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What is this talk about?

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

▶ Learning undirected graphs from nodal observations

⇒ Ex: Functional brain connectivity from brain signals

▶ Q: What about streaming data from (possibly) dynamic networks?

G. B. Giannakis et al, “Topology identification and learning over graphs: Accounting for nonlinearities and dynamics,”

Proc. IEEE, 2018
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Graph signal processing (GSP)

▶ Graph G with adjacency matrix W ∈ RN×N

⇒ Wij = proximity between i and j

▶ Define a signal x ∈ RN on top of the graph

⇒ xi = signal value at node i ∈ V

1 x12x2

3 x3

4 x4

G

▶ Total variation of signal x with respect to Laplacian L = D−W

TV(x) = x⊤Lx =
1

2

∑
i ̸=j

Wij(xi − xj)
2

▶ Graph Signal Processing → Exploit structure encoded in L to process x

⇒ Use GSP to learn the underlying G or a meaningful network model
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Problem formulation

▶ Noteworthy GSP-based approaches for undirected graphs
▶ Graphical models [Egilmez et al’16], [Rabbat’17], [Kumar et al’19], ...
▶ Structural constraints [Nie et al’16], [Cardoso et al’21], ...
▶ Smooth signals [Dong et al’15], [Kalofolias’16], [Sardellitti et al’17], ...
▶ Streaming data [Shafipour et al’18], [Natali et al’20], [Saboksayr et al’21], ...

Setup and rationale

▶ Sparse network G with unknown adjacency matrix W (or Wt in dynamic setting)

▶ Observe streaming smooth signals {xt}Tt=1 defined on G
▶ Seek graphs on which data admit certain regularities

Problem statement

Given a set X = {xt}Tt=1 of graph signal observations acquired by time T , learn an undirected
graph G(V, E ,W) such that the observations in X are smooth on G.
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Batch topology inference from smooth signals

▶ Given X one can form the data matrix X = [x1, . . . , xT ] ∈ RN×T

⇒ A link between smoothness and sparsity (considering E ∈ RN×N
+ as Euclidean-distance matrix)

T∑
t=1

TV(xt) = trace(X⊤LX) =
1

2
∥W ◦ E∥1

▶ Framework for learning graphs under a smoothness prior [Kalofolias’16]

min
W

{
∥W ◦ E∥1 − α1⊤ log (W1) +

β

2
∥W∥2F

}
s. to diag(W) = 0, Wij = Wji ≥ 0, i ̸= j

⇒ Logarithmic barrier forces positive degrees

⇒ Penalize large edge-weights to control sparsity

⇒ Efficient algorithms with O(N2) cost: primal-dual [Kalofolias’16], ADMM [Wang et al’21]
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Equivalent reformulation

▶ Encoding constraints on entries of W

⇒ Hollow and symmetric → Suffices to work with w := vec[triu[W]] ∈ RN(N−1)/2
+

⇒ Non-negativity via penalty function: I {w ⪰ 0} = 0 if w ⪰ 0, else I {w ⪰ 0} = ∞

▶ Equivalent unconstrained, non-differentiable reformulation

min
w

{
I {w ⪰ 0}+ 2w⊤e+ β∥w∥22︸ ︷︷ ︸

:=f (w)

−α1⊤ log (Sw)︸ ︷︷ ︸
:=−g(Sw)

}

⇒ S ∈ {0, 1}N×N(N−1)/2 maps edge weights to nodal degrees, i.e., d = Sw

▶ Non-differentiable f (w) is strongly convex, g(d) is strictly convex ⇒ Unique solution w∗

⇒ Amenable to dual-based proximal gradient (DPG) solver
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Dual problem and its properties

▶ The dual problem is minλ {F (λ) + G(λ)}, where

F (λ) := max
w

{
⟨S⊤λ,w⟩ − f (w)

}
, G(λ) := max

d
{⟨−λ, d⟩ − g(d)}

▶ Strong convexity of f implies a Lipschitz gradient property for F

⇒ Theorem (Smoothness of F ). ∇F (λ) is Lipschitz continuous with constant L := N−1
β

▶ Can be solved by the Proximal Gradient (PG) method ⇒ Dual-PG (DPG) iterations

λk = proxL−1G

(
λk−1 −

1

L
∇F (λk−1)

)
⇒ Theorem (Convergence rate). Primal sequence ŵk = argmaxw

{
⟨S⊤λk ,w⟩ − f (w)

}
satisfies

∥ŵk − w⋆∥2 ≤
√

2(N − 1)∥λ0 − λ⋆∥2
βk

.

S. S. Saboksayr and G. Mateos, “Accelerated graph learning from smooth signals,” IEEE Signal Process. Letters, 2021.
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{
⟨S⊤λk ,w⟩ − f (w)

}
satisfies
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Online dual proximal gradient

▶ Q: Online estimation from streaming data {x1, . . . , xt , xt+1, . . .}?

⇒ At time t solve the time-varying composite optimization

w⋆
t ∈ argmin

w

:=ft (w)︷ ︸︸ ︷{
I {w ⪰ 0}+ 2w⊤e1:t + β∥w∥22 −α1⊤ log (Sw)

}
︸ ︷︷ ︸

:=−g(Sw)

▶ Step 1: Recursively update the Euclidean-distance vector via exponential moving average

e1:t = (1− γ)e1:t−1 + γet

▶ Step 2: Run a single iteration of the batch DPG algorithm λt = λt−1 − L−1(Svt − ut), where

vt = max

(
0,

S⊤λt−1 − 2e1:t
2β

)
and ut =

Svt − Lλt−1 +
√

(Svt − Lλt−1)2 + 4αL1

2

⇒ Memory footprint and per time interval complexity of O(N2) do not grow with t
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Synthetic random graphs

▶ Convergence behavior

⇒ Graphs: (a) Stationary 100-node ER; (b) dynamic 50–node ER; (c) dynamic 100-node SBM

⇒ Signals:T = 2000 i.i.d. Gaussian-distributed smooth signals xt ∼ N
(
0,L†

t + 10−2IN
)

⇒ Monitor the evolution of the error metric ∥ŵt − w⋆
t ∥2
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S. S. Saboksayr and G. Mateos, “Online graph learning under smoothness priors,” in Proc. EUSIPCO, 2021.
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Dynamic network-based analysis of epileptic seizures

▶ ECoG data acquired via N = 76 electrodes [Kramer et al’08]

⇒ 8× 8 grid located at the cortical brain’s surface

⇒ 12 electrodes are placed deeper

(a) Evolution of edge weights from pre-ictal to ictal; vertical line indicates seizure onset

(b) Recovered brain graphs 2.5s prior to seizure; and (c) 2.5s after ⇒ Edge-thinning apparent

(a)
(b) (c)
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Closing remarks

▶ Network topology inference cornerstone problem in Network Science

⇒ Most GSP works analyze how G affect signals and filters

⇒ In many cases the underlying G is not readily available

▶ Novel online algorithm to learn graphs from observations of streaming smooth signals

⇒ Cardinal property of many real-world graph signals

⇒ Show problem has favorable structure in the dual domain

▶ Online dual-based proximal gradient method

⇒ Tracks (possibly) dynamic network topology with affordable memory and complexity

⇒ Faster empirical convergence than state-of-the-art algorithms

▶ Try it out!: http://hajim.rochester.edu/ece/sites/gmateos/code/ODPG.zip
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