp resembles more closely the
true weights of the collaborations. We quantify this in Fig. 5(b)
utilizing a measure similar to the one in Section V-D. More pre-
cisely, we separate the edges into two halves depending on their
true weight, namely, important edges (top half) and unimportant
edges (bottom half). In Fig. 5(b) we plot the fraction of important
edges recovered when considering the top edges as predicted
by SpecTemp and NetDec. As was the case in Section V-D,
if we set ε = 0 we recover exactly A since it is a valid ad-
jacency matrix. However, by varying ε we can achieve better
performance than the one in [38]. E.g. for ε = 1.25 we see that
the SpecTemp curve dominates the NetDec one, indicating the
superior explanatory power of our approach. Moreover, notice
that the SpecTemp curve is strictly increasing for the first 36 top
predictions, meaning that all of the top 36 edges predicted by
SpecTemp were in fact important edges. This increase in perfor-
mance was found to be robust to the choice of ε. For instance, for
ε = 1.0 the proposed method still dominates NetDec for most
values of top predictions considered. In Fig. 5(c) we repeat the
analysis with another collaboration network – the connected
component with 28 authors in the network considered in [38] –
and observe similar results.

VI. CONCLUSIONS

With S = VΛVT being the shift operator associated with
the graph G, we studied the problem of identifying S (hence
the topology of G) using a two-step approach where we first
obtain the eigenvectors V, and then use V as input to find the
eigenvalues Λ. The problem of finding Λ given V was for-
mulated as a sparse recovery optimization. Efficient algorithms
based on convex relaxations were developed, and theoretical

conditions under which exact and robust recovery is guaranteed
were derived for the cases where S represents the adjacency
or the normalized Laplacian of G. In identifying V, our main
focus was on using as input a set of graph signal realizations.
Under the assumption that such signals resulted from diffusion
dynamics on the graph or, equivalently, that they were (graph)
stationary in S, it was shown that V could be estimated from
the eigenvectors of the sample covariance of the available set.
As a consequence, several well-established methods for topol-
ogy identification based on local and partial correlations can be
viewed as particular instances of the approach here presented.

APPENDIX A
PROOF OF THEOREM 1

Recalling that s = vec(S), problem (10) for the case where
S = SA can be reformulated as

min
{s,λ}

‖s‖1 s.t. s = Wλ, sD = 0, (e1 ⊗ 1N )T s = 1,

(26)
where the last equality imposes that the first column of S must
sum up to 1 [cf. (7)]. Notice that the non-negativity constraint
in SA is ignored in (26). However, if we show that (26) can
recover the sparse solution s∗0 , then the same solution would be
recovered by the more constrained problem (10). Notice that
we may solve for λ in closed form as λ∗ = W†s. Consequently,
(26) becomes

min
s

‖s‖1 s.t. (I − WW†)s = 0, sD = 0, (e1 ⊗ 1N )T s = 1.
(27)

Leveraging the fact that I − WW† is symmetric, the first equal-
ity in (27) can be rewritten as [cf. (11)]

(I − WW†)TDsD + MT sDc = 0, (28)

and the second equality in (27) forces the first term of (28) to
be zero. With these considerations, we may restate (27) as

min
sDc

‖sDc ‖1 s.t. RT sDc = b, (29)

where b is a binary vector of length N 2 + 1 with all its entries
equal to 0 except for the last one that is a 1. Problem (29)
takes the form of classical basis pursuit [51]. Notice that the
system of linear equations in (29) is overdetermined since RT ∈
RN 2 +1×|Dc |, however, feasibility of (26) guarantees that the
mentioned system of equations is compatible. The following
two conditions are required for the solution of (29) to coincide
with the sparse solution s∗0Dc (cf. [41]):

a) ker(IKc ) ∩ ker(RT ) = {0}; and
b) There exists a vector y ∈ R|Dc | such that y ∈ Im(R),

yK = sign((s∗0Dc )K), and ‖yKc ‖∞ < 1.
The remainder of the proof is devoted to showing that if

conditions A-1) and A-2) in the statement of the theorem hold
true, then a) and b) are satisfied.

To see that A-1) implies a) notice that the nullspace of IKc is
spanned by the columns of ITK . Hence, for a) to hold we need the
|K| columns of RT in positions K to form a full column rank
matrix. In condition A-1) we require RK to be full row rank,
which is an equivalent property.
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The next step is to show that condition A-2) implies b). For
this, consider the following �2-norm minimization problem

min
{y ,z}

δ2‖z‖2
2 + ‖y‖2

2 s.t. y = Rz, yK = sign((s∗0Dc )K),

(30)

where δ is a positive tuning constant. The inclusion of the term
δ2‖z‖2

2 in the objective guarantees the existence of a closed-form
expression for the optimal solution, while preventing numerical
instability when solving the optimization. We will show that the
solutiony∗ to problem (30) satisfies the requirements imposed in
condition b). The two constraints in (30) enforce the fulfillment
of the first two requirements in b), hence, we are left to show that
‖y∗

