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What is this talk about?

Online social media Internet Clean energy and grid analytics
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» Learning undirected graphs from nodal observations

= Ex: Functional brain connectivity from brain signals

» Q: What about streaming data from (possibly) dynamic networks?
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Graph signal processing (GSP) ROCHEST

> Graph G with adjacency matrix W € RV*N e M
= Wj; = proximity between i and j

> Define a signal x € R" on top of the graph
= x; = signal value at node i € V o x4
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Graph signal processing (GSP) ROCHE:

> Graph G with adjacency matrix W € RV*N e M
= Wj; = proximity between i and j

> Define a signal x € R" on top of the graph
= x; = signal value at node i € V o x4

» Total variation of signal x with respect to Laplacian L=D — W

TV(x) =x ' Lx = % Z Wi (xi — xj)?
i

Dual-based Online Learning of Dynamic Network Topologies ICASSP 2023 3



Graph signal processing (GSP)

ROCHE!

» Graph G with adjacency matrix W € RV*N e x3
= Wj; = proximity between i and j
f - @@ | ¢
> Define a signal x € R" on top of the graph

= x; = signal value at node i € V

» Total variation of signal x with respect to Laplacian L=D — W
1
T 2
TV(x) =x Lx= > Z Wii(xi — x;)
i#
» Graph Signal Processing — Exploit structure encoded in L to process x

= Use GSP to learn the underlying G or a meaningful network model
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Problem formulation
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» Noteworthy GSP-based approaches for undirected graphs

» Graphical models

» Structural constraints
» Smooth signals

» Streaming data

Setup and rationale
» Sparse network G with unknown adjacency matrix W
» Observe streaming smooth signals {xt}thl defined on G

» Seek graphs on which data admit certain regularities
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Problem formulation R(L)Ei\lflkﬁlsﬂ

» Noteworthy GSP-based approaches for undirected graphs

» Graphical models

» Structural constraints
» Smooth signals

» Streaming data

Setup and rationale
» Sparse network G with unknown adjacency matrix W
» Observe streaming smooth signals {xt}thl defined on G

» Seek graphs on which data admit certain regularities

Problem statement

Given a set X = {x;}/_; of graph signal observations acquired by time T, learn an undirected
graph G(V, €, W) such that the observations in X are smooth on G.
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Batch topology inference from smooth signals ROCHES]

> Given X one can form the data matrix X = [xy, ..., x7] € RVXT
= A link between smoothness and sparsity (considering E € RQ’XN as )
u 1
ZTV(xt) = trace(X ' LX) = EHW o E|j
t=1
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Batch topology inference from smooth signals » ROCHE

> Given X one can form the data matrix X = [xy, ..., x7] € RVXT
= A link between smoothness and sparsity (considering E € RQ’XN as )
u 1
ZTV(xt) = trace(X ' LX) = EHW o E|j
t=1

» Framework for learning graphs under a smoothness prior
min {HWo i — a1 log (W1) + §\|wn%} s to diag(W) =0, Wy = W; >0, i # ]

= Logarithmic barrier forces positive degrees
= Penalize large edge-weights to control sparsity
= Efficient algorithms with O(N?) cost: primal-dual , ADMM
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Equivalent reformulation » ROCHE

» Encoding constraints on entries of W
. . . __ . N(N—1)/2
= Hollow and symmetric — Suffices to work with w := vec[triu[W]] € R

= Non-negativity via penalty function: I{w = 0} =0 if w = 0, else I{w > 0} = co

» Equivalent unconstrained, non-differentiable reformulation

mvjn { I{w = 0} + 2w e + S|jw|3 — al' log (Sw) }

=f(w) =—g(Sw)

= S € {0, 1]»’\’X’\’(’\”1)/2 maps edge weights to nodal degrees, i.e., d = Sw

» Non-differentiable f(w) is , g(d) is strictly convex =- Unique solution w*

= Amenable to dual-based proximal gradient (DPG) solver
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Dual problem and its properties

» The dual problem is minx {F(X) + G(\)}, where

FO) = max {(STA,w) — F(w)},  G(A) := max {(~,d) - g(d)}
> of f implies a Lipschitz gradient property for F
N—1

= Theorem (Smoothness of F). VF(X) is Lipschitz continuous with constant L := ==
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» The dual problem is minx {F(X) + G(\)}, where

FO) = max {(STA,w) — F(w)},  G(A) := max {(~,d) - g(d)}
> of f implies a Lipschitz gradient property for F
N—1

= Theorem (Smoothness of F). VF(X) is Lipschitz continuous with constant L := ==

» Can be solved by the Proximal Gradient (PG) method = Dual-PG (DPG) iterations
1
Ak = pI’OXL_1G ()\k—l — ZVF(Ak_l))
= Theorem (Convergence rate). Primal sequence Wy = argmax,, {(S™ Ax,w) — f(w)} satisfies

V2(N = 1)[[Xo = A"[l2
Bk '

([ — w2 <
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Online dual proximal gradient Ne@ =N

» Q: Online estimation from streaming data {x1,...,X¢, X¢e41,...}7

= At time t solve the time-varying composite optimization

=fi(w)

w; € argmin {]I {w = 0} +2w e + Bllw|3 —al log (Sw)}

—_—
=—g(Sw)
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Online dual proximal gradient ROCHE

» Q: Online estimation from streaming data {x1,...,X¢, X¢e41,...}7

= At time t solve the time-varying composite optimization

=fi(w)

w; € argmin {]I {w = 0} +2w e + Bllw|3 —al log (Sw)}

—_—
=—g(Sw)

» Step 1: Recursively update the Euclidean-distance vector via exponential moving average

€1t = (1 - ’Y)el:t—l + e

> Step 2: Run a single iteration of the batch DPG algorithm A; = A¢—1 — L™*(Sv; — u;), where

Vi = max (07 M) and u; = SVt — L1+ \/(SVt — LAt71)2 1 4all

28 2

= Memory footprint and per time interval complexity of O(/N?) do not grow with t
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Synthetic random graphs

» Convergence behavior

= Graphs: (a) Stationary 100-node ER; (b) dynamic 50-node ER; (c) dynamic 100-node SBM
= :T = 2000 i.i.d. Gaussian-distributed smooth signals x; ~ N (07 LI + 10_2|N)

= Monitor the evolution of the error metric ||W; — w; |2
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Dynamic network-based analysis of epileptic seizures ROCHES]

» ECoG data acquired via N = 76 electrodes

= 8 x 8 grid located at the cortical brain’s surface
= 12 electrodes are placed deeper

(a) Evolution of edge weights from pre-ictal to ictal; vertical line indicates seizure onset

(b) Recovered brain graphs 2.5s prior to seizure; and (c) 2.5s after = Edge-thinning apparent
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Closing remarks Ne@ =N

» Network topology inference cornerstone problem in Network Science
= Most GSP works analyze how G affect signals and filters

= In many cases the underlying G is not readily available

» Novel online algorithm to learn graphs from observations of
= Cardinal property of many real-world graph signals

= Show problem has favorable structure in the dual domain

» Online dual-based proximal gradient method
= Tracks (possibly) dynamic network topology with affordable memory and complexity

= Faster empirical convergence than state-of-the-art algorithms
» Try it out!: http://hajim.rochester.edu/ece/sites/gmateos/code/0DPG.zip
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