Kc ‖∞ < 1. Since the values of yK are fixed, the constraint
y = Rz can be rewritten as ITKsign((s∗0Dc )K) = −ITKc yKc +
Rδ−1δz. Then, by defining the vector t := [δzT ,−yTKc ]T and
the matrix Φ := [δ−1RT , IKc ], (30) can be rewritten as

min
t

‖t‖2
2 s.t. ITKsign((s∗0Dc )K) = ΦT t. (31)

The minimum-norm solution to (31) is given by t∗ =
(ΦT )†ITKsign((s∗0Dc )K) from where it follows that

y∗
Kc =−IKc (δ−2RRT + ITKc IKc )−1ITK sign((s∗0Dc )K). (32)

Condition a) guarantees the existence of the inverse in (32).
Since ‖sign((s∗0Dc )K)‖∞=1, we may bound the �∞ norm
of y∗

Kc as ‖y∗
Kc ‖∞ ≤ ‖IKc (δ−2RRT + ITKc IKc )−1ITK‖M (∞) =

ψR . Hence, condition A-2) in the theorem guarantees ‖y∗
Kc ‖∞ <

1 as wanted, concluding the proof.
Notice that in this proof we ignored the non-negativity con-

straints in SA . Nonetheless, the sufficient conditions A-1) and
A-2) are valid for the formulation considering all constraints in
SA , as claimed in the statement of Theorem 1.

APPENDIX B
PROOF OF PROPOSITION 2

We reformulate (17) in vector form for the case S = S̃A with
scale ambiguity to obtain

min
{s,λ,s′}

‖s‖1 s.t. s′ = Ŵλ, sD = 0,

‖s − s′‖2
2 + ((e1 ⊗ 1N )T s − 1)2 ≤ ε2 . (33)

Substituting the first equality constraint in (33) into the inequal-
ity constraint, then solving for λ as λ∗ = Ŵ†s, and finally using
the second equality constraint to reduce the optimization vari-
ables to sDc , we may restate (33) as [cf. (29)]

min
sDc

‖sDc ‖1 s.t. ‖R̂T sDc − b‖2 ≤ ε, (34)

where b is, as in the proof of Theorem 1, a binary vector with
all its entries equal to 0 except for the last one that is equal to 1.
Notice that (34) takes the form of a basis pursuit problem with
noisy observations [51]. Expressions (18) and (19) can be de-
rived by applying the second claim in [41, Th. 2] to problem
(34). In order to do so, a few factors must be taken into con-
sideration. First, since R̂T is not full row rank (since it is a tall
matrix), constant C3 depends on the �2 norm of R̂†. Moreover,
in order to make constants C1 , C2 , and C3 independent of the

dual certificate y ∈ R|Dc | – see condition b) within the proof of
Theorem 1 – we have used that ‖y‖2 ≤ N and ‖yKc ‖∞ ≤ ψR̂ ,
where the first one follows from the fact that the magnitude of
every element in y is at most 1 and the second one was shown
after (32).

A similar procedure can be used to show the result pertaining
the case where S = S̃L .

APPENDIX C
PROOF OF THEOREM 3

With s = vec(S) and sK̄ = vec(SK̄ ), we reformulate (20)
for S = SA as

min
{s,sK̄ ,λ}

‖s‖1

s.t. s = sK̄ + WK λ, sD = 0, Bs = 0,

(e1 ⊗ 1N )T s = 1, (I ⊗ VT
K )sK̄ = 0. (35)

The first and last constraints in (35) correspond to the first
and last constraints in (20) written in vector form. The second
constraint in (35) imposes that S has no self-loops, the third
one imposes symmetry on S, and the fourth one normalizes
the first column of S to sum up to 1 [cf. (7)]. Notice that the
non-negativity constraint in SA is ignored in (35); however,
if we show that (35) can recover the sparse solution s∗0 , then
the same solution would be recovered by the more constrained
problem (20). Using the first constraint to solve for λ, we obtain
λ = W†

K (s − sK̄ ). Moreover, defining the concatenated vari-
able t := [sT , sT

K̄
]T , it follows from the definitions of Υ and P

that (35) can be reformulated as

min
t

‖Υt‖1 s.t. PT t = b, (36)

where b is a vector with every entry equal to 0 except for the
last one which is equal to 1. We utilize existing results on �1-
analysis [41] to state that the solution to (36) coincides with the
sparsest solution if:

a) ker(ΥJ c ) ∩ ker(PT ) = {0}; and
b) There exists a vector y ∈ RN 2

such that ΥT y ∈ Im(P),
yJ = sign(s∗0J ), and ‖yJ c ‖∞ < 1.

As was the case for Theorem 1, the proof now reduces to
showing that conditions A-1) and A-2) in the statement of the
theorem imply the above conditions a) and b).

From the specific form of Υ, the kernel of ΥJ c is a space
of dimension |J | +N 2 spanned by the set of canonical ba-
sis vectors ei of length 2N 2 where i ∈ J ∪ {N 2 + 1, N 2 +
2, . . . , 2N 2}. Thus for a) to hold we need the matrix formed by
the columns of PT indexed by J ∪ {N 2 + 1, . . . , 2N 2} to be
full column rank, as stated in condition A-1).

Finally, the procedure to show that A-2) implies b) follows
the same steps as those detailed in the proof of Theorem 1 –
from (30) onwards – and, thus, is omitted here.
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[3] A. Barrat, M. Barthélemy, and A. Vespignani, Dynamic Processes on
Complex Networks. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[4] E. D. Kolaczyk, Statistical Analysis of Network Data: Methods and Mod-
els. New York, NY, USA: Springer-Verlag, 2009.

[5] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May 2013.

[6] A. Sandryhaila and J. Moura, “Discrete signal processing on graphs,”
IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–1656, Apr. 2013.

[7] A. Sandryhaila and J. Moura, “Discrete signal processing on graphs: Fre-
quency analysis,” IEEE Trans. Signal Process., vol. 62, no. 12, pp. 3042–
3054, Jun. 2014.

[8] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning Lapla-
cian matrix in smooth graph signal representations,” IEEE Trans. Signal
Process., vol. 64, no. 23, pp. 6160–6173, Dec. 1, 2016.

[9] J. Mei and J. Moura, “Signal processing on graphs: Estimating the structure
of a graph,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2015, pp. 5495–5499.

[10] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat, “Char-
acterization and inference of graph diffusion processes from observations
of stationary signals,” arXiv:1605.02569v3, 2016.

[11] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, “Learning sparse graphs
under smoothness prior,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Shanghai, China, Mar. 20-25, 2016, pp. 6508–6512.

[12] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Int.
Conf. Artif. Intell. Statist., 2016, pp. 920–929.

[13] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph
processes and spectral estimation,” arXiv:1603.04667, 2016.

[14] N. Perraudin and P. Vandergheynst, “Stationary signal processing on
graphs,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3462–3477,
Jul. 1, 2017.

[15] B. Girault, “Stationary graph signals using an isometric graph translation,”
in Proc. Eur. Signal Process. Conf., Aug. 2015, pp. 1516–1520.

[16] O. Sporns, Discovering the Human Connectome. Boston, MA, USA: MIT
Press, 2012.

[17] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, 2008.

[18] B. M. Lake and J. B. Tenenbaum, “Discovering structure by learning
sparse graph,” in Proc. Annu. Cogn. Sci. Conf., 2010, pp. 778–783.

[19] M. Slawski and M. Hein, “Estimation of positive definite M-matrices and
structure learning for attractive gaussian Markov random fields,” Linear
Algebra Appl., vol. 473, pp. 145–179, 2015.

[20] N. Meinshausen and P. Buhlmann, “High-dimensional graphs and variable
selection with the lasso,” Ann. Statist., vol. 34, pp. 1436–1462, 2006.

[21] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix estima-
tion for graph signal processing,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., Shanghai, China, Mar. 20–25, 2016, pp. 6350–6354.

[22] X. Cai, J. A. Bazerque, and G. B. Giannakis, “Sparse structural equation
modeling for inference of gene regulatory networks exploiting genetic
perturbations,” PLoS Comput. Biol., vol. 9, Jun. 2013, Art. no. e1003068.

[23] B. Baingana, G. Mateos, and G. B. Giannakis, “Proximal-gradient algo-
rithms for tracking cascades over social networks,” IEEE J. Sel. Topics
Signal Process., vol. 8, no. 4, pp. 563–575, Aug. 2014.

[24] A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L.
Bressler, “Beta oscillations in a large-scale sensorimotor cortical network:
Directional influences revealed by Granger causality,” PNAS, vol. 101,
pp. 9849–9854, 2004.

[25] G. V. Karanikolas, G. B. Giannakis, K. Slavakis, and R. M. Leahy, “Multi-
kernel based nonlinear models for connectivity identification of brain
networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Shanghai, China, Mar. 20–25, 2016, pp. 6315–6319.

[26] Y. Shen, B. Baingana, and G. B. Giannakis, “Kernel-based structural
equation models for topology identification of directed networks,” IEEE
Trans. Signal Process., vol. 65, no. 10, pp. 2503–2516, May 15, 2017.

[27] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat diffu-
sion graphs,” arXiv:1611.01456, 2016.

[28] D. S. Marks et al., “Protein 3d structure computed from evolutionary
sequence variation,” PLoS ONE, vol. 6, no. 12, 2011, Art. no. e28766.

[29] M. E. J. Newman, “Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality,” Phys. Rev. E, vol. 64, Jun. 2001, Art.
no. 016132.

[30] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” IEEE Trans.
Signal Proecss., vol. 61, no. 7, pp. 1644–1656, Aug. 2017.

[31] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Learning Theory and Kernel Machines. New York, NY, USA: Springer-
Verlag, 2003, pp. 144–158.

[32] S. Boyd, “Convex optimization of graph Laplacian eigenvalues,” Proc.
Int. Congr. Math., vol. 3, no. 1–3, pp. 1311–1319, 2006.
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